Что такое фоторезисторы, как они работают и где используются

Содержание

Как применять фоторезисторы, фотодиоды и фототранзисторы

Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.

Основные виды фотоэлектронных приборов. Общие сведения

Фотоприёмник в общем смысле – это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.

Фоторезисторы – изменяют сопротивление при освещении

Фоторезистор – фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее освещенность чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.

Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.

Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора

Интересно:

Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.

Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.

На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф – темнота, а Ф3 – это яркий свет. Она линейна. Еще одна важная характеристика – это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.

Темновое сопротивление – это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв – это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.

У фоторезисторов есть существенный недостаток – его граничная частота. Это величина описывает максимальную частоту синусоидального сигнала, которым вы моделируете световой поток, при которой чувствительность снижается на 1.41 раз. В справочниках это отражается либо значением частоты, либо через постоянную времени. Она отражает быстродействие приборов, которое обычно занимает десятки микросекунд – 10^(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.

Фотодиод – преобразует свет в электрический заряд

Фотодиод – элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.

Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.

По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.

Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие – это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.

У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием – 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.

В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).

Когда диод не освещается светом – в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света – тем больше ток.

Фототок Iф равен:

где Sинт – интегральная чувствительность, Ф – световой поток.

Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен – в обратном направлении по отношению к источнику питания.

Другой режим – генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает работу элементов солнечной батареи, но имеют малую мощность.

Фототранзисторы – открываются от количества падающего света

Фототранзистор – это по своей сути биполярный транзистор у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.

Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения – с плавающей базой, когда базовый вывод остаётся незадействованным.

В схему включают фототранзисторы подобным образом.

Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.

Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.

В советское время радиолюбители делали фототранзисторы своими руками – делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.

Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.

Кроме биполярных фототранзисторов существуют и полевые. Биполярные работают на частотах 10-100 кГц, то полевые более чувствительны. Их чувствительность достигает нескольких Ампер на Люмен, и более «быстрые» – до 100 мГц. У полевых транзисторов есть интересная особенность, при максимальных значениях светового потока напряжение на затворе почти не влияет на ток стока.

Области применения фотоэлектронных приборов

В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.

Схема, изображенная выше – это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 – он открывается, и открывает еще один транзистор – VT2. Эти два транзистора – это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.

Диод VD2 – нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока – фаза или ноль).

У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление – тем меньше света нужно для включения схемы.

Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.

Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.

Читайте также:  Схема однокомнатной квартиры

В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.

В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.

Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.

Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.

В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.

Применение для передачи сигналов в электронных схемах

Оптоэлектронные приборы – это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.

Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.

Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.

Рассмотрим пару примеров использования таких приборов.

Управление симистором с помощью микроконтроллера

Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет – на пин микроконтроллера попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.

Обратная связь с помощью оптопары

В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.

В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.

Выводы

Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.

Фоторезисторы. Виды и работа. Применение и особенности

Фоторезисторы — это резисторы, у которых меняется сопротивление в зависимости от действия света на светочувствительную поверхность. Сопротивление не зависит от величины напряжения, в отличие от обычного резистора.

В основном фотосопротивления применяются для индикации или отсутствия света. В полной темноте сопротивление фоторезистора имеет большую величину, достигающую иногда до 1 мегаома. При воздействии на датчик (чувствительную часть фоторезистора) светового потока, его сопротивление в значительной степени снижается, и зависит от интенсивности освещенности. Величина сопротивления при этом может упасть до нескольких Ом.

Длина световой волны оказывает влияние на чувствительность фотосопротивления. Они применяются в различных устройствах, но не являются такими популярными, как фототранзисторы и фотодиоды. В некоторых зарубежных странах запрещено применение фотосопротивлений, так как в них содержится кадмий или свинец, вредные по экологическим требованиям.

Быстродействие фоторезисторов незначительное, поэтому они действуют только на низких частотах. В новых конструкциях устройств фоторезисторы редко применяются. Их можно встретить в основном при ремонте старых устройств.

Для проверки фотосопротивления к нему подключают мультитестер. Без света его значение сопротивления должно быть значительным, а при его освещении оно сильно падает.

Виды и принцип действия

По материалам изготовления фоторезисторы делятся на виды:
  • С внутренним фотоэффектом.
  • С внешним фотоэффектом.

При изготовлении фотосопротивлений с внутренним фотоэффектом применяют нелегированные вещества: германий или кремний.

При попадании на чувствительную часть фотоны воздействуют на электроны и заставляют их двигаться в зону проводимости. В итоге в материале возникает значительное число электронов, вследствие чего повышается электропроводность, а значит и снижается сопротивление.

Фоторезисторы с возникновением внешнего фотоэффекта изготавливают из смешанных материалов, в которые входят легирующие добавки. Эти вещества создают обновленную энергетическую зону сверху валентной зоны, насыщенной электронами, нуждающимися в меньшем количестве энергии для осуществления перехода в проводимую зону, с помощью энергетической щели малого размера. В результате фотосопротивление становится чувствительным к разной длине световой волны.

Несмотря на вышеописанные особенности этих видов, оба вида снижают сопротивление при освещении. При повышении интенсивности освещения снижается сопротивление. Поэтому, получается обратная зависимость сопротивления от света, причем нелинейная.

На электрических схемах фотосопротивления обозначаются:

Чувствительность и длина световой волны

Длина волны света оказывает влияние на чувствительность фотосопротивления. Если величина длины световой волны выходит за пределы диапазона работы, то освещенность уже не оказывает влияния на такой резистор, и он становится нечувствительным в этом интервале длин световых волн.

Разные материалы обладают различными спектральными графиками отклика волны. Фотосопротивления с внешней зависимостью чаще всего используются для значительной длины волны, с приближением к инфракрасному излучению. При эксплуатации светового резистора в этом диапазоне следует быть осторожным, во избежание чрезмерного нагрева, который влияет на показания измерения сопротивления в зависимости от степени нагревания.

Чувствительность фотосопротивления

Фоторезисторы обладают меньшей чувствительностью, по сравнению с фототранзисторами и фотодиодами, которые являются полупроводниковыми приборами, с управлением заряженными частицами от светового луча, посредством р-n перехода. У фотосопротивлений нет полупроводникового перехода.

При нахождении интенсивности света в стабильном диапазоне, сопротивление фоторезистора может все равно меняться в значительной степени из-за изменения величины температуры, так как она также оказывает большое влияние на сопротивление. Это свойство не позволяет использовать фоторезистор для измерения точной интенсивности света.

Инертность

Еще одним уникальным свойством обладает фотосопротивление. Оно состоит в том, что существует время задержки между изменением сопротивления и освещения, что называется инертностью прибора.

Для значительного падения сопротивления от воздействия луча света необходимо затратить время, равное около 10 миллисекунд. При обратном действии для восстановления значения сопротивления понадобится около 1 секунды.

Благодаря этому свойству такой резистор не применяется в устройствах с необходимостью учета резких скачков освещенности.

Свойства и конструктивные особенности

Фотопроводность впервые обнаружили у элемента Селена. Затем были найдены и другие материалы с подобными свойствами. Фоторезисторы из сульфида кадмия являются наиболее популярными и имеют обозначение СDS-фоторезистора. Сегодня фотосопротивления производятся и из антимонида индия, сульфида свинца, селенида свинца.

Для производства фотосопротивлений из сульфида кадмия, порошок высокой степени очистки смешивают с веществами инертного действия. Далее, смесь спрессовывают и спекают.

На основание с электродами в вакууме напыляют светочувствительный слой в форме извилистой дорожки. Далее, это напыленное основание размещают в пластиковую или стеклянную оболочку, во избежание предотвращения попадания пыли и грязи на чувствительный элемент.

Спектральный график отклика чувствительного сульфида кадмия сочетается с временем отклика глаза человека. Длина волны света наибольшей чувствительности равна 600 нанометров. Это соответствует видимому спектру. Устройства с содержанием кадмия или свинца запрещены во многих зарубежных странах.

Сфера использования фоторезисторов

Такой вид светочувствительных сопротивлений применяется в виде датчиков света, если необходимо определять отсутствие или наличие света, либо фиксацию значения интенсивности освещения. Таким примером служит автоматическая система включения освещения улиц, а также работа фотоэкспонометра.

Световое реле для освещения улиц

В виде примера на схеме изображено уличное фотореле освещения. Эта система включает освещение улиц в автоматическом режиме, при наступлении темного времени суток, и отключает его при наступлении светлого времени. Такую схему можно применять для любых автоматических систем освещения.

При падении луча света на фоторезистор, его сопротивление снижается, становится значительным падение напряжения на переменном сопротивлении R2, транзистор VТ1 открывается. Коллектор этого транзистора соединен с базой VТ2 транзистора, который в это время закрыт, и реле отключено. При наступлении темноты сопротивление фоторезистора повышается, напряжение на переменном сопротивлении снижается, а транзистор VТ1 закрывается. Транзистор VТ2 открывается и выдает напряжение на реле, подключающее лампу освещения.

Что такое фоторезисторы, как они работают и где используются

Основные понятия и устройство

Фоторезистор – это полупроводниковый прибор, сопротивление которого (если удобно – проводимость) изменяются в зависимости от того, насколько сильно освещена его чувствительная поверхность. Конструктивно встречаются в различных исполнениях. Наиболее распространены элементы такой конструкции, как изображено на рисунке ниже. При этом для работы в специфических условиях можно найти фоторезисторы, заключенные в металлический корпус с окошком, через которое попадает свет на чувствительную поверхность. Ниже вы видите его условное графическое обозначение на схеме.

Читайте также:  Как правильно развести проводку в квартире

Интересно: изменение сопротивления под воздействием светового потока называется фоторезистивным эффектом.

Принцип действия заключается в следующем: между двумя проводящими электродами находится полупроводник (на рисунке изображен красным), когда полупроводник не освещен – его сопротивление велико, вплоть до единиц МОм. Когда эта область освещена её проводимость резко возрастает, а сопротивление соответственно падает.

В качестве полупроводника могут использоваться такие материалы как: сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От выбора материала при изготовлении фоторезистора зависит его спектральная характеристика. Простыми словами – диапазон цветов (длин волн) при освещении которыми будет корректно изменяться сопротивление элемента. Поэтому выбирая фоторезистор, нужно учитывать в каком спектре он работает. Например, под УФ-чувствительные элементы нужно подбирать те виды излучателей, спектральные характеристики которых подойдут к фоторезисторам. Рисунок, который описывает спектральные характеристики каждого из материалов изображен ниже.

Одним из часто задаваемых вопросов является «Есть ли полярность у фоторезистора?» Ответ – нет. У фоторезисторов нет p-n перехода, поэтому не имеет значения, в каком направлении протекает ток. Проверить фоторезистор можно с помощью мультиметра в режиме измерения сопротивления, измерив сопротивление освещенного и затемненного элемента.

Примерную зависимость сопротивления от освещенности вы можете видеть на графике ниже:

Здесь показано, как изменяется ток при определенном напряжении в зависимости от количества света, где Ф=0 – темнота, а Ф3 – яркий свет. На следующем графике приведено изменение тока при постоянном напряжении, но изменяющейся освещенности:

На третьем графике вы видите зависимость сопротивления от освещенности:

На рисунке ниже вы можете наблюдать как выглядят популярные фоторезисторы производства СССР:

Современные же фоторезисторы, нашедшие широкое распространение в практике самодельщиков, выглядят немного иначе:

Для обозначения элемента обычно используется буквенная маркировка.

Характеристики фоторезисторов

Итак, у фоторезисторов есть основные характеристики, на которые обращаются внимание при выборе:

  • Темновое сопротивление. Как понятно из названия — это сопротивление фоторезистора в темноте, то есть при отсутствии светового потока.
  • Интегральная фоточувствительность – описывает реакцию элемента, изменение тока через него на изменение светового потока. Измеряется при постоянном напряжении в А/лм (или мА, мкА/лм). Обозначается как S. S=Iф/Ф, где Iф – фототок, а Ф – световой поток.

При этом указывается именно фототок. Это разность между темновым током и током освещенного элемента, то есть той частью, которая возникла из-за эффекта фотопроводимости (то же что и фоторезистивный эффекта).

Примечание: темновое сопротивление конечно же характерно для каждой конкретной модели, например, для ФСК-Г7 – это 5 МОм, а интегральная чувствительность 0,7 А/лм.

Помните, что фоторезисторы обладают определенной инерционностью, то есть его сопротивление изменяется не моментально после облучения световым потоком, а с небольшой задержкой. Этот параметр называется граничная частота. Это частота синусоидального сигнала модулирующего световой поток через элемент, при которой чувствительность элемента снижается в корень из 2 раз (1.41). Быстродействие компонентов обычно лежит в пределах десятков микросекунд (10^(-5)с). Таким образом, использование фоторезистора в схемах, где нужна быстрая реакция ограничено, а часто и неоправданно.

Где используется

Когда мы узнали об устройстве и параметрах фоторезисторов, давайте поговорим о том, для чего он нужен на конкретных примерах. Хоть и применение фотосопротивлений ограничено их быстродействием, от этого область применения меньшей не стала.

  1. Сумеречные реле. Их еще называют фотореле – это устройства для автоматического включения света в темное время суток. На схеме ниже изображен простейший вариант такой схемы, на аналоговых компонентах и электромеханического реле. Её недостатком является отсутствие гистерезиса и возможное возникновение дребезжание при приграничных величинах освещенности, в результате чего реле будет дребезжать или включаться-отключаться при незначительных колебаниях освещенности.
  2. Датчики освещенности. С помощью фоторезисторов можно детектировать слабый световой поток. Ниже представлена реализация такого устройства на базе ARDUINO UNO.
  3. Сигнализации. В таких схемах используются преимущественно элементы, чувствительные к ультрафиолетовому излучению. Чувствительный элемент освещается излучателем, в случае появления препятствия между ними – срабатывает сигнализация или исполнительный механизм. Например, турникет в метро.
  4. Датчики наличия чего либо. Например, в полиграфической промышленности с помощью фоторезисторов можно контролировать обрыв бумажной ленты или количество листов, подаваемых в печатную машину. Принцип работы подобен тому, что рассмотрен выше. Таким же образом можно считать количество продукции, прошедшей по конвейерной ленте, или её размер (при известной скорости движения).

Мы кратко рассказали о том, что это такое фоторезистор, где он используется и как работает. Практическое использование элемента очень широко, поэтому описать все особенности в пределах одной статьи достаточно сложно. Если у вас возникли вопросы – пишите их в комментариях.

Напоследок рекомендуем просмотреть полезное видео по теме:

Фоторезистор определение и виды, как работают, преимущества и недостатки

В статье расскажем про фоторезистор, его определение и виды, как он работает, преимущества и недостатки. А также познавательное видео, где подробно рассказывается про фоторезистор и где он используется.

Название фоторезистора представляет собой комбинацию слов: фотон (легкие частицы) и резистор. Фоторезистор — это тип резистора, сопротивление которого уменьшается при увеличении интенсивности света. Другими словами, поток электрического тока через фоторезистор увеличивается, когда интенсивность света увеличивается.

Фоторезисторы также иногда называют LDR (светозависимым резистором), полупроводниковым фоторезистором, фотопроводником или фотоэлементом. Фоторезистор меняет свое сопротивление только при воздействии света.

Как работает фоторезистор

Когда свет падает на фоторезистор, некоторые из валентных электронов поглощают энергию света и разрушают связь с атомами. Валентные электроны, которые разрушают связь с атомами, называются свободными электронами.

Когда энергия света, приложенная к фоторезистору, сильно увеличивается, большое количество валентных электронов получает достаточно энергии от фотонов и разрушает связь с родительскими атомами. Большое количество валентных электронов, которые нарушают связь с родительскими атомами, попадет в зону проводимости.

Электроны, присутствующие в зоне проводимости, не принадлежат ни одному атому. Следовательно, они свободно перемещаются из одного места в другое. Электроны, которые свободно перемещаются из одного места в другое, называются свободными электронами.

Когда валентный электрон покинул атом, в определенном месте атома, из которого вышел электрон, создается пустое место. Эта место называется дырой. Следовательно, свободные электроны и дырки генерируются в виде пар.

Свободные электроны, которые свободно перемещаются из одного места в другое, переносят электрический ток. Аналогичным образом, дырки, движущиеся в валентной зоне, переносят электрический ток. Аналогично, и свободные электроны, и дырки будут нести электрический ток. Количество электрического тока, протекающего через фоторезистор, зависит от количества генерируемых носителей заряда (свободных электронов и дырок).

Когда энергия света, приложенная к фоторезистору, увеличивается, число носителей заряда, генерируемых в фоторезисторе, также увеличивается. В результате электрический ток, протекающий через фоторезистор, увеличивается.

Увеличение электрического тока означает снижение сопротивления. Таким образом, сопротивление фоторезистора уменьшается, когда интенсивность приложенного света увеличивается.

Фоторезисторы делаются из полупроводника с высоким сопротивлением, такого как кремний или германий. Они также сделаны из других материалов, таких как сульфид кадмия или селенид кадмия.

При отсутствии света фоторезисторы действуют как материалы с высоким сопротивлением, тогда как при наличии света фоторезисторы действуют как материалы с низким сопротивлением.

Советуем вам посмотреть лучшее видео на тему фоторезистора, в котором вы узнаете очень подробно принцип работы фоторезистора:

Типы фоторезисторов

Фоторезисторы делятся на два типа в зависимости от материала, из которого они изготовлены:

  • Внутренний фотоэффект
  • Внешний фотоэффект

Фоторезистор с внутренним фотоэффектом

Собственные фоторезисторы изготавливаются из чистых полупроводниковых материалов, таких как кремний или германий. Внешняя оболочка любого атома способна содержать до восьми валентных электронов. Однако в кремнии или германии каждый атом состоит только из четырех валентных электронов. Эти четыре валентных электрона каждого атома образуют четыре ковалентных связей с соседними четырьмя атомами, чтобы полностью заполнить внешнюю оболочку. В результате ни один электрон не остается свободным.

Когда мы применяем световую энергию к фоторезистору с внутренним эффектом, только небольшое количество валентных электронов получает достаточно энергии и освобождается от родительского атома. Следовательно, генерируется небольшое количество носителей заряда. В результате через внутренний фоторезистор протекает только небольшой электрический ток.

Мы уже знали, что увеличение электрического тока означает снижение сопротивления. В фоторезисторах с внутренним фотоэффектом сопротивление несколько уменьшается с увеличением энергии света. Следовательно, внутренние фоторезисторы менее чувствительны к свету. Поэтому они не надежны для практического применения.

Фоторезистор с внешним фотоэффектом

Фоторезисторы с внешним фотоэффектом изготовлены из внешних полупроводниковых материалов. Рассмотрим пример внешнего фоторезистора, изготовленного из комбинации атомов кремния и примеси фосфора.

Читайте также:  Опасно ли подключение квартиры напрямую, без пакетника?

Каждый атом кремния состоит из четырех валентных электронов, а каждый атом фосфора состоит из пяти валентных электронов. Четыре валентных электрона атома фосфора образуют четыре ковалентные связи с соседними четырьмя атомами кремния. Однако пятый валентный электрон атома фосфора не может образовывать ковалентную связь с атомом кремния, поскольку атом кремния имеет только четыре валентных электрона. Следовательно, пятый валентный электрон каждого атома фосфора освобождается от атома. Таким образом, каждый атом фосфора генерирует свободный электрон.

Свободный электрон, который генерируется, сталкивается с валентными электронами других атомов и делает их свободными. Аналогичным образом, один свободный электрон генерирует несколько свободных электронов. Следовательно, добавление небольшого количества примесных (фосфорных) атомов генерирует миллионы свободных электронов.

В внешних фоторезисторах у нас уже есть большое количество носителей заряда. Следовательно, обеспечение небольшого количества световой энергии генерирует еще большее количество носителей заряда. Таким образом, электрический ток быстро увеличивается.

Увеличение электрического тока означает снижение сопротивления. Следовательно, сопротивление внешнего фоторезистора быстро уменьшается с небольшим увеличением приложенной световой энергии. Внешние фоторезисторы надежны для практического применения.

Символ фоторезистора на схеме

Символ американского стандарта и символ международного фоторезистора показаны на рисунке ниже.

Преимущества и недостатки фоторезистора

Преимущества фоторезистора

  • Маленький по размеру
  • Бюджетный
  • Легко переносить из одного места в другое.

Недостатки фоторезистора

  • Точность фоторезистора очень низкая.

Применение фоторезисторов

Фоторезисторы используются в уличных фонарях для контроля, когда свет должен включаться и когда свет должен выключаться. Когда окружающий свет падает на фоторезистор, он выключает уличный свет. Когда света нет, фоторезистор вызывает включение уличного освещения. Это уменьшает потери электроэнергии.

Они также используются в различных устройствах, таких как сигнальные устройства, солнечные уличные фонари, ночники и радиочасы.

Световой датчик

Если требуется базовый датчик освещенности, можно использовать схему LDR, такую ​​как схема на рисунке. Светодиод загорается, когда интенсивность света, достигающего резистора LDR, достаточна. Переменный резистор 10K используется для установки порога, при котором светодиод включится. Если индикатор LDR ниже пороговой интенсивности, светодиод останется в выключенном состоянии. В реальных приложениях светодиод будет заменен реле или выход может быть подключен к микроконтроллеру или другому устройству. Если требуется датчик темноты, где светодиод будет светиться при отсутствии света, необходимо заменить LDR и два резистора 10К.

Аудио компрессоры

Аудио компрессоры — это устройства, которые уменьшают усиление аудио усилителя, когда амплитуда сигнала превышает установленное значение. Это сделано для усиления тихих звуков при одновременном предотвращении обрыва громких звуков. Некоторые компрессоры используют LDR и небольшую лампу (светодиод или электролюминесцентную панель), подключенную к источнику сигнала для создания изменений в усилении сигнала. Считается, что этот метод добавляет более плавные характеристики к сигналу, потому что время отклика света и резистора смягчает атаку и освобождение. Задержка времени отклика в этих приложениях составляет порядка 0,1 с.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Фоторезистор. Принцип работы, характеристики

Фоторезистор (фотосопротивление, LDR) – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей, падающих на светочувствительную поверхность и не зависит от приложенного напряжения, как у обычного резистора.

Фоторезисторы чаще всего используются для определения наличия или отсутствия света или для измерения интенсивности света. В темноте, их сопротивление очень высокое, иногда доходит до 1 МОм, но когда датчик LDR подвергается воздействию света, его сопротивление резко падает, вплоть до нескольких десятков ом в зависимости от интенсивности света.

Фоторезисторы имеют чувствительность, которая изменяется с длиной волны света. Они используются во многих устройствах, хотя уступают по своей популярности фотодиодам и фототранзисторам. Некоторые страны запретили LDR из-за содержащегося в них свинца или кадмия по соображению экологической безопасности.

Определение: Фоторезистор — светочувствительный элемент, чье сопротивление уменьшается при интенсивном освещении и увеличивается при его отсутствии.

Характеристики фоторезистора

Виды фоторезисторов и принцип работы

На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.

Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление.

Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка. Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами. Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.

Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.

Фоторезистор на схемах обозначается следующим образом:

Чувствительность фоторезистора от длины волны

Чувствительность фоторезистора зависит от длины волны света. Если длина волны находится вне рабочего диапазона, то свет не будет оказывать никакого действия на LDR. Можно сказать, что LDR не чувствителен в этом диапазоне длин волн света.

Различные материалы имеют различные уникальные спектральные кривые отклика волны по сравнению с чувствительностью. Внешне светозависимые резисторы, как правило, предназначены для больших длин волн, с тенденцией в сторону инфракрасного (ИК). При работе в ИК-диапазоне, необходимо соблюдать осторожность, чтобы избежать перегрева, который может повлиять на измерения из-за изменения сопротивления фоторезистора от теплового эффекта.

На следующем рисунке показана спектральная характеристика фотопроводящих детекторов, изготовленные из различных материалов.

Чувствительность фоторезистора

Фотрезисторы имеют более низкую чувствительность, чем фотодиоды и фототранзисторы. Фотодиоды и фототранзисторы — полупроводниковые устройства, в которых используется свет для управления потоком электронов и дырок через PN-переход, а фоторезисторы лишеные этого PN-перехода.

Если интенсивность светового потока находиться на стабильном уровне, то сопротивление по-прежнему может существенно изменяться вследствие изменения температуры, поскольку LDR также чувствительны и к изменениям температуры. Это качество фоторезистора делает его непригодным для точного измерения интенсивности света.

Инертность фоторезистора

Еще одно интересное свойство фоторезистора заключается в том, что существует инертность (время задержки) между изменениями в освещении и изменением сопротивления.

Для того чтобы сопротивление упало до минимума при полном освещении необходимо около 10 мс времени, и около 1 секунды для того, чтобы сопротивление фоторезистора возросло до максимума после его затемнения.

По этой причине LDR не может использоваться в устройствах, где необходимо учитывать резкие перепады освещения.

Конструкция и свойства фоторезистора

Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.

Для изготовления фоторезистора из сульфида кадмия, высокоочищенный порошок сульфида кадмия смешивают с инертными связующими материалами. Затем, эту смесь прессуют и спекают. В вакууме на основание с электродами наносят фоточувствительный слой в виде извилистой дорожки. Затем, основание помещается в стеклянную или пластиковую оболочку, для предотвращения загрязнения фоточувствительного элемента.

Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра. Следует отметить, что устройства, содержащие свинец или кадмий не соответствуют RoHS и запрещены для использования в странах, которые придерживаются законов RoHS.

Примеры применения фоторезисторов

Фоторезисторы чаще всего используются в качестве датчиков света, когда требуется определить наличие или отсутствие света или зафиксировать интенсивность света. Примерами являются автоматы включения уличного освещения и фотоэкспонометры. В качестве примера использования фоторезистора, приведем схему фотореле для уличного освещения.

Фотореле для уличного освещения

Данная схема фотореле автоматически включает уличное освещение, когда наступает ночь и выключает когда светлеет. На самом деле вы можете использовать данную схему для реализации любого типа автоматического включения ночного освещения.

При освещении фоторезистора (R1), его сопротивление уменьшается, падение напряжения на переменном резисторе R2 будет высоким, вследствие чего транзистор VT1 открывается. Коллектор VT1 (BC107) соединен с базой транзистора VT2 (SL100). Транзистор VT2 закрыт и реле обесточено. Когда наступает ночь, сопротивление LDR увеличивается, напряжение на переменном резисторе R2, падает, транзистор VT1 закрывается. В свою очередь, транзистор VT2 открывается и подает напряжение на реле, которое включает лампу.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector