5 причин деградации светодиодов

Что такое деградация светодиода

Чаще всего, говоря о деградации светодиода, имеют ввиду процесс постепенного снижения его яркости вследствие плохого охлаждения кристалла. Еще под понятием «деградация светодиода» может подразумеваться преждевременный приход полупроводникового источника света в непригодность или изменение первоначальной цветовой температуры.

Однако деградация бывает вызвана различными причинами, несмотря на то, что результат всегда выглядит одинаково — неприемлемое снижение яркости светодиода или вообще прекращение испускания им света в ответ на подачу питания.

Деградация светодиодов может стать настоящей проблемой там, где точность цветопередачи крайне важна, например в больницах, в выставочных залах и музеях. Давайте же рассмотрим причины деградации светодиода.

Итак, как мы уже выяснили, процесс старения светодиода называют деградацией. Прежде всего это выражается в снижении яркости испускаемого света (в уменьшении светового потока).

Кроме того проблемой становится так называемый цветовой сдвиг, который выражается в отклонении цветовой температуры от первоначально заявленной, и в ухудшении цветопередачи. Наконец все может закончиться полным выходом светодиода из строя. Но так или иначе светодиод к деградации могут привести различные факторы.

Одна из самых обычных причин ранней деградации кристалла — недоброкачественная сборка изделия. Желая сделать продукт как можно более дешевым, максимально понизить его себестоимость, изготовитель сильно откланяется от адекватных стандартов производства, например использует заведомо маленькие корпуса.

Современные модели мощных светодиодов требуют новых корпусов с большей площадью, нежели у тех корпусов, которые использовались ранее для чипов малой мощности.

Либо сами чипы могут быть изготовлены некачественно, с нарушением правильной технологии. Это однозначно становится причиной ранней деградации кристалла, светодиод выйдет из строя раньше срока гарантийной эксплуатации, заявляемого самонадеянным производителем.

В следствие плохого монтажа, кристалл светодиода попадает в неправильные условия эксплуатации. Бывает такое, что алюминиевый профиль вообще не используется когда должен, — это грубое нарушение правил монтажа.

Установка мощного современного светодиода на чип, который использовался в маломощных светодиодах более ранних моделей — ведет к гарантированному перегреву кристалла.

Механические повреждения — также приводят к ранней деградации светодиода. Размещение светодиодов под прямыми солнечными лучами либо перегрев во время пайки неопытным новичком — все это нарушение условий эксплуатации полупроводниковых источников света.

Перечисленные факторы имеют одну общую черту — они способствуют плохому отводу тепла от кристалла, приводят к его перегреву, что отнюдь не соответствует безопасным условиям эксплуатации.

Ток через переход может быть превышен вследствие одного из этих факторов, и диод просто сгорит, равно как при случайном перегреве паяльником. Превышение допустимой температуры внутри устройства — верный путь к быстрой деградации кристалла.

Но даже если светодиод эксплуатируется правильно, то через определенное время деградации кристалла все равно не избежать. Дело в том, что светодиоды сами по себе подвержены естественному старению. Особенно быстро стареют белые светодиоды. Цвет белого светодиода изначально имеет синий оттенок, который обычно выравнивается до белого при помощи подходящего люминофора.

Люминофор имеет свойство со временем свертываться, его слой в итоге разрушается, и цветовая температура ползет в направлении холодного голубого.

При другом способе производства светодиодов деградация происходит с цветовым сдвигом в сторону желтого цвета, поскольку высокие температуры вызывают появление воздушных зазоров между люминесцентным покрытием и светодиодным чипом, происходит попросту «расслаивание» светодиода.

И то и другое — естественная деградация, характер которой добросовестный производитель всегда рассчитывает на стадии изготовления и учитывает при составлении спецификации на светодиод.

Необходимо помнить, что спецификация изготовленного на заводе светодиода, включая показатели долговечности, составляется в лабораторных условиях, где соблюдены идеально корректные режимы питания, теплоотведения и влажности. При эксплуатации же в реальных условиях, долговечность, как правило, снижается.

Пример выгорания светодиодов

Производители светодиодных ламп и светодиодов обещают большую длительность работы, обычно составляет от 20 тысяч часов для старых моделей, и 30-50 тысяч часов для последних популярных моделей, таких как SMD 5630 и SMD 5730. На самые современные диоды длительность может составлять уже до 100 тыс. часов.

  • 1. Характеристики кукурузы
  • 2. Деградация
  • 3. Ресурс
  • 4. Измеряем падение яркости через 2 года
  • 5. Определяем режим работы

Характеристики кукурузы

В качестве примера с большим временем эксплуатации будет рассмотрена кукуруза с цоколем Е27 и напряжением 220В. Примерное непрерывное время работы этой лампы составляет 2 года, то есть 17,000 – 20,000 часов.

Светодиодная лампочка на SMD 5630

Светодиодная лампа была куплена на Aliexpress, и была поставлена в коридор на лестничной площадке, из-за того, что я заказывал белого света, а одна а оказалась холодного свечения. Эксплуатировалась в замкнутом пространстве, в прозрачном рифленом плафоне, и плафон при этом был температуры окружающего воздуха. За это время пластик на кукурузе пожелтел и явно стали видны следы деградации люминофора на диодах, которые обнажили внутренности светодиодов SMD 5630 под силиконовой поверхностью.

В ней использованы диоды низкого качества от мелкокитайского производителя, которые включены на 30% от общепринятой мощности, на 0,15 Вт вместо 0,5 Ватт. Таким образом, производитель защищает его от преждевременного снижения характеристик и обеспечивает приемлемую длительность использования.

Диоды бюджетные китайские, на 0,15W, вместо положенных популярных 0,5W. Этим китайцы умело пользуются, то есть обманывают. Выдают их за полватные. Кто покупает первый раз и не разбирается в этом, не поймет что его обманули. Это я подробно описал в статье про выбор светодиодных лент, сравнивая цены, мощность и конечную выгоду.

Деградация

Пример, слева новый, справа старый (2 года работы)

По мере эксплуатации, светодиод подвергается воздействиям, которые негативно сказываются на его характеристиках.

Основные факторы:

  1. помутнение оптической части, выполненной из силикона;
  2. выгорание люминофора под воздействием температур;
  3. деформации корпуса из-за нагрева и напряжения корпуса;
  4. деградация кристалла.

Светодиод белого света изначально светит холодным синим цветом. Для получения нейтрального белого дневного света, кристалл покрывают люминофором, который преобразует синий в белый цвет.

Во время деградации кристалла, появляются дефекты, при которых участок кристалла перестает светить, но продолжает нагреваться. При этом начинает увеличиваться ток утечки, то есть ток проходит не излучая свет. Самым плохими катализаторами деградации являются ток выше номинального и повышенная температура. Поэтому надо быть осторожным при покупке сомнительных экземпляров, потому что наши китайские братья по разуму могут «разгонять» светодиоды, подавая ток выше номинального.

Ресурс

График деградации от температуры и времени

Что же будет, когда он отработает указанное производителем время?
Общепринятым стандартом считается, что за период указанной длительности работы яркость светодиода упадет на 30%.

Это правило в основном действует на именитых производителей, который соблюдают стандарты, а мелкие и неизвестные производители могут отходить от стандартных правил, с целью завышения параметров и технических характеристик светодиодных ламп. Они могут запросто указать стандартную длительность работы для модели, при этом умолчав, что при этом яркость упадет до 50%.

Во избежание различных неприятных сюрпизов, требуйте продавца настоящие сертификаты на продукцию. Если сертификатов нет, то подсунуть могут что угодно. Еще одна сопутствующая проблема, это будет непонятно, относится сертификат к этим диодам или он от другой партии.

Измеряем падение яркости через 2 года

На торце обеих установлено 8 штук

Выгорание люминофора и деградация налицо, но это лишь внешние признаки. Так как я покупал несколько одинаковых, из которых непрерывно в течение 2 лет работала одна, то сравним их яркость. Для теста берем такую же лампу с цоколем Е14 220В, которая практически не работала и отработавшую 17 – 20 тыс. часов.

Фото тестируемых кукуруз, одна в цилиндре

Для получения более точных результатов, будем сравнивать освещенность, создаваемую SMD 5630, которые находятся только на торце, в количестве 8 штук. Для исключения влияния боковых светодиодов, одеваем неё цилиндр из бумаги.

Читайте также:  Как подключить 380

Измеряем освещенность новой лампочки

Измеряем освещенность старой

В результате тестирования получаем:

  • после 2 лет дает освещенность 49 Люкс;
  • новая светит на 73 Люкс.

Разница между старой и новой составляет 24 люкса, получается, что яркость упала за время двухлетней непрерывной эксплуатации на 33%. Так как они неизвестного китайского производства и низкого качества, то можно сказать, что ресурс этих светодиодов составляет 20,000 часов.

Определяем режим работы

Чтобы определить светодиоды, которые не в номинальном режиме, а в заниженном или завышенном, то необходимо узнать тип диодов и вычислить суммарную потребляемую мощность и световой поток. Полученные данные сопоставляем с характеристиками светодиодной лампы, в результате чего делаем выводы. Основная проблема, это невозможность определить модель диода из-за наличия матовой колбы. Один из выходов, это найти такие же у другого продавца (например, если покупаете на Aliexpress), у которых указан тип диодов или есть фото без колбы.

существуют ли снипы и санпины разрешающие использование светодиодного освещения в д/садах и школах. какая ситуация поданному вопросу у наших зарубежных партнёров.

Если параметры светодиодных ламп соотвествуют требованиям санпина, то использовать можно. По уровню пульсаций и другим. Как дела с этим обстоят за рубежом, не интересовался.

Деградация светодиодов и Светодиодное освещение

Светодиодное освещение и проблема деградации белых светодиодов

Методы повышения эффективности: разгоняем светодиод

В последнее десятилетие светодиоды стали чем-то большим, чем просто электронные компоненты. Сохранив свои сигнальные и индикаторные функции, новые сверхяркие светодиоды начали заменять обычные лампы накаливания и неоновые лампы. Единственным фактором, сдерживающим переход на светодиодные технологии в освещении, является цена вопроса. В настоящее время светодиоды могут достичь отношения $0.1-0.05 долларов за люмен, что на два порядка выше величины для обычных ламп.
Производители светодиодов быстро поняли, что теперь основным ценообразующим фактором является отнюдь не функциональность светодиода, а испускаемый им световой поток. В связи с этим они задались вопросом: а как, собственно, повысить эффективность светодиодов и снизить их стоимость?

Увеличение эффективности выхода света может быть реализовано различными способами: усовершенствованием качества материалов, улучшением структуры чипа и технологии его формирования, текстурированием поверхности, улучшением свойств подложки и т.д.

Снижение стоимости света может быть достигнуто увеличением плотности тока, проходящего через светодиодный чип. Если зависимость квантового выхода от прямого тока весьма линейна до определенного значения тока без насыщения, то поток света, исходящий от одного эмиттера с тем же самым размером чипа, может быть в разы выше на более высоких токах. Соответственно отношение доллар/люмен будет меньше. Максимальный ток, который может быть пропущен через светодиодный чип, зависит от следующих двух факторов:

1. ток, на котором чип может работать без существенной деградации;
2. ток, при котором эффективность светодиодного чипа (люмен/ватт) понижается не слишком сильно.

В недавнем прошлом светодиоды работали с плотностью тока 20А/см 2 . Теперь некоторые мощные светодиоды (Power LEDs) работают на 70-100А/см 2 . Чтобы обеспечить длительную работу мощных светодиодов без существенной деградации, необходимо подобрать светодиодный чип с лучшими свойствами по отводу тепла и разработать соответствующий корпус. AlGaInP и AlGaInN чипы выращены на арсенид-галлиевых и сапфировых подложках соответственно. Эти подложки не являются хорошими теплопроводящими материалами. Теплопроводность GaAs и Al2O3 — 44Вт/(м-К) и 35Вт/(м-К). Для более эффективного удаления тепла и снижения температуры перехода существуют три различных подхода:

1. Уменьшение толщины подложки.
2. Технология обратного монтажа (flip chip), позволяющая расположить испускающий свет p-n переход близко к теплоотводу.
3. Удаление первоначальной подложки, которая используется для роста светодиодных гетероструктур, и затем — перемещение эпитаксиальных слоев на электро- и теплопроводное основание.

Первый подход — самый легкий, но сделать подложку тоньше чем 50нм довольно проблематично.
Второй подход уже использовался Matsushita и Lumileds, чтобы улучшить как эффективность выхода, так и отвод тепла в GaN светодиодах. Многие компании также разработали flip chip технологию для AlGaInP светодиодов в целях увеличения эффективности и операционных характеристик на высоких токах. Однако, flip chip процесс достаточно сложен и дорог.

Многие компании, включая Osram, Nichia, Sanken, VPEC, AET Optotech, Arima и Epistar, объявили об успешной разработке технологии thin film transfer, используя третий подход. Этот подход является самым эффективным по стоимости способом для изготовления светодиодных чипов высокой мощности.

Разгон светодиодов по-китайски

Рассмотренные выше подходы повышения эффективности и снижения стоимости светодиода могут быть применены производителями светодиодных структур. Многочисленные же потребители светодиодных чипов имеют меньше инструментов для снижения стоимости светодиодного света.

На каких токах способен работать светодиодный кристалл, какой максимальный выход света он может обеспечить? Однозначно ответить трудно.
Ключевой вклад в обеспечение длительного срока службы, надежности и эффективности вносит корпусировка ярких светодиодов. Теоретически, решив вопрос отвода тепла от активной зоны, можно заставить работать чип на более высоких токах, обеспечив тем самым более высокий квантовый выход. Грамотный проект линзы позволит снизить внутреннее поглощение и отражение, существенно повысив оптическую эффективность. А резервы для повышения здесь большие. Например, эффективность оптической системы 5мм светодиодов не превышает 30%.

Но жажда наживы, а также сложившийся уровень цен продиктовали иное поведение на рынке.
Многочисленная армия китайских производителей светодиодов быстро применила вышеупомянутый принцип разгона светодиодов по току, предлагая 0.04-0.03 доллара за люмен. Чтобы понять, насколько адекватна цена заявленным характеристикам, мы рассмотрим тестирование сотни образцов светодиодов белого свечения от различных азиатских производителей.

Подавляющее большинство белых светодиодов подверглось необратимой деградации: световой поток уменьшился до 50% величины от первоначального значения уже в течение 1-2 месяцев (700-1500 часов); в ряде случаев также наблюдалась деградация фосфора и связанное с этим изменение цвета светодиодов.

А вот и причины столь сильной деградации:

1. Величина прямого тока
Декларируя 50-100 тысяч часов работы для своих оптоэлектронных приборов при токе 20мА, в подавляющем большинстве случаев азиатские производители устанавливают чипы, на самом деле предназначенные для подсветки экранов мобильных телефонов и рассчитанные на ток 3-5мА.
Видимо, такой подход очень не дорог и весьма практичен, что позволяет быстро одержать победу в недобросовестной конкуренции.

2. тепловыделение
Корпуса, используемые для светодиодов, были разработаны относительно давно, и, используя высокоавтоматизированные процессы сборки, обеспечивают минимальную конечную стоимость компонентов. Но такая упаковка не была рассчитана для установки ярких светодиодов. Размер посадочного места для кристалла не превышает 12mil, посадка кристалла возможна только по классической схеме, а конструкция корпуса не обеспечивает необходимый отвод тепла. Плотно укутанный в эпоксидную шубу светодиодный чип подвержен быстрой деградации квантового выхода. Применение теплопроводных упаковочных материалов, похоже, не котируется среди азиатских производителей, так как приводит к повышению стоимости конечных продуктов.

3. качество используемых чипов
При всем разнообразии поставщиков светодиодных структур, подавляющее большинство производителей светодиодов использовало кристаллы, изготовленные по однотипной технологии и имеющие широко известную структуру — прототип фирмы Nichia с прозрачным p-контактом.

На сегодняшний день это наиболее дешевая технология, обеспечивающая высокую эффективность квантового выхода и уже нашедшая широкое применение в мобильных устройствах. Кристаллы данного типа плохо ведут себя в условиях горячего окружения, и их использование в дискретных компонентах, предназначенных для освещения, крайне нежелательно. Кроме того, по своим характеристикам они значительно уступают (если не сказать, что вообще имеют мало общего) кристаллам Nichia, по всей вероятности из-за несовершенства оборудования и несоблюдения технологического процесса их выращивания.

За последние годы десятки неизвестных азиатских производителей установили реакторы МОС-гидридной эпитаксии (MOCVD). В то время как выращивание полупроводниковых эпитаксиальных гетероструктур – процесс сродни искусству. Помимо установки соответствующего оборудования, требуется глубокое понимание процессов, происходящих в гетероструктурах и многолетний технологический опыт.

4. нарушение технологии при сборке светодиода
Нельзя однозначно выделить ту или иную причину, приводящую к ухудшению свойств, деградации и отказу светодиодов. Подробно причины и механизмы отказа светодиодов освещены в статье «Срок службы сверхярких светодиодов. Причины отказов».

Читайте также:  Как сделать, чтобы защита в щитке срабатывала до вводного дифавтомата?

Подведем итог

Недобросовестная конкуренция среди китайских и других азиатских производителей привела к тому, что мы имеем: в ярких белых светодиодах (White HB LEDs) устанавливаются наиболее дешевые кристаллы из доступных на рынке, малоизвестных производителей, предназначенные для других применений, мелко нарезанные и подверженные деградации, как тепловой ввиду особенностей используемой технологии, так и электрической ввиду качества техпроцесса. Установлены такие кристаллы в корпуса, более чем скромные по своим тепловым, оптическим и другим свойствам. Причём изначально эти светодиоды признаются годными, поскольку стартовые яркость (световой поток / осевая сила света), падение напряжения на переходе, цветовые координаты и другие параметры соответствуют всем характеристикам, указанным в спецификации производителя.

Многие импортеры, не имеющие условий для полноценного тестирования, заключили контракты на дистрибуцию таких компонентов, руководствуясь исключительно низкой закупочной ценой.

В действительности же срок службы таких компонентов не превышает нескольких сотен часов, что подтверждают испытания.
Все ли азиатские светодиоды плохие?

Нет, не все. Для примера приведем такие достойные компании как Harvatek, Cotco, Everlight.

Кроме того, динамично меняющееся состояние рынка светодиодной продукции диктует необходимость не только осуществлять мониторинг новаций и разработок технологических лидеров отрасли, но и принимать правильные решения в стратегии использования тех или иных светодиодов в устройствах на их основе. Нет никакой необходимости украшать новогоднюю елку светодиодами Cree, но и не стоит использовать noname компоненты в сколь-нибудь ответственной аппаратуре.

Но время не стоит на месте, и твердотельный свет неизбежно становится все более доступным.

Долговечность светодиодов: мифы и реальность

По мере того как системы освещения становятся более технически сложными, вопросы надежности и долговечности источников света, напрямую связанные с затратами на закупку, монтаж и обслуживание световых установок, приобретают все большее значение. В силу растущей популярности светодиодных линеек и LED-модулей производители светотехники вынуждены чаще определять срок службы своей продукции в приближенных к реальности показателях. Очевидно одно: зачастую заявляемые поставщиками 100 тыс. часов ресурса твердотельных источников света — преувеличение.

В отличие от большинства традиционных источников света, включая лампы накаливания и люминесцентные лампы, светодиоды не перегорают, а с течением времени постепенно утрачивают свою яркость. Мгновенный выход диодов из строя — достаточно редкое явление, с которым, впрочем, время от времени сталкиваются пользователи. Притом, что известны примеры до сих пор работающих LED-устройств, изготовленных еще в 1980-е годы, вряд ли их нынешнюю светоотдачу можно считать практически пригодной. Что же касается выпускаемых в настоящее время светодиодов, даже если они и будут способны генерировать свет через заявленные производителем 100 тыс. часов, количество этого света будет явно недостаточным для большинства областей применения светильников.


Образец светодиодной лампы, разработанный в рамках проекта Brilliant Mix компанией OSRAM Opto Semiconductors. Изделие генерирует световой поток 110 лм/Вт с индексом цветопередачи свыше 90.

В процессе эксплуатации в светодиодах происходит плавное снижение генерируемого ими светового потока, измеряемого в люменах. Деградация качественных характеристик диода обусловлена увеличением разрушений в молекулярной структуре фосфора. Как правило, этот процесс ускоряется при увеличении рабочего тока и нагреве твердотельных источников света. Поэтому производители светодиодной продукции ввели в обиход термин «сохранение люменов» («Lumen maintenance»), обозначаемый латинской буквой L. Данное понятие характеризует остающуюся величину светового потока диода на протяжении периода эксплуатации по отношению к первоначальной величине светового потока устройства.

В силу постоянной деградации функциональности светодиодов понятие «срок службы до выхода из строя» — это период времени, в течение которого светодиод сохраняет световой поток до определяемого производителем минимально допустимого значения L. Ведущие мировые разработчики LED-продукции устанавливают для своих светотехнических изделий это значение в 50% (L50) или в 70% (L70). Это означает, что после эксплуатации диода в течение указанного производителем времени первоначальная яркость источника света снизится на 50% или на 70% соответственно.

Свой вклад в снижение яркости LED-устройств вносит и пожелтение под воздействием ультрафиолетового излучения эпоксидной линзы, которой защищен диод. Именно поэтому ультрафиолетовые светодиоды имеют очень ограниченный срок службы и не используются в системах общего освещения.

Стоит также заметить, что долговечность выпускаемых в настоящее время светодиодов зачастую определяется производителями в лабораторных условиях при окружающей температуре +25 градусов Цельсия с помощью оборудования, в котором процессы воздействия внешних факторов преднамеренно многократно увеличены. Это дает возможность, к примеру, в течение месяца имитировать беспрерывную эксплуатацию светодиода в течение года или более длительного периода времени. Очевидно, что в реальных условиях результаты с большой долей вероятности будут иными, чем цифры, полученные в исследовательских лабораториях.

Разработчики светодиодов не отрицают, что помимо непосредственно деградации яркости светодиодов в процессе эксплуатации на срок службы LED-устройств оказывают влияние и другие факторы, включая влажность, температуру, силу тока и напряжение, механическое воздействие и воздействие химических веществ, а также солнечный свет. Эти факторы могут привести к преждевременному выходу светодиодного светильника из строя или же существенно ускорить процесс деградации яркости светодиода. Последнее вызывают в первую очередь воздействие высоких температур и увеличение рабочего тока, подаваемого на светодиод. Внешний нагрев приводит к увеличению температуры в p-n-переходе светодиода, которое влечет за собой ускорение деградации светового потока, генерируемого твердотельным источником света. Поскольку при эксплуатации диода в любом случае происходит нагрев p-n-перехода, разработчики светотехнической продукции предусматривают в дизайне своих изделий различные способы рассеивания и отвода тепла и применяют в конструкции диодов специальные материалы.

Особого внимания заслуживает долговечность белых светодиодов. Под воздействием времени и температуры фосфоры в них деградируют, что приводит к изменению цвета свечения этих источников света. Обычно со временем их свет приобретает голубоватый оттенок.

Что же касается некачественно изготовленных светодиодов, в них может наблюдаться процесс шнурования тока, следствием чего (в особенности в светодиодах высокой яркости) является стремительное возрастание температуры внутри устройства. Это, в свою очередь, ведет к увеличению сопротивления, которое в результате способствует еще большему росту температуры. Как уже отмечалось, при нагревании процесс деградации фосфоров в диодах существенно ускоряется. Если преследуется цель — сконструировать светодиодную систему, которая бы не нуждалась в регулярном обслуживании и полноценно бы функционировала по меньшей мере год или два, необходимо использовать только качественные светодиоды ведущих мировых производителей и при эксплуатации устройств соблюдать все рекомендации фирмы-разработчика, включая температурный режим и силу рабочего тока.

Примечательно, что под воздействием низких температур световой поток, генерируемый светодиодами, возрастает. Опять же, при увеличении внешней температуры яркость светодиодной установки будет уменьшаться быстрее, чем в штатном режиме. Если световая конструкция расположена в местах, время от времени подверженных сильному нагреву, специалисты рекомендуют использовать в таких системах большее число светодиодов и при этом уменьшать величину рабочего тока. Такой способ позволит достичь и требуемой яркости, и желаемого срока службы установки.

В последние годы некоторые из наиболее известных мировых производителей светодиодной продукции стали сопровождать свои изделия графиками, где демонстрируется кривая деградации светового потока диода по мере течения времени эксплуатации. Эти данные позволяют прогнозировать приемлемый для пользователя срок службы светодиодной системы при требуемом уровне яркости. Поскольку далеко не все могут довольствоваться тем, что через определенное время световая установка будет вдвое или даже втрое менее яркой, чем изначально, вполне вероятно, что наличие таких графиков в сопроводительной документации к светодиодам будут предусматривать все больше и больше разработчиков и поставщиков светотехники.

Эксперты светотехнической отрасли прогнозируют, что со временем срок службы светодиодов превысит 20 лет. Этого удастся достичь благодаря проводимым в настоящее время исследованиям в области материалов и фосфоров. Как скоро такие светодиоды появятся в продаже, пока еще никто не может предсказать. И все же пользователям не столько важно знать, какое время может прослужить LED-светильник теоретически, сколько иметь достоверную информацию о практически пригодном ресурсе твердотельных источников света.

При подготовке публикации использованы информационные материалы компаний Cree, Inc., Lunar Accents Design Corporation и Osram Opto Semiconductors.

Читайте также:  Чем отличается узо от дифференциального автомата

Проблема деградации белых светодиодов

В последнее десятилетие светодиоды на ближайшие десятилетия просматриваются как полная замена традиционного освещения на светодиодный свет (led light) в масштабах всей планеты. Конца и края этого процесса не видно, и единственным фактором, сдерживающим переход на светодиодные технологии в освещении, является цена вопроса. В настоящее время функциональность светодиода, а испускаемый им световой поток. В связи с этим они зада-лись вопросом: а как, собственно, повысить эффективность светодиодов и снизить их стоимость? Увеличение эффективности выхода света может быть реализовано различными способами: усовершенствованием качества материалов, улучшением структуры чипа и технологии его формирования, текстурированием поверхности, улучшением свойств подложки и т.д.

Снижение стоимости света может быть достигнуто увеличением плотности тока, проходящего через светодиодный чип. Если зависимость квантового выхода от прямого тока весьма линейна до определенного значения тока без насыщения, то поток света, исходящий от одного эмиттера с тем же самым размером чипа, может быть в разы выше на более высоких токах. Соответственно от-ношение доллар/люмен будет меньше. Максимальный ток, который может быть пропущен через свето-диодный чип, зависит от следующих двух факторов:

1. Tок, на котором чип может работать без существенной деградации;

2. Tок, при котором эффективность светодиодного чипа (люмен/ватт) понижается не слишком сильно.

В недавнем прошлом светодиоды работали с плотностью тока 20А/см2. Теперь некоторые мощные светодиоды (Power LEDs) работают на 70-100А/см2. Чтобы обеспечить длительную работу мощных светодиодов без существенной деградации, необходимо подобрать светодиодный чип с лучшими свойствами по отводу тепла и разработать соответствующий корпус. AlGaInP и AlGaInN чипы выращены на арсенид-галлиевых и сапфировых подложках соответственно. Эти подложки не являются хорошими теплопроводящими материалами. Теплопроводность GaAs и Al2O3 — 44Вт/(м-К) и 35Вт/(м-К). Для бо-лее эффективного удаления тепла и снижения температуры перехода существуют три различных под-хода:

Уменьшение толщины подложки

Технология обратного монтажа (flip chip), позволяющая расположить испускающий свет p-n переход близко к теплоотводу.

Удаление первоначальной подложки, которая используется для роста светодиодных гетероструктур, и затем — перемещение эпитаксиальных слоев на электро- и теплопроводное основание.

Первый подход — самый легкий, но сделать подложку тоньше чем 50нм довольно проблематично. Второй подход уже использовался Matsushita и Lumileds, чтобы улучшить как эффективность выхода, так и отвод тепла в GaN светодиодах. Многие компании также разработали flip chip технологию для AlGaInP светодиодов в целях увеличения эффективности и операционных характеристик на высоких токах. Однако, flip chip процесс достаточно сложен и дорог.

Многие компании, включая Osram, Nichia, Sanken, VPEC, AET Optotech, Arima и Epistar, объявили об успешной разработке технологии thin film transfer, используя третий подход. Этот подход является самым эффективным по стоимости способом для изготовления светодиодных чипов высокой мощности.

Разгон по-китайски. Рассмотренные выше подходы повышения эффективности и снижения стоимости светодиода могут быть применены производителями светодиодных структур. Многочисленные же потребители светодиодных чипов имеют меньше инструментов для снижения стоимости светодиодного света.

На каких токах способен работать светодиодный кристалл, какой максимальный выход света он может обеспечить? Однозначно ответить трудно.

Ключевой вклад в обеспечение длительного срока службы, надежности и эффективности вносит корпусировка ярких светодиодов. Теоретически, решив вопрос отвода тепла от активной зоны, можно заставить работать чип на более высоких токах, обеспечив тем самым более высокий квантовый вы-ход. Грамотный проект линзы позволит снизить внутреннее поглощение и отражение, существенно по-высив оптическую эффективность. А резервы для повышения здесь большие. Например, эффективность оптической системы 5мм светодиодов не превышает 30%.

Но жажда наживы, а также сложившийся уровень цен продиктовали иное поведение на рынке. Многочисленная армия китайских производителей светодиодов быстро применила вышеупомянутый принцип разгона светодиодов по току, предлагая 0.04-0.03 доллара за люмен. Чтобы понять, насколько адекватна цена заявленным характеристикам, мы протестировали сотни образцов светодиодов белого свечения от различных азиатских производителей.

Подавляющее большинство белых светодиодов подверглось необратимой деградации: световой поток уменьшился до 50% величины от первоначального значения уже в течение 1-2 месяцев (700-1500 часов); в ряде случаев также наблюдалась деградация фосфора и связанное с этим изменение цвета светодиодов.

Мы исследовали причины столь сильной деградации:

Величина прямого тока

Декларируя 50-100 тысяч часов работы для своих оптоэлектронных приборов при токе 20мА, в подавляющем большинстве случаев азиатские производители устанавливают чипы, на самом деле предназначенные для подсветки экранов мобильных телефонов и рассчитанные на ток 3-5мА. Видимо, такой подход очень не дорог и весьма практичен, что позволяет быстро одержать победу в недобросовестной конкуренции.

Корпуса, используемые для светодиодов, были разработаны относительно давно, и, используя высоко-автоматизированные процессы сборки, обеспечивают минимальную конечную стоимость компонентов. Но такая упаковка не была рассчитана для установки ярких светодиодов. Размер посадочного места для кристалла не превышает 12mil, посадка кристалла возможна только по классической схеме, а конструкция корпуса не обеспечивает необходимый отвод тепла. Плотно укутанный в эпоксидную шубу светодиодный чип подвержен быстрой деградации квантового выхода. Применение теплопроводных упаковочных материалов, похоже, не котируется среди азиатских производителей, так как приводит к повышению стоимости конечных продуктов.

Качество используемых чипов

Мы произвели опрос фабрик, предоставивших образцы светодиодов на предмет происхождения и типа используемых кристаллов. При всем разнообразии поставщиков светодиодных структур, подавляющее большинство производителей светодиодов использовало кристаллы, изготовленные по однотипной технологии и имеющие широко известную структуру — прототип фирмы Nichia с прозрачным p-контактом.

На сегодняшний день это наиболее дешевая технология, обеспечивающая высокую эффективность квантового выхода и уже нашедшая широкое применение в мобильных устройствах. Кристаллы данного типа плохо ведут себя в условиях горячего окружения, и их использование в дискретных компонентах, предназначенных для освещения, крайне нежелательно. Кроме того, по своим характеристикам они значительно уступают (если не сказать, что вообще имеют мало общего) кристаллам Nichia, по всей вероятности из-за несовершенства оборудования и несоблюдения технологического процесса их выращивания.

За последние годы десятки неизвестных азиатских производителей установили реакторы МОС-гидридной эпитаксии (MOCVD). В то время как выращивание полупроводниковых эпитаксиальных гетероструктур – процесс сродни искусству. Помимо установки соответствующего оборудования, требуется глубокое понимание процессов, происходящих в гетероструктурах и многолетний технологический опыт. Чтобы получить представление о внутренних факторах деградации, читайте статью «Неоднородность инжекции носителей заряда и деградация синих светодиодов».

Нарушение технологии при сборке светодиода

Нельзя однозначно выделить ту или иную причину, приводящую к ухудшению свойств, деградации и отказу светодиодов.

Недобросовестная конкуренция среди китайских и других азиатских производителей привела к тому, что мы имеем: в ярких белых светодиодах (White HB LEDs) устанавливаются наиболее дешевые кристаллы из доступных на рынке, малоизвестных производителей, предназначенные для других приме-нений, мелко нарезанные и подверженные деградации, как тепловой ввиду особенностей используемой технологии, так и электрической ввиду качества техпроцесса. Установлены такие кристаллы в корпуса, более чем скромные по своим тепловым, оптическим и другим свойствам. Причём изначально эти светодиоды признаются годными, поскольку стартовые яркость (световой поток / осевая сила света), падение напряжения на переходе, цветовые координаты и другие параметры соответствуют всем характеристикам, указанным в спецификации производителя.

Многие импортеры, не имеющие условий для полноценного тестирования, заключили контракты на дистрибуцию таких компонентов, руководствуясь исключительно низкой закупочной ценой.

В действительности же срок службы таких компонентов не превышает нескольких сотен часов, что подтвердилось в ходе произведенных испытаний.

Все ли азиатские светодиоды плохие?

Нет, не все. Для примера приведем такие достойные компании как Harvatek, Cotco, Everlight. Кроме того, динамично меняющееся состояние рынка светодиодной продукции диктует необходимость не только осуществлять мониторинг новаций и разработок технологических лидеров отрасли, но и принимать правильные решения в стратегии использования тех или иных светодиодов в устройствах на их основе. Нет никакой необходимости украшать новогоднюю елку светодиодами Cree, но и не стоит использовать noname компоненты в сколь нибудь ответственной аппаратуре. Но время не стоит на месте, и твердотельный свет неизбежно становится все более доступным. То, что сегодня относится к категории «Hi-End», завтра, возможно, будет доступно как «mainstream».

Рейтинг
( Пока оценок нет )
Загрузка ...