Что такое эпра для люминесцентных ламп

Содержание

Электронный балласт для люминесцентных ламп (ЭПРА), отличие от ЭмПРА

Несмотря на появление светодиодов, в эксплуатации все еще довольно большое количество светильников с люминесцентными лампами штырькового типа. Они тоже позволяют тратить меньше на электроэнергию, особенно если в светильнике применяется электронный балласт — ЭПРА для люминесцентных ламп.

Электронный пускорегулирующий аппарат (ЭПРА, электронный балласт) — электронное устройство, осуществляющее пуск и поддержание рабочего режима газоразрядных осветительных ламп.

Как работает люминесцентная лампа с дросселем (ЭмПРА)

ЭмПРА — электромагнитный пускорегулирующий аппарат или просто «дроссель». Поняв принцип работы ЭмПРА, будет проще разобраться с устройством и принципом работы ЭПРА.

Для начала стоит разобраться с тем, как работает лампа дневного света. Речь пойдет о длинных лампах типа Т-8. Кроме источника света есть еще стартер (газоразрядная лампа) и пускорегулирующее устройство (дроссель и конденсаторы).

Устройство лампы дневного света

Люминесцентная лампа: устройство и условия для работы

Несколько слов о люминесцентных лампах трубчатого типа. Это полая стеклянная трубка, покрытая изнутри слоем люминофора. На края трубки надеты металлические колпачки с двумя штырьками. Эти штыри — выводы катодов. Катоды соединены попарно вольфрамовой спиралью со специальным эмиссионным покрытием. Лампа заполнена смесью инертных газов с парами ртути (воздуха внутри нет). Для того чтобы люминофор засветился, необходимо:

  • Наличие переменного электрического поля.
  • Свободные заряженные частицы.

Строение люминесцентной лампы

При наличии переменного поля, электроны и ионы активно движутся, наталкиваясь на стенки колбы, заставляя тем самым светиться нанесенный на них люминофор. Вроде все просто. Но при включении необходимо создать условия для появления в инертной среде свободных заряженных частиц. В выключенном состоянии их там просто нет. И даже если на катоды напрямую подать 220 В, ничего не произойдет. Переменное электрическое поле будет, а несвязанных ионов и электронов — нет. И света тоже не будет.

Как заставить люминесцентную лампу светиться

Итак, для того чтобы лампа зажглась, необходимо чтобы в ней появились свободные заряженные частицы. Инициировать их высвобождение можно двумя способами:

  • кратковременно подать высокое напряжение на катоды (холодный пуск);
  • разогреть спираль между двумя катодами до температуры, при которой начинается эмиссия.

Как добиться свечения люминофора

Обычно используют второй вариант. На него требуется больше времени и энергии, но сами лампы «живут» дольше. Холодный пуск популярен среди самодельщиков. Но этот способ «вырывает» из структуры частицы, что приходит к быстрому выходу лампы из строя. Чем он хорош, так это тем, что можно заставить работать лампы с перегоревшими спиралями. Но использовать его нерационально, так как катоды быстро перегорают.

Как работает светильник дневного света с ЭмПРА (электромагнитным балластом)

Для того чтобы обеспечить появление свободных частиц используют дроссель, который называют еще электромагнитный балласт и стартер. Для стабилизации работы используют конденсаторы (на схеме ниже С1 и С2). Дроссель представляет собой набор ферромагнитных пластин, обмотанных эмалированным медным проводом. Дроссель похож на трансформатор, только имеет одну обмотку. Стартер представляет собой газоразрядную лампу с подвижным биметаллическим контактом.

Пока лампа холодная, вольфрам имеет высокое сопротивление, поэтому, при включении, ток течет слабый — порядка 35-50 мА. Его не хватает на разогрев катодов, но для работы газоразрядной лампы стартера он достаточен. Протекающий через стартер ток разогревает контакты газоразрядной лампы. По мере нагрева биметаллический контакт изгибается и в какой-то момент соприкасается со вторым — неподвижным контактом. В этот момент ток мгновенно возрастает до сотен миллиампер (500-800 мА). Тлеющий разряд в стартере гаснет, биметаллический контакт остывает и размыкает цепь. Но несколько секунд ток в цепи очень высокий. Этого времени достаточно для разогрева катодов лампы и начала эмиссии свободных частиц. Возле катодов образуется облако из свободных ионов и электронов.

Но это еще не старт лампы. Она все еще не светится. При размыкании контакта в стартере, в дросселе возникает электродвижущая сила (ЭДС), которая совпадает по фазе с напряжением в сети. Это приводит к мгновенному скачку напряжения до киловольт (1000 В и больше). Такое высокое напряжение вызывает зажигание дуги, пробой газа в лампе и активное высвобождение свободных частиц. Частицы, ударяются в люминофор, вызывают его свечение. Лампа зажигается.

Недостатки ЭмПРА

В свое время такая схема была популярна: расходы электроэнергии на освещение снижались примерно в два-три раза. И это притом что служили такие светильники дольше, свет давали более четкий. Но есть у них и серьезные недостатки:

  • Зажигается светильник не срезу. Проходит несколько секунд. И чем больше срок эксплуатации лампы, тем промежуток времени больше.
  • Свет «моргает». Мы этого не видим, но сетчатка на моргание реагирует. Это вызывает повышенную утомляемость, может стать причиной головной боли. При работе с вращающимися частями возникает стробоскопический эффект, что может быть опасным.
  • При работе дроссель гудит. Некоторые весьма громко. Постоянный фон понижает работоспособность.
  • В холодном помещении лампа может вообще не зажечься.
  • Дроссель может нагреваться до 100°C — это дополнительный расход электроэнергии.

Современный ЭмПРА компании Schwabe Hellas. Q 125.613.4 — электромагнитный ПРА (ЭмПРА) используют с лампами внутреннего применения мощность 125 Ватт. Иногда ЭмПРА называют дросселем для ламп дневного света — учитывайте это при поиске по каталогам

Все эти минусы устранены в ЭПРА (электронных пускорегулирующих аппаратах). Плюс — они еще и электричества потребляют меньше, что делает люминесцентные светильники более экономичными.

Устройство ЭПРА — электронного балласта

Электронное пускорегулирующее устройство для люминесцентных светильников — не самое простое устройство. Намного сложнее приведенного выше. В нем есть шесть отдельных блоков, каждый из которых выполняет определенную функцию. Общее назначение этого устройства — повысить частоту напряжения (до 20 кГц или выше). Это позволяет избежать моргания и гула. Еще одна задача, которая должна быть реализована — постепенный разогрев катодов ламп. Это требуется для того, чтобы избежать холодного старта. Для начала разберемся, из каких частей состоит ЭПРА для люминесцентных ламп, что каждый из блоков делает.

Блок-схема представлена на рисунке, разберемся что делает каждый блок:

    Фильтр. Стоит на входе для того, чтобы работа электронного балласта не влияла на работу ближайших устройств. Если убрать этот элемент, схема останется работоспособной, но в сети могут «гулять» высокочастотные помехи. Поэтому наличие этого блока обязательно.

Напряжение такой формы поступает от сети

После выпрямления нет нижней полуволны

Это то, что получаем на выходе фильтра

Электронный пускорегулирующий аппарат ЭПРА ЛЛ 2х36 HF-S TLD II встраиваемый (913713032466) компании Philips. HF-Selectalume II – наиболее рентабельное, надежное, компактное и доступное решение для флуоресцентного освещения

Как видите, ЭПРА довольно сложное устройство, но все блоки понятны, кроме момента преобразования постоянного тока в высокочастотный переменный. Эту часть рассмотрим отдельно.

Как происходит преобразование постоянного напряжения в высокочастотное

Встроенный в ЭПРА для люминесцентных ламп инверторный преобразователь из полученного ранее постоянного напряжения формирует высокочастотный сигнал. Частота пульсации напряжения порядка 50 кГц, то есть в 1000 раз выше чем в нашей сети. Благодаря такой высокой частоте решаются сразу две проблемы: люминесцентная лампа не моргает и не гудит. Вернее, свет моргает, но с частотой 50000 раз в секунду, что нашим глазом воспринимается как постоянное свечение.

Еще один вариант блок-схемы ЭПРА для люминесцентных ламп

Блок-схема инверторного преобразователя в ЭПРА

Чаще всего этот блок выполнен на основе полумостовой схемы. Этот вариант более популярен, так как для мостовой необходимо в два раза больше дорогостоящих ключей. К тому же его мощность для бытовых и производственных светильников просто не требуется (сотни ватт). Состоит схема инвертора на основе полумостовой схемы из следующих блоков:

    • БУ. Блок управления, управляющий работой ключей.
    • К1 и К2. Ключи (обычно биполярные высоковольтные транзисторы, в более качественных ЭПРА для люминесцентных ламп ставят полевые транзисторы MOSFET). Они включены так, что если один открыт второй закрыт. Оба одновременно открыться или закрыться не могут.

    Блок-схема инверторного преобразователя. На входе у него постоянное напряжение, на выходе переменное высокой частоты

    На схеме входное напряжение указано 300 В, примерно таким оно и бывает после всех преобразований. Но стоит помнить, что форма у него не линейная, а пилообразная. На работу инвертора это не влияет, но может быть важным, если вы захотите увидеть работу схемы при помощи осциллографа.

    Как работает инверторный преобразователь в электронном балласте

    Помним, что холодная люминесцентная лампа имеет высокое сопротивление и через нее ток не течет. Именно поэтому в данной схеме необходим параллельно подключенный конденсатор. Работает схема следующим образом:

    • Блок управления подает команду на переключение ключей.
      • Пусть первым замыкается К1. Тогда ток течет по цепи: верхняя клемма — замкнутый К1 — обмотка дросселя — один из катодов — через дроссель на БЗ — конденсатор С2 — нижняя минусовая клемма.
      • Ключи перекидываются в противоположное состояние: К1 разомкнут, К2 замкнут. В таком случае ток течет по следующему пути: плюсовая клемма — конденсатор С1 — БЗ — через один из катодов лампы — через параллельно подключенный конденсатор на обмотку дросселя — замкнутый контакт К2 — минусовая клемма.

      Схема та же, просто легче будет следить за работой элементов

      В таком режиме лампа работает до тех пор, пока не выключат напряжение питания. Ключи перебрасываются с заданной частотой, ток, проходящий через лампу, ограничивает дроссель, БЗ (блок защиты) следит за исправностью лампы и заблокирует ключи при сбое.

      ЭПРА для люминесцентных ламп: основы подбора

      На полках магазинов можно найти ЭПРА для люминесцентных ламп сравнимые по цене с электромагнитными. Есть и другая категория — они стоят раза в три-четыре больше. Несмотря на разницу в цене, лучше выбрать более дорогие. Цена сложилась не просто так. Дорогой электронный балласт имеет именно ту структуру, которая приведена выше — со всеми опционными устройствами (коррекцией коэффициента мощности, регулировкой яркости и обратной связью). Благодаря чему более дорогие ЭПРА для люминесцентных ламп потребляют значительно меньше электроэнергии, обеспечивают более «ровные» условия работы, что продлевает срок службы светильников. В общем, этот тот случай, когда более экономно купить более дорогостоящий вариант.

      Выбирать необходимо по техническим показателям

      Но цена — далеко не все, на что стоит обращать внимание. Необходимо отслеживать следующие показатели:

      • Для одной или для двух ламп предназначен электронный балласт. Этот параметр отображается рисунком на корпусе. Обычно показано и как их надо подключать.
      • Мощность ЭПРА. Она должна совпадать с мощностью ламп. Иначе функционировать светильник не будет.
      • С какими лампами работает этот электронный балласт (типы ламп — Т4, Т5 и Т8).
      • Степень защиты корпуса IP. Если светильник установлен в жилых комнатах, достаточно обычного исполнения — IP23. Для ванных комнат нужна повышенная влагозащита — IP 44 и выше.

      Для уличных светильников важен температурный диапазон. Стоит заметить, что далеко не все лампы, да и далеко не любой ЭПРА может работать при низких температурах. Может случиться так, что лампа просто не разогреется до достаточной для старта температуры. Так что обращайте внимание на этот показатель.

      Схемы ЭПРА

      Вряд ли имеет смысл собирать электронный балласт своими руками. Даже качественные модели стоят не так много, чтобы оправдать затраты времени на сборку. Разве что вам хочется сделать что-то самостоятельно. Работающая самостоятельно сделанная вещь, безусловно, приносит моральное удовлетворение. В сети есть масса схем, но многие из них абсолютно нерабочие. В этом пункте приведем рабочие — на базе микросхем или без них.

      Схема электронного балласта для ламп дневного света на базе транзисторных ключей

      ЭПРА на базе микросхемы IR2520D фирмы IR с диапазоном рабочей частоты от 35 кГц до 80 кГц

      Схема электронного балласта на микросхеме UBA2021 фирмы NXP. Рабочая частота 39 кГц

      Балласт с микросхемой ICB1FL02G и частотой 40 кГц

      Как устроены и работают ЭПРА для люминесцентных ламп

      Люминесцентные лампы не могут работать напрямую от сети 220В. Для их розжига нужно создать импульс высокого напряжения, а перед этим прогреть их спирали. Для этого используют пускорегулирующие аппараты. Они бывают двух типов – электромагнитные и электронные. В этой статье мы рассмотрим ЭПРА для люминесцентных ламп, что кто такое и как они работают.

      Из чего состоит люминесцентная лампа и для чего нужен балласт?

      Люминесцентная лампа этот газоразрядный источник света. Он состоит из колбы трубчатой формы наполненной парами ртути. По краям колбы расположены спирали. Соответственно на каждом краю колбы расположена пара контактов – это выводы спирали.

      Работа такой лампы основана на люминесценции газов при протекании через него электрического тока. Но ток просто так между двумя металлическими спиралями (электродами) просто так не потечет. Для этого должен произойти разряд между ними, такой разряд называется тлеющим. Для этого спирали сначала разогревают, пропуская через них ток, а после этого между ними подают импульс высокого напряжения, 600 и более вольт. Разогретые спирали начинают эмитировать электроны и под действием высокого напряжения образуется разряд.

      Если не вдаваться в подробности – то описание процесса достаточно для постановки задачи для источника питания таких ламп, он должен:

      1. Разогреть спирали;

      2. Сформировать зажигающий импульс;

      3. Поддерживать напряжение и ток на достаточном уровне для работы лампы.

      Интересно: Компактные люминесцентные лампы, которые чаще называют “энергосберегающими”, имеют аналогичную структуру и требования для их работы. Единственное отличие состоит в том, что их габариты значительно уменьшены благодаря особой форме, по сути это такая же трубчатая колба, на форма не линейная, а закрученная в спиралевидную.

      Устройство для питания люминесцентных ламп называется пускорегулирующим аппаратом (сокращенно ПРА), а в народе просто – балластом.

      Различают два вида балласта:

      1. Электромагнитный (ЭмПРА) – состоит из дросселя и стартера. Его преимущества – простота, а недостатков масса: низкий КПД, пульсации светового потока, помехи в электросети при его работе, низкий коэффициент мощности, гудение, стробоскопический эффект. Ниже вы видите его схему и внешний вид.

      2. Электронные (ЭПРА) – современный источник питания для люминесцентных ламп, он представляет собой плату, на которой расположен высокочастотный преобразователь. Лишен всех перечисленных выше недостатков, благодаря чему лампы выдают больший световой поток и срок службы.

      Схема ЭПРА

      Типовой электронный балласт состоит из таких узлов:

      2. Высокочастотный генератор выполненный на ШИМ-контроллере (в дорогих моделях) или на авто генераторный схеме с полумостовым (чаще всего) преобразователем.

      3. Пусковой пороговый элемент (обычно динистор DB3 с пороговым напряжением 30В).

      4. Разжигающей силовой LC-цепи.

      Типовая схема изображена ниже, рассмотрим каждый из её узлов:

      Переменное напряжение поступает на диодный мост, где выпрямляется и сглаживается фильтрующим конденсатором. В нормальном случае до моста устанавливают предохранитель и фильтр электромагнитных помех. Но в большинстве китайских ЭПРА нет фильтров, а ёмкость сглаживающего конденсатора ниже необходимой, от чего бывают проблемы с поджигом и работой светильника.

      Совет: если вы ремонтируете ЭПРА, то прочтите статью «Как проверить диодный мост» на нашем сайте.

      После этого напряжение поступает на автогенератор. Из названия понятно, что автогенератор – это схема, которая самостоятельно генерирует колебания. В этом случае она выполнена на одном или двух транзисторах, в зависимости от мощности. Транзисторы подключены к трансформатору с тремя обмотками. Обычно используются транзисторы типа MJE 13003 или MJE 13001 и подобные, в зависимости от мощности лампы.

      Хоть и этот элемент называется трансформатором, но выглядит он не привычно – это ферритовое кольцо, на котором намотано три обмотки, по несколько витков каждая. Две из них управляющие, в каждой по два витка, а одна – рабочая с 9 витками. Управляющие обмотки создают импульсы включения и выключения транзисторов, соединены одним из концов с их базами.

      Так как они намотаны в противофазе (начала обмоток помечены точками, обратите внимание на схеме), то импульсы управления противоположны друг другу. Поэтому транзисторы открываются по очереди, ведь если их открыть одновременно, то они просто замкнут выход диодного моста и что-нибудь из этого сгорит. Рабочая обмотка одни концом подключена к точке между транзисторами, а вторым к рабочим дросселю и конденсатору, через нее происходит питание лампы.

      При протекании тока в одной из обмоток в двух других наводится ЭДС соответствующей полярности, которое и приводит к переключениям транзисторов. Автогенератор настроен на частоту выше звукового диапазона, то есть выше 20 кГц. Именно этот элемент является преобразователем постоянного тока в ток переменой частоты.

      Для запуска генератора установлен динистор, он включает схему после того как напряжение на нем достигнет определённого значения. Обычно устанавливают динистор DB3, который открывается в диапазоне напряжений около 30В. Время, через которое он откроется, задается RC-цепью.

      Более продвинутые варианты ЭПРА, строятся не на автогенераторной схеме, а на базе ШИМ-контроллеров. Они имеют более устойчивые характеристики. Однако, за более чем пять лет занятий электроникой мне не разу не попался такой ЭПРА, все с которыми работал, были автогенераторными.

      Выше неоднократно упоминалось об LC цепи. Это дроссель, установленный последовательно со спиралью, и конденсатор, установленный параллельно лампе. По этой цепи сначала протекает ток, прогревающий спирали, а затем образуется импульс высокого напряжения на конденсаторе её зажигающий. Дроссель выполняется на Ш-образном ферритовом сердечнике.

      Эти элементы подбираются так, чтобы при рабочей частоте они входили в резонанс. Так как дроссель и конденсатор установлены последовательно на этой частоте наблюдается резонанс напряжений.

      При резонансе напряжений на индуктивности и ёмкости начинает сильно расти напряжение в идеализированных теоретических примерах до бесконечно большого значения, при этом ток потребляется крайне малый.

      В результате мы имеем подобранные по частотам генератор и резонансный контур. По причине роста напряжения на конденсаторе происходит зажигание лампы.

      Ниже изображен другой вариант схемы, как вы можете убедиться – все в принципе аналогично.

      Благодаря высокой рабочей частоте удаётся достигнуть малых габаритов трансформатора и дросселя.

      Для закрепления пройденной информации рассмотрим реальную плату ЭПРА, на картинке выделены основные узлы описанные выше:

      А это плата от энергосберегающей лампы:

      Заключение

      Электронный балласт значительно улучшает процесс розжига ламп и работает без пульсаций и шума. Его схема не очень сложна и на её базе можно построить маломощный блок питания. Поэтому электронные балласты от сгоревших энергосберегаек – это отличный источник бесплатных радиодеталей.

      Люминесцентные лампы с электромагнитным пускорегулирующим аппаратом запрещено использовать в производственных и бытовых помещениях. Дело в том, что у них сильные пульсации, и возможно появление стробоскопического эффекта, то есть если они будут установлены в токарной мастерской, то при определенной частоте вращения шпинделя токарного станка и другого оборудования – вам может казаться, что он неподвижен, что может вызвать травмы. С электронным балластом такого не произойдет.

      ЭПРА (электронный балласт) – что это такое?

      Для работы люминесцентных, энергосберегающих, светодиодных ламп и панелей необходимо наличие в цепи элементов, обеспечивающих на их входных контактах определенную заданную величину тока и напряжения. Это достигается применением пускорегулирующей аппаратуры.

      В случае работы люминесцентной лампы эта аппаратура обеспечивает предварительный прогрев электродов, после чего ртуть, содержащаяся в трубке, постепенно начинает переходить в парообразное состояние. Для возникновения стабильного тлеющего разряда внутри лампы необходимо, чтобы на ее электроды поступил кратковременный импульс напряжения большой величины.

      Устройство ЭПРА обеспечивает возникновение этого импульса, включение лампы после полного испарения ртути и в процессе работы понижает ток и напряжение на лампе.

      В самой простой модификации такой режим обеспечивает электромагнитный дроссель совместно со стартером. Но в случае применения электромагнитного дросселя работу лампы сопровождает гудение, мерцание и мигание при включении.

      Электронные пускорегулирующие аппараты в итоге решают те же задачи, что и электромагнитные. Они обязаны обеспечивать зажигание и стабильную работу светильников.

      Электронный балласт – это прибор для понижения тока на элементах электрической цепи. Балласты применяются, если сопротивление нагрузки не в состоянии результативно снизить потребляемый ток. Это возникает в случаях, когда устройство имеет отрицательное переменное сопротивление по отношению к элементу питания.

      Если такая нагрузка будет подключена к источнику постоянного напряжения, то через нее будет протекать ток, увеличивающийся до тех пор, пока она или источник тока не выйдут из строя.

      Для предотвращения этого используется балласт, обеспечивающий активное или реактивное сопротивление, понижающее величину тока до расчетного значения.

      Одним из устройств с отрицательным сопротивлением является газоразрядная лампа.

      В настоящее время для пуска и обеспечения работы ламп наиболее часто стали использоваться электронные балласты ЭПРА, которые имеют целый ряд преимуществ по сравнению со схемой включения при помощи электромагнитного дросселя.

      Зачем нужен ЭПРА (электронный балласт) для люминесцентных ламп

      Что такое ЭПРА и для чего он нужен

      Применение электронной пуско-регулирующей аппаратуры или аппарата (сокращенно ЭПРА) дает существенную прибавку к сроку полезной эксплуатации осветительного оборудования этого вида.

      ЭПРА – это очередной виток развития систем зажигания лампы. ЭПРА выпускается в виде отдельного модуля с контактами для подачи напряжения питания и контактами для подключения одной или нескольких ламп. Такой блок пришел на замену простой, но морально устаревшей схемы с дросселем и стартером. Такой конструкцией обычно оснащаются все современные светильники.

      Устройство ЭПРА

      Электронный пускорегулирующий аппарат (electronic ballast) является сложным электронным устройством. В состав входят:

      • Фильтр помех: необходим для нивелирования влияния помех из электросети и в нее;
      • Выпрямитель: необходим для преобразования переменного тока в постоянный;
      • Опционально: корректор мощности;
      • Сглаживающий фильтр: служит для снижения пульсаций;
      • Инвертор: повышает напряжение до необходимого;
      • Балласт: аналог электро-магнитного дросселя.

      В некоторых моделях инвертор может быть дополнен регулятором яркости. Для этого необходим внешний светорегулятор (либо ручной, либо автоматический на базе фоторезистора). Схем разработано очень много. Элементная база ЭПРА для дневных люминесцентных ламп весьма разнообразна: от мощных полевых транзисторов в мостовой схеме при нагрузках в сотни Ватт, до микросхем-драйверов в маломощных светильниках. Но тем не менее алгоритм работы един.

      В упрощенном виде для одной лампы дневного света схема выглядит так:

      Т.е. схема состоит всего из двух компонентов: люминесцентной лампы и электронного пускателя. С точки зрения электрика это намного проще классической схемы светильника при использовании электромагнитного дросселя и стартера. На клеммы N и L подается сетевое напряжение. Вывод ground – заземление. Для работы ЭПРА подключение заземляющего контакта не является обязательным и служит лишь для безопасной эксплуатации.

      Схема подключения для двух ламп – аналогична.

      В ней отсутствуют дополнительные элементы, схема дополнена разве что второй лампой, выводы которой подключены напрямую к электронному блоку.

      Схемы ЭПРА сложны и состоят из множества электронных компонентов. Человеку без инженерного образования понять схему очень сложно. К тому же не каждый электрик сможет разобраться во внутреннем устройстве.

      Один из вариантов принципиальной схемы ЭПРА

      Это достаточно простая схема для инженера-электроника. В упрощенном понимании схема работает следующем образом. Выпрямление производится двухполупериодным выпрямителем – диодным мостом. Сглаживание пульсаций выполняется электролитическим конденсатором, рассчитанным на напряжение выше сетевого, так как амплитудное значение синусоиды для сети переменного тока примерно в полтора раза выше сетевого (√2*220В). Остальными процессами управляет микросхема. За подачу напряжения на лампы отвечают полевые транзисторы. Далее преобразователь работает автономно, частота не изменяется.

      Знание электроники позволяет создать и схему питания люминесцентной лампы от низковольтных источников. Схема получается достаточно компактна. Самое важно правильно намотать трансформатор.

      Принципиальная схема питания люминесцентной лампы от низковольтного источника

      Принцип работы пускателя

      Какая бы ни была применена схема для пуска люминесцентной лампы. Общий принцип работы остается неизменным. В принципе, сходные процессы происходят при использовании дросселя и стартера. Всего три фазы:

      • Первоначальный прогрев электродов. В ЭПРА это происходит достаточно мягким повышением напряжения на вольфрамовые нити.
      • Поджиг. В этот момент схема подает высоковольтный импульс (обычно около полутора киловольт). Этого достаточно для электрического пробоя газа и паров ртути. Напряжение поджига у люминесцентных ламп существенно выше напряжения горения.
      • Горение. После высоковольтного импульса схема снижает напряжение до необходимого для поддержания тлеющего разряда. Частота переменного тока на электродах может достигать 38 кГц в зависимости от схемы.

      В ЭПРА поджигающей импульс обеспечивается электронной схемой. В классической схеме – за счет энергии, накопленной дросселем. Прогрев электродов также обеспечивает ЭПРА. При стартерной схеме включения, электроды прогреваются в момент замыкания контактов стартера. Его можно заменить кнопкой без фиксации.

      Схемы подключения

      Разработка таких устройств велась для минимизации конструкции светильника и замещения крупногабаритного дросселя и стартера одним единственным модулем, который подключается к сети питания переменного тока и к электродам люминесцентной лампы.

      ЭПРА лишены всех минусов классических схем подключения.

      Существуют модули, предназначенные для одновременного подключения четырех ламп.

      Подключение ЭПРА к четырем лампам

      Как в случае с одной или двумя лампами, схема не требует никаких дополнительных элементов. Модуль ЭПРА соединяется напрямую с люминесцентной лампой.

      Схема подключения ЭПРА с одной лампой

      Схема подключения двух ламп к ЭПРА

      Схема подключения ЭПРА 4х18 (Пример:Navigator NB-ETL-418-EA3)

      Во всех случаях выключатель рекомендовано ставить именно на фазовый провод. При наличии нуля потенциал может сохраняться. Об этом будет говорить слабое мерцание ламп в выключенном положении. С рабочими, но дешевыми ЭПРА иногда тоже наблюдается такое явление. Возможно, что причина в том, что с электролитического конденсатора не ушел полностью заряд. В этом случая поможет простая доработка: достаточно зашунтировать электролитический конденсатор резистором на сотню килоом.

      Ремонт ЭПРА

      Если модуль ЭПРА вышел из строя, то для его ремонта потребуются определенные знания электроники и умение пользоваться мультиметром. Если базовых знаний электроники нет, то лучше всего просто произвести замену блока целиком, либо отдать в мастерскую на ремонт. Чтобы рассмотреть подробности ремонта ЭПРА не хватит многотомника.

      Поиск неисправности необходимо начинать с осмотра платы. Неисправные электронные элементы имеют характерную черному. Корпуса деталей могут почернеть, а на плате будет заметно темное пятно. Обязательно нужно просмотреть и токоведущие дорожки.

      Как и любом ремонте, часто, перегоревший элемент – это не причина, а следствие.

      Инструментальную диагностику начинаем с проверки предохранителя. Как правило на плате он обозначается латинской буквой F и цифрой – порядковым номером.

      Прозвонка элементов ЭПРА с помощью мультиметра

      При ремонте балласта для люминесцентных ламп обратите внимание на электролитические конденсаторы. Если конденсатор деформирован – вздулся, он подлежит замене. Здесь важно использовать конденсатор с напряжением не ниже того, который был установлен. Больше – можно, меньше – нет. Емкость не желательно менять. Обязательно соблюсти полярность. Неправильная полярность – основная причина взрыва конденсатора.

      Далее стоит произвести прозвонку полупроводников. Диоды не должны быть в пробое – при любой полярности щупов мультиметра Вы не должны слышать писк. Тоже касается и униполярных транзисторов. Затвор, исток, сток не должны прозваниваться накоротко в любых позициях.

      Большинство мастеров сервисных центров предпочитают не браться за ремонт схемы пускателя. Да и потребителю могут выставить счет на сумму большую, чем стоит новый аппарат. Мастера считают, что при выходе более одного компонента на плате, ремонт считается экономически нецелесообразным.

      Выбор ЭПРА.

      Если Вы решились на модернизацию светильников путем замены дросселя и стартера на современный электронный пускатель для люминесцентных ламп, то сначала стоит выбрать производителя. От неизвестных марок и подозрительно дешевых устройств лучше отказаться. Но и нельзя сразу сказать, что дешево – это плохо и недолговечно. Информация сегодня открыта вся, желательно ознакомиться и с отзывами по конкретной модели в Интернете. Среди производителей внимания заслуживают:

      При выборе важно изучить документацию. Наиболее важны следующие характеристики:

      • Тип источника света,
      • Мощность источников света,
      • Условия и режимы эксплуатации.

      Плюсы и минусы.

      Подводя итоги, можно сказать, что, как и любое электронное изделие, электронный пускатель обладает достоинствами и недостатками.

      • Больший срок эксплуатации люминесцентной лампы.
      • Больший КПД, меньшие потери (как минимум, отсутствует постоянное перемагничивание сердечника дросселя). Экономия до 30 процентов.
      • Нет реактивных выбросов в сеть питания. Не создают помехи другой аппаратуре.
      • Отсутствие мерцания при пуске и эффекта стробирования при работе.
      • Автоматика отключается при выходе лампы из строя.
      • Плавный прогрев электродов.
      • Стабильный световой поток при скачках напряжения.
      • Возможность работы и на постоянном токе (не все модели).
      • Имеют защиту от короткого замыкания.
      • Отсутствие характерного шума.
      • Возможен запуск ламп при низких температурах окружающей среды.
      • Некачественные, дешевые ЭПРА – недолговечны.
      • Главный недостаток – цена (они окупаются со временем).
      • Часть моделей не совместимы со светодиодными аналогами люминесцентных ламп.

      ЭПРА – что это такое, и как работает

      Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

      Конструкция и принцип работы ЭПРА

      По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

      Преимущества

      • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
      • Она не моргает и не шумит.
      • Коэффициент мощности – 0,95.
      • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
      • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
      • Обеспечение плавного свечения, без мерцания.

      Внутреннее устройство ЭПРА

      Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

      Схема устройства

      Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

      Но тут необходимо выполнить два основных условия:

      1. Разогреть две нитки накала.
      2. Создать большое напряжение до 600 вольт.

      Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

      Теперь сама схема ЭПРА.

      Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

      Как работает

      Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

      После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

      Электронный пускорегулирующий аппарат

      В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

      • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
      • Две – управляющие. В каждой по четыре витка.

      Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

      Далее происходит следующее:

      • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
      • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

      Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

      Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

      По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

      Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

      Тестирование

      Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

      • При 220 вольт она составила 38 кГц.
      • При 100 вольтах 56 кГц.

      Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

      Причины неисправностей

      Итак, по каким причинам люминесцентная лампа может не гореть?

      • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
      • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
      • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
      • Неправильно проведена схема подключения аппарата к лампам.

      Это интересно

      В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

      При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

      Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

      Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

      Подключение

      И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

      Читайте также:  Советы по выбору греющего кабеля
Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector