Что такое гармоники в электрических сетях

Источники гармоник в электрических сетях

Поскольку в современных электрических, особенно в промышленных, сетях неизменно присутствуют нелинейные элементы, то как следствие кривые тока и кривые напряжения искажаются, в сетях появляются высшие гармоники.

В первую очередь несинусоидальность обусловлена наличием статических преобразователей, далее — синхронными генераторами, сварочными аппаратами, флюоресцентными лампами, дуговыми печами, трансформаторами, двигателями и другими нелинейными нагрузками.

Математически несинусоидальность кривых тока и напряжения можно представить как сумму главной гармоники сетевой частоты и ее гармоник более высокого порядка, ей кратных. Гармонический анализ в результате приводит к тригонометрическому ряду Фурье, и значения частот и фаз возникающих гармоник могут быть легко рассчитаны по формуле:

Фактически итоговое сочетание несинусоидальных напряжений и токов в трехфазной сети может быть несимметричным или симметричным. Симметричная система несинусоидальных напряжений для кратных трем гармоник (k = 3n) приводит к образованию системы напряжений нулевой последовательности.

Далее, при k = 3n+1, гармоника в трехфазной сети порождает симметричную систему напряжений обратной последовательности. Так, каждая k-гармоника симметричной системы несинусоидальных напряжений дает в итоге симметричную систему фазных напряжений прямой, обратной либо нулевой последовательностей.

Однако практически система фазных несинусоидальных напряжений оказывается несимметричной. Так, магнитопроводы трехфазных трансформаторов сами по себе являются и нелинейными, и несимметричными, поскольку длины магнитных путей для средних и крайних фаз имеют различие в 1,9 раз. Как следствие действующие значения токов намагничивания средней фазы в 1,3 — 1,55 раз меньше чем значения токов намагничивания для крайних фаз.

Несимметричные гармоники раскладываются на симметричные составляющие, когда любая k-гармоника образует несимметричную систему фазных напряжений, и в типичных случаях содержит в себе компоненты трех последовательностей — нулевой, прямой и обратной.

Трехфазным сетям с изолированной нейтралью свойственно отсутствие в каждой из фаз составляющих нулевой последовательности при условии, что нет замыканий на землю. В итоге в фазных токах нет кратных трем гармоник, а есть остальные гармоники, которые содержат в себе компоненты обратной и прямой последовательности.

Мощные выпрямители, как правило, на стороне постоянного тока имеют большие индуктивности, коими являются обмотки машин постоянного тока и сглаживающие реакторы. Индуктивности эти многократно превышают эквивалентную индуктивность стороны переменного тока, поэтому такие выпрямители по отношению к питающей сети переменного тока ведут себя как источники тока высших гармоник. Направляемый в сеть ток на частоте гармоники имеет величину, не зависящую от параметров питающей сети.

Для трехфазных электрических сетей характерно использование в качестве таких преобразователей трехфазные двухполупериодные выпрямители на 6 вентилей, от того они и называются шестипульсными или шестифазными. Кривую тока для каждой из фаз в этом случае можно описать уравнением (для тока одной фазы А):

Видно, что фазные токи содержат лишь нечетные гармоники не кратные трем, и знаки этих гармоник чередуются: положительные гармоники 6k+1-порядка и отрицательные 6k-1-порядка.

Если применяется выпрямитель двенадцатифазный, когда пара шестифазных выпрямителей подключается к паре трехфазных трансформаторов (вторичные напряжения сдвинуты между собой по фазе на пи/6), то проявятся гармоники соответственно 12k+1 и 12k-1-порядков.

До того, как стали применяться выпрямители, главным источником высших гармоник в электрических сетях являлись лишь трансформаторы и различные электрические машины. Но и сегодня трансформаторы оказываются наиболее распространенными элементами электрических сетей.

Причина, по которой трансформаторы генерируют высшие гармоники — это нелинейная кривая намагничивания магнитопроводов и неизменное присутствие петли гистерезиса. Нелинейная кривая намагничивания и петля гистерезиса порождают искажения исходного синусоидального тока намагничивания холостого хода, и следствием становятся высшие гармоники в токе, который трансформатор потребляет от сети.

Трансформаторы класса 110 кВ имеют холостой ток не более 1%, а трансформаторы класса 6-10 кВ — не более 2-3%. Это малые токи, и активные потери от них в магнитопроводе незначительны. Здесь имеет значение кривая намагничивания, а не петля гистерезиса.

Кривая намагничивания симметрична, и при разложении в ряд Фурье четные гармоники отсутствуют. Искажение тока намагничивания вызывается нечетными гармониками, среди которых и кратные трем. Третья гармоника особенно сильно выражена, но наиболее существенными оказываются также и 5 и 7 гармоники.

Гармоники ЭДС и гармоники тока свойственны и двигателям, как синхронным, так и асинхронным. Данные гармоники обуславливаются теми же явлениями, что и гармоники тока, порождаемые трансформаторами — нелинейность кривой намагничивания материалов, из которых изготовлены статор и ротор.

Частотный спектр гармоник тока электродвигателей, так же как и у трансформаторов, включает в себя нечетные гармоники, среди которых, очевидно, и кратные трем. Наиболее существенны здесь 3, 5 и 7 гармоники.

Как и в случае с трансформаторами, приближенные расчеты позволяют принять в процентном отношении содержание токов 3, 5 и 7 гармоник на уровне 40% – для третьей гармоники, 30% – для пятой гармоники, и 20% – для седьмой гармоники (проценты от тока холостого хода).

Гармоники

Гармонические колебания – искажения синусоидальной формы напряжения и тока. Эти явления возникают в сетях переменного тока при переходных процессах, подключении нелинейной нагрузки. Появление гармоник вызывают:

  • Мощные промышленные выпрямители.
  • Индукционные и дуговые плавильные печи.
  • Люминесцентные и газоразрядные лампы.
  • Трансформаторы.
  • Оборудование для электросварки.
  • Источники бесперебойного электропитания.
  • Электродвигатели.
  • Микроволновые печи и другая бытовая техника.
  • Преобразователи частоты.

В процессе работы этого оборудования возникает паразитная ЭДС, которая накладывается на синусоидальный сигнал. В результате появляются провалы, скачки и другие искажения.

Влияние гармоник на электрооборудование

Гармонические колебания в сети оказывают негативное влияние на работу электрооборудования. К ним относятся:

  • Асимметрия в трехфазных сетях при возникновении искажений на одной или двух фазах. Это вызывает ненормальные режимы работы двигателей, другой электротехники.
  • Ложное срабатывание защиты. На гармоники реагируют автоматические выключатели, релейные схемы защиты, отключающие напряжение в распределительной сети.
  • Избыточный нагрев обмоток электрических машин, трансформаторов, проводов.
  • Увеличение уровня шума в слаботочных сетях. Про частом переходе синусоиды через ноль в соседних контрольных кабелях возникают наводки, искажающие сигнал.
  • Увеличение тока нейтрали. Гармонические искажения вызывают падение напряжения в нейтральном и фазных проводах, нагреву нулевого проводника.
Читайте также:  Какой провод и автомат использовать для подключения электрокотла 4,5 квт?

Последствия влияния гармоник

Искажения формы переменного тока и напряжения снижают срок службы изоляции, конденсаторов, качество напряжения в сети, увеличиваиют погрешности средств измерений. Это приводит:

  • К уменьшению межремонтных промежутков электрооборудования и увеличению эксплуатационных затрат.
  • К частым остановкам технологического оборудования. В результате ложного срабатывания схем защиты прерываются производственные процессы.
  • К авариям электроустановок. В результате падений напряжения и избыточного нагрева возникает пробой изоляции и короткие замыкания.

Высшие гармоники вызывают значительные экономические убытки.

Способы защиты от высших гармоник для частотных преобразователей

Преобразователи частоты содержат инверторы и ШИМ-модуляторы, которые являются источниками искажения напряжения в сети. Это отрицательно сказывается как на работе электродвигателей, так и на качестве электроэнергии в сети. Для защиты от этого явления используют различные фильтры.

Эти устройства устанавливают во входной и выходной цепях преобразователей частоты. Для защиты от искажений формы напряжения и тока применяют:

  • Сетевые дроссели. Эти устройства защищают от импульсных перепадов напряжения, несимметричной нагрузке, продлевают срок службы конденсаторов звена постоянного тока.
  • Электромагнитные фильтры. Устанавливаются во входной силовой цепи преобразователя. Защищают сеть от гармоник, генерируемых инвертором ПЧ.
  • Синусные и dU/dt фильтры. Эти устройства устанавливают в частотно-регулируемом приводе с возможностью рекупации электроэнергии, в цепях электрических машин с частыми пусками, отключениями и реверсами, при использовании для подключения неэкранирумых кабелей.

При выборе фильтра необходимо убедиться, что конкретная модель преобразователя частоты совместима с типом защитного устройства. Эта информация указана в технической документации ПЧ. Компания «Данфосс» выпускает несколько линеек частотных преобразователей со встроенными фильтрами высших гармоник. Это избавляет от необходимости рассчитывать характеристики устройств и расходов на покупку дополнительного оборудования.

FAQ по гармоникам

Что такое гармоники?

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной. Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Основной частотой 50 Гц(т.е. 1-я гармоника = 50 Гц 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Когда возникают гармоники?

Гармонические искажения возникают при работе нелинейных потребителей тока (в том числе частотных преобразователей).

Какие гармоники не появляются от работы ПЧ?

При работе от преобразователя частоты не появляются четные гармоники.

Чем опасны гармоники по току?

Гармонические искажения тока вызывают перегрев силового трансформатора, повышенное потребление реактивной мощности, увеличение потерь в меди силовых проводов и трансформатора. Они являются причиной появления гармоник по напряжению.

Чем опасны гармоники по напряжению?

Наличие гармонических искажений по напряжению приводят к выходу из строя оборудования.

Как бороться с гармониками?

Гармонические искажения можно уменьшать при помощи входных фильтров. Например, в серии VLT HVAC Basic FC 101 имеется встроенный фильтр гармоник на звене постоянного тока.

Гармоники тока и напряжения в электросетях

Проблема гармоник….

Любые приборы и оборудование с нелинейными характеристиками являются источниками гармоник в своей сети. Если вы сталкиваетесь с таким оборудованием или имеете опыт работы в сетях с гармониками, тогда дроссели с конденсаторами или фильтрокомпенсирующие установки (ФКУ) могут прийти вам на помощь. Гармонические искажения и связанные с этим проблемы в электрических сетях, становятся все более превалирующими в распределительных сетях.

Проблемы создаваемые гармониками.

дополнительный нагрев и выход из строя конденсаторов, предохранителей конденсаторов, трансформаторов, электродвигателей, люминесцентных ламп и т.п.;

ложные срабатывания автоматических выключателей и предохранителей;

наличие третьей гармоники и ее производных 9,12 и т.д. в нейтрали может потребовать увеличения сечения ее проводника;

гармонический шум (частые переходы через 0) может служить причиной неправильной работой компонентов систем контроля;

повреждение чувствительного электронного оборудования;

интерференция систем коммуникации.

Следующие разделы являются описанием гармоник, характеризацией проблемы и поиском решения.

Происхождение гармонических искажений

Постоянно увеличивающиеся требования промышленности и народного хозяйства к стабильности, приспосабливаемости и точности контроля в электрическом оборудовании привело к появлению относительно дешевых силовых диодов, тиристоров, SCR (Silicon Controlled Rectifier) и других силовых полупроводников.

Сейчас, широко используемые в выпрямительных цепях UPS полупроводники, статические преобразователи переменного напряжения в постоянное, устройства плавного пуска пришедшие на смену устаревшим устройствам изменили картину формы тока и напряжения в электросетях. Хотя твердотельные реле, такие как тиристоры привнесли существенные изменения в схемотехнику систем контроля, они, также, создали проблему генерации гармоник тока. Гармоники тока могут сильно влиять на энергоснабжающие сети, а также перегружать косинусные конденсаторы служащие для компенсации реактивной мощности (при увеличении частоты, снижается сопротивление конденсатора и растет ток через него).

Мы сфокусировали наше внимание на таких источниках гармоник, как твердотельные элементы силовой электроники, однако существует много других источников гармонических токов. Эти источники могут быть сгруппированы в трех основных типах:

Силовое электронное оборудование: частотные привода переменного тока, привода постоянного тока, источники бесперебойного питания UPS, выпрямители (шестифазные, по схеме Ларионова), конвертеры, тиристорные системы, диодные мосты, плавильные печи высокой частоты.

Сварочное, дуговое оборудование: дуговые плавильные печи, сварочные автоматы, освещение (ДРЛ-ртутные лампы, люминесцентные лампы)

Насыщаемые устройства: Трансформаторы, двигатели, генераторы, и т.д. Гармонические амплитуды на этих устройствах являются обычно незначительна по сравнению с элементами силовой электроники и сварочным оборудованием, при условии что насыщение не происходит.

Форма синусоиды тока

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной (основной) частотой 50 Гц (т.е 1-я гармоника=50 Гц, 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Переходные возмущения обычно решаются путем установки подавляющих или разделяющих (изолирующих) устройств, таких как импульсных конденсаторов, изолирующих (разделяющих) трансформаторов. Эти устройства помогают устранить переходные возмущения, но они не помогают устранить гармоники низких порядков или устранить проблемы резонанса в связи с присутствием гармоник в сети.

Гармоническое содержание синусоиды

Тиристоры и SCR выпрямители обычно проявляются числом пульсаций постоянного тока которые они производят каждый период. Обычно это 6-и или 12-пульсные выпрямители. Есть много факторов, которые могут влиять на гармоническое содержание, но типичные гармонические токи, показанные как процент от фундаментального тока 50 Гц, показаны в таблице. Другие номера гармоник также будут присутствовать, в небольшой степени, но из практических соображений они не приводятся.

Гармоники в электрических сетях: причины, источники, защита

Работа большинства электрических приборов обеспечивается качеством поступающей на них электрической энергии. Но даже в условиях безаварийной работы в системе возникают процессы, обуславливающие возникновение гармоник в электрических сетях. При этом никаких отключений или нарушений может и не происходить, большинство гармоник спокойно вырабатываются во всех цепях, независимо от рода нагрузки. Однако с возрастанием их величины, возможен ряд негативных последствий, как для потребителей, так и для энергосистемы в целом.

Что такое гармоники?

Если напряжение и ток, вырабатываемые источником, максимально приближается к форме идеальной синусоиды, то из-за нелинейных нагрузок, подключенных к электрической цепи, форма начального сигнала получает искажение. Гармоники представляют собой производные по частоте от основной синусоиды в 50 Гц и являются кратными ее величине [ 1 ].

По кратности гармоники подразделяются на четные и нечетные. То есть гармоника №1 – это 50 Гц, 2 – 100 Гц, 3 -150 Гц и т.д. Каждая из них является одной из составляющих результирующей формы напряжения и тока. А значит, что напряжение и ток в сети можно свободно разложить на гармонические составляющие [ 2 ].

Гармоники и их сложение

Посмотрите на рисунок выше, здесь вы видите детальный пример разложения синусоиды на гармоники и их влияние на форму синусоидального напряжения. В первой позиции изображены результирующая функция с нелинейными искажениями, которые обусловлены показанными ниже нечетными гармониками и подобными им с большей частотой. Величина этих гармоник будет определять величину скачков и провалов на результирующем сигнале. Поэтому, чем больше проявляется та или иная гармоника, тем больше кривая будет отличаться от синусоиды.

По сути, гармоника представляет собой паразитную ЭДС, которая никак не поглощается существующими потребителями или поглощается только частично. Из-за чего возникает негативное влияние на все силовые сети. Естественное поглощение осуществляют лишь активные сопротивления, но в размере пропорциональном потребляемой ими мощности. В то же время, сами потребители можно рассматривать как источники, активно генерирующие искаженный сигнал.

Причины и источники гармоник в электрических сетях

Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.

Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:

  • Силовое электрооборудование – приводы постоянного и переменного тока, высокочастотные плавильные печи, полупроводниковые преобразователи, источники бесперебойного питания (ИБП), преобразователи частоты.
  • Устройства, работающие по принципу формирования электрической дуги – электросварочные установки, дуговые печи, лампы освещения (ДРЛ, люминесцентные и другие).
  • Насыщаемые приборы – двигатели, трансформаторы, обладающие магнитопроводом, который может достигнуть насыщения петли гистерезиса. Без такового насыщения их вклад в формирование гармонической составляющей будет незначительным.

Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи. Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%.

Категории и принцип разделения

В соответствии с особенностями протекания процесса в сетях и источниках электропитания, все гармонические составляющие условно разделяются по таким параметрам:

  • по пути распространения выделяют пространственные либо кондуктивные;
  • по прогнозируемости времени возникновения выделяют случайные либо систематические;
  • по продолжительности могут быть кратковременными (импульсными) либо длительными.

Так, импульсные возмущения обуславливаются единичными коммутациями в питающей сети, короткими замыканиями, перенапряжениями, которые после их отключения потребовали бы ручного включения. А в случае срабатывания АПВ, в основной гармонике появляются уже прогнозируемые изменения, наблюдающиеся в нескольких периодах.

Длительные изменения обуславливаются какой-либо циклической нагрузкой, подаваемой мощными потребителями. Для возникновения таких высших гармоник, как правило, необходима ограниченная мощность сети и относительно большие нелинейные нагрузки, обуславливающие генерацию реактивной мощности.

Возможные последствия

В случае постоянно присутствующего фактора, генерирующего гармоники, их воздействие может обуславливать различные негативные последствия в электрической сети. Из которых особо следует выделить:

  • Сопутствующий нагрев, выводящий из строя изоляцию двигателей, обмоток трансформаторов, снижающий сопротивление конденсаторов и.т. При нагревании фазного провода или других токопроводящих элементов в диэлектриках возникают необратимые процессы, снижающие их изоляционные свойства.
  • Ложное срабатывание в распределительных сетях – приводит к отключению автоматов, высоковольтных выключателей и прочих устройств, реагирующих на изменение режима, обусловленное гармониками.
  • Вызывает асимметрию в промышленных сетях с трехфазными источниками при возникновении гармоники на одной фазе. От чего может нарушаться нормальная работа трехфазных выпрямителей, силовых трансформаторов, трехфазных ИБП и прочего оборудования.
  • Возникновение шума в сетях связи, влияние на смежные слаботочные и силовые кабели за счет наведенной ЭДС. На величину гармоники ЭДС влияет как расстояние между проводниками, так и продолжительность их приближения.
  • Приводит к преждевременному электрическому старению оборудования. За счет разрушения чувствительных элементов, высокоточные приборы утрачивают класс точности и подвергаются преждевременному изнашиванию.
  • Обуславливает дополнительные финансовые расходы, обуславливаемые потерями от индуктивных нагрузок, остановкой производства, внеочередными ремонтами и преждевременной поломкой.
  • Потребность увеличения сечения нулевых проводов в связи с суммированием гармоник кратных 3-ей в трехфазных сетях.

Рассмотрите на примере негативное влияние на работу трехфазных цепей. В идеальном варианте, когда каждая из фаз запитывает линейную нагрузку, система находится в равновесии. Это означает, что в сети отсутствуют гармоники, а в нулевом проводе ток, так как все токи при симметричной нагрузке смещены на 120º и компенсируют друг друга в нейтрали.

Если в схеме электроснабжения на одной из фаз возникает потребитель или фактор, искривляющий переменный ток, то возникает автоматическое изменение остальных фазных токов, их смещение относительно начальной величины и угла. Из-за нарушения симметрии и отсутствия компенсации в нулевом проводе начинает протекать ток.

Рис. 2. Развитие тока в нейтрали

Как показано на рисунке 2, нечетные гармоники кратные 3-ей обладают тем же направлением, что и основной ток. Но в связи с нарушением компенсирующего эффекта симметричной системы, они накладываются друг на друга и способны выдать в нейтраль ток, значительно превышающий номинальный для этой цепи. Из-за чего возникает перегрев, который может вызвать аварийные ситуации.

Все вышеперечисленные последствия ведут к снижению качества электрической энергии, чрезмерным перегрузкам и последующему падению фазного напряжения. В частных случаях, последствия протекания гармоник могут создавать угрозу для персонала и потребителей. С целью предотвращения таких последствий на электростанциях, трехфазных кабелях и прочем оборудовании устанавливается защита от гармоник [ 3 ].

Защита от гармоник

Для защиты применяются устройства с активными и пассивными элементами, действие которых направлено на поглощение или компенсацию гармоник в сети. Наиболее простым вариантом являются LC-фильтры, состоящие из линейного дросселя и конденсатора.

Рис. 3. Схема LC-фильтра

Посмотрите на рисунок 3, здесь изображена принципиальная схема фильтра. Его работа основана на индуктивном сопротивлении катушки L, которое не позволяет току мгновенно набирать или терять величину. И на емкости конденсатора C, которая обеспечивает постепенное нарастание или падение напряжения. Это означает, что гармоники не могут резко изменить форму синусоиды и обеспечивают ее плавное нарастание и спад на нагрузке RН.

При последовательном включении катушки и конденсатора с конкретной подборкой параметров, их комплексное сопротивление будет равно нулю для какой-то гармоники. Недостатком такого пассивного фильтра является необходимость формирования отдельной цепи для каждой составляющей в сети. При этом необходимо учитывать их взаимодействие. Так, к примеру, при гашении пятой гармоники происходит усиление седьмой, поэтому на практике устанавливаются несколько фильтров подряд, как показано на рисунке 4.

Рис. 4. Шунтирующий фильтр

За счет того, что каждая цепочка L1-C1, L2-C2, L3-C3 шунтирует соответствующую составляющую, фильтр получил название шунтирующего. Помимо этого, в качестве входного фильтра могут применяться устройства с активным подавлением гармоник.

Рис. 5 Принцип действия активного кондиционера гармоник

Посмотрите на рисунок 5, здесь изображен активный фильтр. Источник питания генерирует ток ips, на который оказывает влияние нелинейная нагрузка, из-за чего в сети получается несинусоидальная кривая in. Активный кондиционер гармоник (АКГ) измеряет величину всех нелинейных токов iahc и выдает в сеть такие же токи, но с противоположным углом. Что позволяет нейтрализовать гармоники и выдать потребителю ток первой гармоники максимально приближенный к синусоиде.

Установка любого из существующих видов защиты требует детального анализа гармонических составляющих, нагрузок, коэффициентов амплитуды и коэффициентов мощности для конкретной сети. Чтобы подобрать наиболее эффективный способ удаления и выполнить соответствующие настройки.

Что такое гармоники в электрических сетях

Определение гармоник

График сигнала, который изменяется по синусоидальному закону, имеет вид:

Но это значительно отличается от реальной формы напряжения в электрической сети:

Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:

Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:

Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.

Источники помех

К источникам помех можно отнести целый ряд оборудования, начиная от бытовых приборов, заканчивая мощными промышленными электрическими машинами. Для начала давайте кратко рассмотрим причины их возникновения.

Гармоники в электрической сети переменного тока возникают из-за особенностей электрооборудования, например из-за нелинейности их характеристик, или характера потребления тока.

Например, в трёхфазных сетях в магнитопроводах трансформаторов длины магнитных путей средних и крайних фаз различаются почти в 2 раза, поэтому и токи их намагничивания различаются до полутора раз. Отсюда возникают гармоники в трёхфазных сетях.

Другой источник помех в электротехнике — это электродвигатели, как трёхфазные синхронные и асинхронные, так и однофазные, в том числе и универсальные коллекторные двигатели. Последний тип двигателей используется в большей части бытовой техники, например:

  • стиральные машины;
  • кухонные комбайны;
  • дрели, болгарки, перфораторы и пр.

В результате работы импульсных блоков питания возникают высокочастотные гармоники (помехи) в электрической сети. Чтобы понять как они образуются, нужно иметь сведения об их внутреннем устройстве. Это связано с тем, что ток первичной обмотки ИБП отличается от непрерывного, он протекает только тогда, когда открыт силовой полупроводниковый ключ. А последний открывается и закрывается с частотой выше 20 кГц.

Интересно: Рабочая частота некоторых современных импульсных блоков питания достигает 150 кГц.

Для уменьшения этих гармоник используют фильтры электромагнитных помех, например, синфазный дроссель и конденсаторы. Для улучшения графика потребления тока относительно питающего однофазного напряжения используют активные корректоры коэффициента мощности (рус. ККМ, англ. PFC).

Такие блоки питания установлены в:

  • светодиодных лампах;
  • ЭПРА для люминесцентных ламп;
  • компьютерные блоки питания;
  • современные зарядные устройства для мобильных телефонов;
  • телевизоры и прочая техника.

Также к этим источникам питания можно отнести и преобразователи частоты.

Последствия гармонических помех

Наличие гармоник в электрической сети переменного тока вызывает определенные проблемы. Среди них – повышенный нагрев электродвигателей и питающих проводов. Последствия влияния гармоник – это вибрация двигателей. Дальнейшие последствия могут быть различными – начиная от ускоренного износа подшипников ротора двигателя, заканчивая пробоем на корпус обмоток от повышенного нагрева.

В электрике встречаются ложные срабатывания коммутационной и защитной аппаратуры – автоматических выключателей, контакторов и магнитных пускателей. В звуковой аппаратуре и технике для связи из-за гармоник возникают помехи. С ними борются аналогично – установкой фильтров электромагнитных помех.

На видео ниже рассказывается, что такое гармоники и интергармоники в электросети:

В заключение хотелось бы отметить, что гармоники в электрических сетях в принципе не несут никакой пользы. Они лишь вызывают неисправности, ложные срабатывания коммутационной аппаратуры и прочие проявления нестабильности в работе. Это может нести не только неудобства в эксплуатации, но и экономические проблемы, убытки и аварийные ситуации, которые могут быть опасны для жизни.

Материалы по теме:

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector