Что такое телеметрический выход?

Содержание

Про электронные счетчики и АСКУЭ для “чайников”

Электронные счетчики

Электронный счетчик представляет собой преобразователь аналогового сигнала в частоту следования импульсов, подсчёт которых дает количество потребляемой энергии.

Главным преимуществом электронных счётчиков по сравнению с индукционными, является отсутствие вращающихся элементов. Кроме того, они обеспечивают более широкий интервал входных напряжений, позволяют легко организовать многотарифные системы учёта, имеют режим ретроспективы – т.е. позволяют посмотреть количество потреблённой энергии за определённый период – как правило, помесячно; измеряют потребляемую мощность, легко вписываются в конфигурацию систем АСКУЭ и обладают ещё многими дополнительными сервисными функциями.

Разнообразие этих функций заключается в программном обеспечении микроконтроллера, который является непременным атрибутом современного электронного счётчика электроэнергии.

Конструктивно электросчётчик счетчик состоит из корпуса с клеммной колодкой, измерительного трансформатора тока и печатной платы, на которой установлены все электронные компоненты.

Основными компонентами современного электронного счётчика являются: трансформатор тока, дисплей ЖКИ, источник питания электронной схемы, микроконтроллер, часы реального времени, телеметрический выход, супервизор, органы управления, оптический порт (опционально).

ЖКИ представляет собой многоразрядный буквенно-цифровой индикатор и предназначен для индикации режимов работы, информации о потребленной электроэнергии, отображении даты и текущего времени.

Источник питания служит для получения напряжения питания микроконтроллера и других элементов электронной схемы. Непосредственно с источником связан супервизор. Супервизор формирует сигнал сброса для микроконтроллера при включении и отключении питания, а также следит за изменениями входного напряжения.

Часы реального времени предназначены для отсчета текущего времени и даты. В некоторых электросчётчиках данные функции возлагаются на микроконтроллер, однако для уменьшения его загрузки, как правило, используют отдельную микросхему, например, DS1307N. Использование отдельной микросхемы позволяет высвободить мощности микроконтроллера и направить их на выполнение более ответственных задач.

Телеметрический выход служит для подключения к системе АСКУЭ или непосредственно к компьютеру (как правило, через преобразователь интерфейса RS485/RS232). Оптический порт, который есть не во всех электросчётчиках, позволяет снимать информацию непосредственно с электросчётчика и в некоторых случаях служит для их программирования (параметризации).

Сердцем электронного электросчётчика является микроконтроллер. Это может быть как микросхема компании Microchip (PIC-контроллер), так и производителей ATMEL или NEC.

В электронном счетчике выполнение практически всех функций возложено на микроконтроллер. Он является преобразователем АЦП (преобразует входной сигнал с трансформатора тока в цифровой вид, производит его математическую обработку и выдаёт результат на цифровой дисплей.) Микроконтроллер также принимает команды от органов управления и управляет интерфейсными выходами.

Возможности, которыми обладает микроконтроллер, повторюсь, зависят от его программного обеспечения (ПО). Без ПО – это просто пластмассово – кремниевый кубик smile. Поэтому разнообразие сервисных функций и выполняемых задач зависит от того, какое техническое задание было поставлено перед программистом.

В настоящее время развитие электронных счётчиков идёт в основном в плане добавление «наворотов», различные производители добавляют всё новые функции, например, некоторые устройства могут вести контроль состояния питающей сети с передачей этой информации в диспетчерские центры и т.д.

Довольно часто в электросчётчик вводят функцию ограничения мощности. В этом случае, при превышении потребляемой мощности, электросчётчик отключает потребителя от сети. Для управления подачей напряжения, внутрь электросчётчика устанавливают контактор на соответствующий ток. Так же отключение возможно, если потребитель превысил отведённый ему лимит электроэнергии или же закончилась предоплата за электроэнергию. Кстати, некоторые электросчётчики позволяют пополнить денежный баланс прямо через встроенные в них считыватели пластиковых карт. К электросчётчикам данной группы относятся СТК-1-10 и СТК-3-10, выпускаемые в г. Одессе.

АСКУЭ

Попытки создания АСКУЭ (автоматизированной системы контроля учёта электроэнергии) связаны с появлением в относительно доступных микропроцессорных устройств, однако дороговизна последних делала системы учета доступными только крупным промышленным предприятиям. Разработку АСКУЭ вели целые НИИ.

Решение задачи предполагало:

оснащение индукционных счетчиков электрической энергии датчиками оборотов;

создание устройств, способных вести подсчет поступающих импульсов и передавать полученный результат в ЭВМ;

накопление в ЭВМ результатов подсчета и формирование отчетных документов.

Первые системы учета были крайне дорогими, ненадежными и малоинформативными комплексами, но они позволили сформировать базу для создания АСКУЭ следующих поколений.

Переломным этапом в развитии АСКУЭ стало появление персональных компьютеров и создание электронных электросчётчиков. Ещё больший импульс развитию систем автоматизированного учёта придало повсеместное внедрение сотовой связи, что позволило создать беспроводные системы, так как вопрос организации каналов связи являлся одним из основных в данном направлении.

Основное назначение системы АСКУЭ – в разумных интервалах времени собрать в центрах управления все данные о потоках электроэнергии на всех уровнях напряжения и обработать полученные данные таким образом, чтобы обеспечить составление отчётов за потребленную или отпущенную электроэнергию (мощность), проанализировать и построить прогнозы по потреблению (генерации), выполнить анализ стоимостных показателей и, наконец, – самое важное – произвести расчёты за электрическую энергию.

Для организации системы АСКУЭ необходимо:

В точках учёта энергии установить высокоточные средства учёта – электронные счётчики

Цифровые сигналы передать в так называемые «сумматоры», снабженные памятью.

Создать систему связи (как правило, последнее время для этого используют GSM – связь), обеспечивающую дальнейшую передачу информации в местные (на предприятии) и на верхние уровни.

Организовать и оснастить центры обработки информации современными компьютерами и программным обеспечением.

Пример простейшей схемы организации АСКУЭ показан на рисунке. В ней можно выделить несколько отдельных основных уровней:

1. Уровень первый – это уровень сбора информации.

Элементами этого уровня являются электросчётчики и различные устройства, измеряющие параметры системы. В качестве таких устройств могут применяться различные датчики как имеющие выход для подключения интерфейса RS-485, так и датчики, подключенные к системе через специальные аналого-цифровые преобразователи. Необходимо обратить внимание на то, что возможно использовать не только электронные электросчётчики, но и обычные индукционные, оборудованные преобразователями количества оборотов диска в электрические импульсы.

В системах АСКУЭ для соединения датчиков с контролерами применяют интерфейс RS-485. Входное сопротивление приемника информационного сигнала по линии интерфейса RS-485 обычно составляет 12 кОм. Так как мощность передатчика ограничена, это создает ограничение и на количество приемников, подключенных к линии. Согласно спецификации интерфейса RS-485 с учетом согласующих резисторов приёмник может вести до 32 датчиков.

2. Уровень второй – это связующий уровень.

На этом уровне находятся различные контролеры необходимые для транспортировки сигнала. В схеме АСКУЭ представленной на рисунке 9 элементом второго уровня является преобразователь, преобразующий электронный сигнал с линии интерфейса RS-485 на линию интерфейса RS-232, это необходимо для считывания данных компьютером либо управляющим контролером.

В случае если требуется соединение более 32 датчиков, тогда в схеме на этом уровне появляется устройства, называемые концентраторы. На рисунке показана схема построения системы АСКУЭ для количества датчиков от 1 до 247шт

Третий уровень – это уровень сбора, анализа и хранения данных. Элементом этого уровня является компьютер, контролер или сервер. Основным требование к оборудованию этого уровня является наличие специализированного программного обеспечения для настройки элементов системы.

В настоящее время практически все электронные электросчётчики оборудованы интерфейсом для включения в систему АСКУЭ. Даже те, которые не имеют этой функции, могут оснащаться оптическим портом для локального снятия показаний непосредственно на месте установки электросчётчика путём считывания информации в персональный компьютер. Поэтому, сегодня электросчётчик является сложным электронным устройством.

Однако не стоит думать, что только электронные счётчики можно использовать для дистанционного снятия показаний (а именно эта цель является основной в системах АСКУЭ).

Счетчики, в маркировке которых есть буква «Д», например, СР3У-И670Д, имеют телеметрический выход (импульсный датчик), обеспечивающий передачу по двухпроводной линии связи информации о проходящей через счетчик активной (реактивной) энергии в систему дистанционного сбора и обработки данных. На рисунке как раз показан такой электросчётчик со снятой крышкой корпуса:

На боковой панели электросчётчика установлен импульсный датчик (2). Как работает этот датчик?

Давайте вспомним устройство индукционного счётчика. В нём есть такой элемент, как алюминиевый диск. Скорость его вращения прямо пропорциональна потребляемой нагрузкой мощности. Вот скорость вращения диска, точнее количество оборотов и является численной характеристикой, которую можно преобразовать в импульсы и передать в линию связи. Поэтому на счётчики со встроенными датчиками наносят такой параметр, как количество импульсов на 1 кВт*ч.

В качестве источника импульсов служит измерительный трансформатор, магнитный поток которого периодически пересекает металлический сектор, насаженный на ось диска. Импульсы, полученные от него, подаются на схему собственно самого датчика, а затем в линию связи. Питание датчик получает по этой же линии.

В принципе, любой индукционный счётчик можно оснастить импульсным датчиком, например, таким, как Е870.

Импульсный датчик Е870

Принцип работы датчика Е870 отличается от описанного выше. Для его функционирования на плоскую поверхность диска электросчётчика чёрной краской наносится затемнённый сектор.

Импульсный датчик – преобразователь имеет в своей конструкции фотосветодиодную головку – т.е. пару фотодиод – светодиод. Датчик устанавливается внутри счётчика так, что головка направлена в сторону диска. Излучённый светодиодом сигнал отражается от диска и принимается фотодиодом. Благодаря затемнённому сектору диска, сигнал носит прерывистый характер.

Электронная схема на логических элементах отслеживает эти прерывания, преобразовывает и выдает в линию связи последовательно импульсов. Скважность (частота следования) этих импульсов прямо пропорциональна скорости вращения диска, и, следовательно, потребляемой мощности и её можно визуально оценить по индикаторному светодиоду.

На другой стороне линии связи приёмное устройство принимает эти импульсы, подсчитывает их количество за определённый промежуток времени и выдает полученный результат на устройство отображения информации. Таким образом, происходит дистанционное считывание показаний электросчётчика. Именно так строились первые системы удалённого сбора информации.

Читайте также:  Какой контактор выбрать для электрического водонагревателя

Однако возникает закономерный вопрос – выше мы рассматривали интерфейсы RS 485 и RS 232, а здесь имеем последовательность импульсов.

Получается, всё равно индукционные счётчики мы не увяжем в рассмотренные выше современные схемы построения АСКУЭ? В принципе, сделать это можно. Преобразовать импульсную последовательность в тот же RS 232 интерфейс большого труда не составляет, данный адаптер будет представлять собой относительно простую электронную схему. Но особого смысла в этом нет. Индукционные электросчётчики постепенно уходят в прошлое, а там где и устанавливаются, используются только как локальные приборы учёта.

При проектировании современных систем АСКУЭ применяют только электронные счётчики. Они имеют неоспоримые преимущества перед индукционными именно в «информационном» плане и обладают практически неограниченными сервисными возможностями.

Схема подключения телеметрических выходов трехфазных счетчиков

Телеметрический импульсный канал (ТИК) служит для передачи информации об измеренной электрической мощности, а также для целей проверки счетчика на соответствие классу точности. ТИК передает информацию о значении измеренной счетчиком мгновенной мощности в числоимпульсном коде. Значение мощности прямо пропорционально частоте следования импульсов. Максимальная частота следования импульсов 10 Гц, что соответствует максимальному уровню измеряемой счетчиком мощности. Информация об энергии формируется путем подсчета количества импульсов в расчетное время. Количество импульсов, соответствующее 1 измеряемой энергии, является постоянной величиной для каждого типа и модификации счетчика и носит название передаточного числа, которое указано в паспорте и на лицевой панели счетчиков.

Таблица 6.1 – Параметры импульсов

■ Номинальное напряжение на контактах телеметрических выходов в состоянии “разомкнуто” равно 10±2 В, максимальное значение 24 В ■ Величина номинального тока через контакты телеметрических выходов в состоянии “замкнуто” равна 10±1 гпА, максимальное значение – 30 тА ■ Длительность импульсов не менее 15 мс ■ Форма импульсов – меандр ■ Источником энергии ТИК является устройство приема информации

Выходные цепи телеметрических каналов реализованы на оптопаре, на выходе которой стоит транзистор с открытым коллектором ( рисунок 6.4).

Рисунок 6.4 – Выходные цепи телеметрических каналов

Для обеспечения функционирования ТИК необходимо подать питающее напряжение по схеме:

Рисунок 6.5 – Схема питания счетчика

Величина сопротивления R рассчитывается по формуле:
R = U /I,

где U – напряжение питания, В;

Таблица 6.2 – Описание контактов и подключения нагрузки счетчика СЕ304

Для счетчиков ЦЭ6804 в корпусе ШЗЗ, Р31
Для счетчика ЦЭ6850М в корпусе Ш31
СХЕМА ПОДКЛЮЧЕНИЯ НАГРУЗКИ СЧЕТЧИКА СЕ304
СХЕМА ПОДКЛЮЧЕНИЯ РЕЗЕРВНОГО ПИТАНИЯ К СЧЕТЧИКАМ СЕ304 И Ц36850М

6.3 Интерфейсные каналы многофункциональных
электронных счетчиков

Интерфейсные каналы последовательной передачи информации RS485 и RS232 служат для передачи всей информации, содержащейся в памяти счетчиков, по выделенной линии связи на диспетчерскую ЭВМ, а также для программирования констант и коэффициентов счетчиков.

Спецификация. Обмен данными соответствует требованиям стандарта ГОСТ Р МЭК 61107-2001

Соединение счетчиков СЕ304 и ЦЭ6850М по интерфейсу RS485

Рисунок 6 .5 – Соединение счетчиков СЕ304 и ЦЭ6850М по интерфейсу RS485

УСД – устройство сбора данных
Rcm = 560 Ом, резистор смещения (установлены в каждом счетчике)
Rt = 120 Ом, резистор-терминатор с номиналом, равным волновому сопротивлению кабеля

Если потенциалы земли в местах установки счетчиков и УСД равны, то достаточно подключить контакт 5 счетчиков к точке нулевого потенциала, в противном случае необходимо подключить дренажный провод кабеля к контакту 5 каждого счетчика.

В том случае, если длинна линий связи не превышает несколько метров и отсутствуют источники помех, то схему подключения можно значительно упростить, подключив счетчик к УСД или ПЭВМ, используя только два сигнальных провода А и В без терминальных резисторов.

Для подключения резисторов смещения необходимо соединить контакты 4-6 и 3-1 “СОМ1” (COM2) на нескольких счетчиках в зависимости от уровня помех на линиях связи.

Соединение счетчиков по интерфейсу RS232

Рисунок 6 .6 – Соединение счетчиков по интерфейсу RS232

Таблица 6.7 – Данные счетчика СЕ 304

Наименование прибораТипМощность, потребляемая одной катушкой, ВАcosφКоличество приборовСуммарная потребляемая мощность
P, ВтS,ВА
Счетчик активной и реактивной энергииСЕ 3040,8/0,614,4
Счетчик активной и реактивной энергииЦЭ68040,8/0,68,1

Рисунок 7.2 – Пример щита СККЭ с двумя счетчиками СЕ304

Рисунок 6.8 – Схема электрическая принципиальная автоматизированной СККЭ транспортного предприятия

9 Расчет и выбор трансформаторов тока

Трансформатор тока (ТТ) служит для измерения, преобразования и передачи информации о режиме работы сильноточной цепи высокого напряжения в цепь низкого напряжения. Информация на вторичной стороне используется как для целей измерения мощности при помощи амперметра, ваттметра, качества энергии, так и для системы релейной защиты. Поэтому ТА, как правило, имеют две вторичные обмотки: одну для измерения, другую для защиты. Вторичный ток ТТ имеет нормированные значения: 5 или 1 А. Одной из важнейших характеристик ТТ является класс точности. Установлено 6 классов точности: 0,2; 0,5; 1; 3; 10% соответствующих 100—120% номинального тока.

Трансформаторы тока отличаются от силовых трансформаторов следующими особенностями: работают в условиях близких к короткому замыканию (амперметр является нагрузкой измерительной обмотки ТТ); ток во вторичной цепи не зависит от значения и характера нагрузки (источник тока), а определяется значением и характером изменения первичного тока.

Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика.

К установке на подстанции выбраны два силовых трансформатора 630кВА 10/0,4 кВ, коэффициент загрузки трансформаторов 0,7

Необходимо выполнить учет электроэнергии на силовом трансформаторе 630 кВА, 10/0,4 кВ. Мощность нагрузки трансформатора с учетом в нем потерь, (счетчик устанавливаем на высокой стороне подстанции) изменяется от (253+24,66) кВА (трансформатор Т1) до номинальной 630кВА.

Номинальный ток трансформатора по стороне 0,4 кВ

=630/(√3∙10) =36,5А

Расчеты максимальной и минимальной нагрузки приведены в таблице 9.1.

Таблица 9.1 – Расчет нагрузки, тип счетчиков и вид учета

Наименование узлов питанияPсм, кВтQсм, кварSсм AIминi, APном, кВт Iмахi, A1,25* I 1 махi, AСхема включения счетчика, вид учетаТип счетчика АЛЬФА , обозначение на Э3
1.1Склады ЖД52,880,40,8ТТ , техническийWh5 А1800
1.2Освещение ЖД наружное0,80,61,50,88,75ТТ , коммерческийWh6 А1800
1.3 Цех раскроя стекла и деталей (1б)0,8ТТ , техническийWh4 А1800
1.4Насосная станция86,60,7ТТ , коммерческийWh3 А1800
Т1 всего294,8245,6383,7585,90,8ТТ и ТН , коммерческийWh1 А1800
2.15Гараж5,38,712,50,814,42,5Прямое включение техническийWh9 А1800
2.16Цех сборочный (1а)0,7776,3ТТ , техническийWh11 А1800
2.17Склад готовой продукции7,089,20,731,25ТТ , техническийWh8 Плюс А2
2.18Котельная9,511.214,721,30,748,7ТТ , техническийWh12 А1800
2.19Осветительн. установка0,80,61,50,88,8Прямое включение техническийWh7 Плюс А2
2.20 Управление12,60,9ТТ , техническийWh10 А1800
2.21Проходная весовая1,82,12,70,712,515,6Прямое включение техническийWh13 Плюс А2
Т2 всего247,7280,3536,30,7735,5919,4ТТ и ТН , коммерческийWh2 А1800

Рассчитываем при минимальной мощности нагрузки (253+24,66) кВА аналогично (253+24,66) /(√3∙10)= 16 А

Выбираем ТТ типа ТК-20 класса точности 0,5, для которого максимальное значение тока в первичной обмотке 50А, а во вторичной 5А. Ток во вторичной цепи (при коэффициенте трансформации nт = 50: 5= 10) составит

Iмах подст = I1/n т = 36,5/10 = 3, 7А. 3, 7 х100/5=73%> 40%

Определяем максимальный и минимальный ток на каждое присоединение со стороны низкого напряжения по формулам

, ,

где соsφ – коэффициент мощности соответствующего присоединения,

для цеха раскроя стекла

, (6.8)

Sсм = =245кВА

Увеличиваем расчетный максимальный ток. Выбираем ТТ типа ТК-20 для которого максимальное значение тока в первичной обмотке 600А, а во вторичной 5А. Ток во вторичной цепи (при коэффициенте трансформации nт = 600: 5= 120) составит

I1мах = I1/n т = 400 /120 = 3,3 А. 3,3 х100/5=67%> 40%

Аналогично рассчитываем и выбираем ТТ для каждого присоединения, и результаты приводим в таблице 5.3.

Трансформаторы тока выбраны правильно, так как I2 > Iн счетчика. Сечение жил проводов или кабелей от трансформаторов тока до счетчиков должно быть не менее: медных — 2,5, алюминиевых — 4 мм 2 . Максимальное сечение жил проводов и кабелей, которые возможно подключить к клеммам счетчика, не должно превышать 10 мм 2 .

До приборов учета, смонтированных на вводе, должны быть установлены отключающие аппараты, а после приборов учета — аппараты, обеспечивающие разрыв цепи со стороны распределительных сборок или их группы. Амперметры устанавливают в одной фазе. Три амперметра предусматривают только в тех цепях, где возможна не симметричная нагрузка фаз приемников (освещение, сварочные посты, конденсаторные батареи).

Таблица 9.2 – Расчет и проверка трансформаторов тока

НаименованиеIмин, АIмах, АТип ТТIмах ТТ,АnтIмин > 5%Iмах>40%
1.1Склады ЖД80,4ТК-20
1.2 Освещение ЖД подъезда и путей наружное1,5
1.3 Цех раскроя стекла и деталей (1б)ТК-20
1.4 Насосная станцияТК-2083,5
Т1 всего585,9ТК-20
2.22 Гараж12,5
2.23 Цех сборочный (1а)ТК-20
2.24 Склад готовой продукцииТК-20
2.25 Котельная21,3ТК-20
2.26 Осветительная нагрузка основных помещ1,5
2.27 УправлениеТК-20
2.28Проходнвая(весовая)
Т2 всего536,3919,4ТК-20

Амперметры включают непосредственно в сеть или через трансформаторы тока.

Для коммерческого учета необходимо поставить трансформаторы тока с классом точности не больше 0,5S

Что такое система АСКУЭ, расшифровка термина, принцип работы АСКУЭ

В наш век автоматизации многих процессов оставить в стороне учет электроэнергии было бы неразумно, особенно, принимая в учет возможности современной технической базы. Внедрение подобных АС позволяет решить несколько задач, начиная с отслеживания баланса отдельно взятого потребителя и заканчивая принятием оперативного решения по изменению схемы электроснабжения. АСКУЭ — один из вариантов оптимального решения, предлагаем ознакомиться с основными тезисами.

Расшифровка аббревиатуры АСКУЭ

Название расшифровывается следующим образом:

  • А – автоматизированная.
  • С – система.
  • К – коммерческого.
  • У –учета.
  • Э –электроэнергии.

Иногда в название добавляется уточнение, описывающее характер комплекса — «информационно-измерительный». В таком случае аббревиатура преображается в АИИС КУЭ или АИСКУЭ.

Среди принятых сокращений можно встретить созвучные названия, например: АСДУЭ или АСТУЭ, но это совершенно другие комплексы автоматизации. Первая обеспечивает диспетчерское управление электроснабжением (ДУЭ), вторая хоть и является системой учета, но она несет в себе техническую, а не коммерческую составляющую. Подробно о различии между этими АС будет рассказано ниже.

Функции системы АСКУЭ и её назначение

Функциональное назначение данного комплекса — автоматизация процесса учета расхода электроэнергии для производства расчетов с ее потребителями. Помимо этого, АС на основе собранной информации формирует ряд отчетов, используемых при построении прогнозов потребления, расчетов стоимостных показателей и т.д.

Читайте также:  Устройство светодиодной лампы 220

Для выполнения перечисленных выше задач, необходимо выполнить следующие условия:

  • Каждый потребитель электроэнергии должен установить электронный прибор учета, оборудованный модулем для передачи сигналов (например, GSM модем). Электронный электросчетчик Энергомера, оборудованный интерфейсом для передачи данных.
  • Система связи, обеспечивающая передачу сигналов от приборов учета к центру их обработки. Один из элементов аппаратно-программного комплекса — шкаф АСКУЭ
  • В некоторых случаях, между центром приема и приборами учета устанавливаются специальные устройства – сумматоры, в которых «аккумулируются» данные перед тем, как они отправляются на сервер.

Принцип работы АСКУЭ

Алгоритм работы комплекса можно описать следующим образом:

  1. Электронные счетчики (Меркурий, Энергомера и т.д.) единовременно посылают сигнал. Частота (периодичность) передачи данных определяется АС.
  2. Данные архивируются в сумматорах, откуда идет их передача на сервер сбора и обработки. В незагруженной АС допускается передача напрямую серверу.
  3. Обработка данных АПК.

Собственно, данный алгоритм работы используется во всех АС энергоучета и контроля. Разница между автоматизированными комплексами заключается в их функциональном назначении, что отражается на анализе и обработке. Для примера приведем различия между коммерческими и техническими системами (АСТУЭ):

  • Алгоритм обработки данных, для расчета с потребителями, максимально оптимизирован под данную задачу.
  • данные, поступающие в коммерческий центр обработки, используется для формирования счетов потребителям, то есть, по сути это внутренний «продукт» энергокомпании.
  • Согласно законодательству, счетчики учета обязаны иметь все потребители, в то время, как система АСТУЭ внедряется для решения внутренних задач того или иного хозяйствующего объекта. Например, для мониторинга энергопотребления, анализа его структуры и выработки общей энергосберегающей программы и других задач АСУ ТП.

Для понимания структуры АС коммерческого учета, приведем несколько примеров схем реализации.

Схема АСКУЭ в СНТ

Как видите в данной схеме приборы учета, установленные у каждого потребителя, передают сигналы на сумматор, откуда осуществляется передача в центр обработки. Такая реализация практикуется в дачных поселках и садоводствах

Обратим внимание, что подобная АС может использоваться как для учета расхода электрики (электрического тока), так и холодной и горячей воды. Пример такой реализации в жилом доме показан ниже.

Схема системы АСКУЭ дома

Основные элементы АСКУЭ

Как видите, автоматизированная система учета включает в себя ряд элементов (подразделений), которые выполняют определенные задачи. Подобную структуру принято разделять на три уровня. Расскажем детально о назначении каждого из них.

Элементы первого уровня

К таковым относятся электронные приборы учета, у которых имеется специальный модуль, позволяющий отправлять сигналы в центр сбора. В России практикуется использование интерфейса RS-485, это стандарт асинхронной передачи данных, применяемый в системах автоматизации. Его упрощенная организация представлена ниже.

Организация интерфейса RS-485

Основной недостаток подобного устройства – ограничение количества приемо-передатчиков, их не может быть более 32. Выходом из этого может быть каскадирование системы, а именно установка сумматоров, «аккумулирующих» данные от различных источников. Изображение такого прибора показано на рисунке 7.

Рисунок 7. Устройство сбора и передачи данных (УСПД)

Обратим внимание, что разработка АС на базе интерфейса RS-485 велась в то время, когда использование GSM было экономически не обосновано. На текущий момент ситуация радикально изменилась.

Связующее звено (элементы второго уровня)

Данный уровень используется для организации транспортировки данных к центру обработки. На текущий момент большинством приборов учета используется интерфейс RS-485, несмотря на то, что данный способ является явно устаревшим. Сложившаяся ситуация вызвана инертностью структур, отвечающих за стандартизацию, что несколько притормаживает внедрение новой технической базы.

Центр обработки (завершающее звено)

Данный элемент представляет собой АПК, в который поступают и обрабатываются информационные сигналы. Его характеристики напрямую зависят от объема поступающих данных и наличия дополнительных функций системы. Исходя из этих технических условий, для комплекса АС подбираются компьютерные мощности и программное обеспечение.

О технических требованиях к системе

Поскольку надежность работы системы напрямую зависит от первого уровня, то основные требования предъявляются к приборам учета. Именно от их точность определяет достоверность данных.

Не менее важным показателем системы является допустимая погрешность при трансфере данных. Данный момент требует небольшого уточнения. Телеметрический выход прибора транслирует последовательность импульсов с частотой, соответствующей потребляемой мощности. Помехи и тепловые шумы могут вносить погрешность в такие данные, то есть влиять на отчет импульсов.

Чтобы избежать этого, информация передается в двоичном коде, высокий и низкий импеданс сигнала соответствует «1» и «0». Для проверки достоверности данных их определенная порция (как правило, байт) кодируется контрольной сумой.

Бытует мнение, что цифровая форма передачи защищена от погрешностей. Данное утверждение не является корректным, поскольку протокол передачи допускает определенную вероятность ошибки (необнаруженная ошибка). Собственно, данный недостаток, в той или иной мере, присущ любой системе передачи данных. Для уменьшения размера допустимой погрешности применяются специальные алгоритмы обработки.

Компании, занимающиеся разработкой АС, обязаны придерживаться типовых технических требований, разработанных ЕЭС Российской Федерации. В данных нормах указаны точностные характеристики информационного сигнала, класс точности приборов учета, рекомендуемое программное обеспечение, а также другие требования, необходимые для надежной работы системы. Соответственно, производители измерительных приборов, также должны учитывать принятые нормы.

Внедрение

Установка систем АСКУЭ производится по следующему алгоритму:

  • Создание рабочего проекта, где разрабатывается структура системы и ее отдельные уровни, составляется чертеж и другая сопутствующая конструкторская документация.
  • Выбирается система передачи данных, с учетом преимуществ, недостатков и возможностей технической реализации.
  • На основе проектной сметы приобретается необходимое оборудование.
  • Производится монтаж и настройка (наладка) АПК.
  • Осуществляется подбор состава обслуживающего персонала и, при необходимости его обучение.
  • Ввод системы в эксплуатацию.

Обратим внимание, что экономия на проекте, незамедлительно отразится на функциональности. Из-за недочетов могут расходиться данные с реальными показаниями счетчиков энергии, в результате использование такого комплекса будет не эффективным.

Счетчики электроэнергии с дистанционным снятием показаний

Универсальный в использовании счетчик электроэнергии с дистанционным снятием показаний позволяет оптимизировать расход электричества. Цифровые приборы учета отличаются функциональностью, способны поддерживать работу с различными тарифами, отправляя собранные данные по Wi-Fi и GSM-соединению. В последние годы такие счетчики пользуются наибольшей популярностью, что объясняется их доступной стоимостью и универсальностью использования.

Особенности приборов учета

Одной из особенностей таких счетчиков является дистанционная передача данных, что избавляет домовладельца от необходимости самостоятельно снимать показания и рассчитывать киловатты. Поставщик электроэнергии после установки такого прибора учета получает всю информацию о потребленных ресурсах. Домовладелец за счет функционала цифровых электросчетчиков может отслеживать используемую электроэнергию, в том числе по времени суток с помощью дифференцированных тарифов.

Функционал современных электросчетчиков:

  • удаленное отключение и подключение потребителей к энергоснабжению;
  • поддержка сразу несколько тарифных режимов работы;
  • эффективное сотрудничество энергокомпании и клиента с учетом подписанного договора;
  • анализ полученной информации для последующей экономии расхода электроэнергии;
  • возможность получения домовладельцем уведомлений о месячном и дневном расходе.

Сегодня в продаже имеются различные модели электросчетчиков с дистанционной передачей показаний, которые используют интернет или оснащены встроенным GSM-модулем. Последний передает всю информацию с помощью коротких SMS-сообщений. Используемое программное обеспечение позволяет выполнять анализ полученных данных, отправляя сведения на серверы компании-поставщика электричества. Вся работа таких приборов учета полностью автоматизирована и не требует внимания домовладельца.

Преимущества электросчетчиков

Благодаря своей отличной функциональности, универсальности и простоте использования такие полностью цифровые приборы учета электроэнергии с возможностью дистанционной отправки данных получили на сегодняшний день наибольшее распространение. Они популярны как у владельцев частных домов, так и устанавливаются в квартирах, офисах, административных зданиях и на предприятиях.

К преимуществам цифровых электросчетчиков можно отнести:

  • возможность снятия показаний ежедневно, еженедельно и ежемесячно;
  • автоматическое снятие показаний счетчиков электроэнергии;
  • максимальная точность и эффективность расчетов при дифференцированной тарификации;
  • возможность организации удаленного контроля за расходом электроэнергии;
  • благодаря своей функциональности такие электросчетчики используются в системах автоматизации «Умный дом»;
  • имеется возможность удаленного обесточивания квартиры или дома с помощью специальных команд со смартфона или компьютера;
  • практичность цифровых приборов, которые избавляют от необходимости постоянно снимать показания по расходу электроэнергии.

Имеется возможность выбора различных по своему функционалу счетчиков, начиная от простых моделей, поддерживающих работу с дифференцированными тарифами. Популярны также полностью автоматизированные устройства, оснащенные мини-компьютерами и имеющие расширенный функционал. Современные приборы отличаются великолепной точностью, что позволяет исключить как возможность мошенничества со стороны домовладельца, так и неправильный расчет выставленных счетов за потребляемую электроэнергию.

Принцип работы электросчетчиков с телеметрией основывается на преобразовании аналогового сигнала в импульсы с последующим расчетом полученного объема энергии. Отличием таких электронных приборов от стандартных индукционных моделей является отсутствие у них движущихся механических деталей и максимально широкий функционал.

Конструкция стандартных электросчетчиков включает:

  • источник питания;
  • супервизор;
  • элементы контроля и управления;
  • разъемы для телеметрии;
  • трансформатор;
  • таймер с текущим временем;
  • жидкокристаллический дисплей.

В каждом конкретном случае функциональные возможности и конструкция таких дистанционных приборов будут отличаться. Популярностью пользуются модели с дополнительно установленным оптическим портом, упрощающим подключение внешних устройств, в том числе смартфона, блока wi-fi, gsm-модуля и других гаджетов.

Наличие независимого источника питания позволяет обеспечить стабильную работу электросчетчика, дополнительного микроконтроллера, супервизора и встроенных блоков памяти. Отдельные модели имеют возможность подключения к персональному компьютеру и системам передачи с телеметрическим выходом, что позволяет владельцу осуществлять контроль за расходуемым электричеством, с получением сведений за сутки и по часам.

Цифровые микроконтроллеры

Основным элементом цифровых приборов учета электроэнергии является микроконтроллер, наличие которого позволяет существенно расширить функционал счетчиков. Это могут быть как простейшие и недорогие чипы, так и полноценные компьютеры, которые интегрируются в систему «Умный дом».

Используемые микроконтроллеры выполняют следующие функции:

  • работа с интерфейсами;
  • получение команд от системы управления;
  • отображение на жидкокристаллическом экране различной информации;
  • преобразование электротока от трансформатора в цифровые сведения;
  • обработка сохраненных и полученных данных.

Микроконтроллеры управляются специальным ПО, отвечающим за функционал устройства и возможность дистанционного снятия всех показаний. Современные модели постоянно совершенствуются, получая новые возможности. Они способны не только собирать данные по потреблению электричества, но и отслеживают сети, что позволяет улучшить качество работы всех электроприборов в доме.

Системы контроля

Появление электросчетчиков с микропроцессорами позволяет на их базе создавать автоматизированные универсальные в использовании системы контроля расхода электроэнергии. В прошлом подобные устройства применялись исключительно на промпредприятиях, что объяснялось их дороговизной. Однако широкомасштабное внедрение микрочипов и появление сотовой связи позволило существенно упростить и удешевить учет электроэнергии, в том числе с дистанционной отправкой данных.

Читайте также:  Подключение однофазного счетчика электроэнергии

Основное назначение систем контроля счетчиков:

  • сбор информации по потребленной электроэнергии за определенные промежутки времени;
  • анализ полученных данных от микроконтроллера;
  • дистанционный учет электроэнергии ;
  • создание отчетов для отправки энергокомпаниям;
  • анализ энергопотребления и прогнозирование будущих расходов;
  • обработка информации по оплате за коммунальные услуги;
  • проведение всех необходимых расчетов по электроэнергии.

Цифровые приборы учета электроэнергии — это высокоточная аппаратура, которая оснащается объемной встроенной памятью. Все данные предварительно обрабатываются микрокомпьютером, в том числе с использованием соответствующего программного обеспечения, после чего формируются отчеты и передаются в энергокомпании. Полученную информацию можно отправить на компьютер, где вручную или с помощью специального ПО проводится дополнительная обработка всех данных.

Производители и лучшие модели

Сегодня в продаже можно найти различные модели приборов с дистанционным управлением, которые изготовлены отечественными и иностранными производителями. Выбирая такие счетчики от европейских или японских брендов, необходимо помнить, что конкретное устройство должно быть оптимизировано для его использования в российских электросетях. В противном случае потребуется менять программное обеспечение, что отрицательно сказывается на функциональности техники.

Популярностью на рынке пользуются счетчики от российских производителей компаний «Энергомера», «Инотекс» и «Тайпит». Такие недорогие электронные приборы отличаются качеством собранных данных, они функциональны, имеют расширенные возможности, их подключение не представляет какой-либо сложности. Стоимость электросчетчиков от российских производителей находится на приемлемом уровне, что делает их доступными для каждого покупателя.

Из популярных моделей выделяют:

  1. «Тайпит Нева 101 1SO». Это однотарифная сертифицированная модель, которая имеет механическое считывающее устройство первого класса точности. Благодаря расширенному диапазону температур такой счетчик может устанавливаться на открытом воздухе. Его цена — около 700 рублей.
  2. «Энергомера CE102M». Многотарифный универсальный электросчетчик, имеющий четыре тарифа и работающий с первым классом точности. В зависимости от конкретного исполнения стоимость этой модели составляет 1400−2100 рублей.
  3. «Инотекс Меркурий 200.02». Многотарифная коммерческая модель, имеющая первый класс точности выполняемых измерений. Электросчетчик обладает расширенным функционалом, при этом его цена составляет 1600−1800 рублей.
  4. «Энергомера CE300». Однотарифный счетчик, в котором присутствует детализированный четкий жидкокристаллический дисплей, предназначен для использования в промышленных трехфазных сетях. Стоимость этой модели на сегодняшний день — 4000 рублей.
  5. «Инотекс Меркурий 231 АТ». Эта модель разработана специально для использования с трехфазным напряжением и поддерживает работу с различными тарифами на электроэнергию. Устройство имеет 1 класс точности. Цена — 3000 рублей.

Рекомендации по выбору

При выборе электрических счетчиков с дистанционной отправкой данных необходимо определиться с требуемым функционалом, поддержкой одного или сразу нескольких тарифов по оплате. Такие устройства могут отличаться своим показателем мощности, количеством фаз аппарата и наличием защиты от окружающей среды. Для бытового использования отлично подойдут простейшие модели от российских производителей, стоимость которых составляет 1000−1500 рублей.

Популярностью пользуются многофункциональные цифровые модели, которые могут интегрироваться в систему «Умного дома». Они позволяют не только осуществлять качественный контроль за потребляемым электричеством, но и снижают расходы на оплату коммунальных нужд. Стоимость таких устройств, в зависимости от типа микропроцессора и используемого программного обеспечения, составит 3000−5000 рублей.

Нужно учитывать способ монтажа выбранного счетчика электроэнергии с передачей данных. Чаще всего такие приборы учета фиксируются на специальной din-рейке, что позволяет в последующем упростить их проверку. Аттестация проводится раз в два года для устройств, работающих в однофазной сети. Промышленные трехфазные счетчики проверяются каждый год, что позволяет обеспечить беспроблемность их использования и гарантирует максимальную точность выполненных измерений.

Что такое система АСКУЭ, расшифровка термина, принцип работы АСКУЭ

В наш век автоматизации многих процессов оставить в стороне учет электроэнергии было бы неразумно, особенно, принимая в учет возможности современной технической базы. Внедрение подобных АС позволяет решить несколько задач, начиная с отслеживания баланса отдельно взятого потребителя и заканчивая принятием оперативного решения по изменению схемы электроснабжения. АСКУЭ — один из вариантов оптимального решения, предлагаем ознакомиться с основными тезисами.

Расшифровка аббревиатуры АСКУЭ

Название расшифровывается следующим образом:

  • А – автоматизированная.
  • С – система.
  • К – коммерческого.
  • У –учета.
  • Э –электроэнергии.

Иногда в название добавляется уточнение, описывающее характер комплекса — «информационно-измерительный». В таком случае аббревиатура преображается в АИИС КУЭ или АИСКУЭ.

Среди принятых сокращений можно встретить созвучные названия, например: АСДУЭ или АСТУЭ, но это совершенно другие комплексы автоматизации. Первая обеспечивает диспетчерское управление электроснабжением (ДУЭ), вторая хоть и является системой учета, но она несет в себе техническую, а не коммерческую составляющую. Подробно о различии между этими АС будет рассказано ниже.

Функции системы АСКУЭ и её назначение

Функциональное назначение данного комплекса — автоматизация процесса учета расхода электроэнергии для производства расчетов с ее потребителями. Помимо этого, АС на основе собранной информации формирует ряд отчетов, используемых при построении прогнозов потребления, расчетов стоимостных показателей и т.д.

Для выполнения перечисленных выше задач, необходимо выполнить следующие условия:

  • Каждый потребитель электроэнергии должен установить электронный прибор учета, оборудованный модулем для передачи сигналов (например, GSM модем). Электронный электросчетчик Энергомера, оборудованный интерфейсом для передачи данных.
  • Система связи, обеспечивающая передачу сигналов от приборов учета к центру их обработки. Один из элементов аппаратно-программного комплекса — шкаф АСКУЭ
  • В некоторых случаях, между центром приема и приборами учета устанавливаются специальные устройства – сумматоры, в которых «аккумулируются» данные перед тем, как они отправляются на сервер.

Принцип работы АСКУЭ

Алгоритм работы комплекса можно описать следующим образом:

  1. Электронные счетчики (Меркурий, Энергомера и т.д.) единовременно посылают сигнал. Частота (периодичность) передачи данных определяется АС.
  2. Данные архивируются в сумматорах, откуда идет их передача на сервер сбора и обработки. В незагруженной АС допускается передача напрямую серверу.
  3. Обработка данных АПК.

Собственно, данный алгоритм работы используется во всех АС энергоучета и контроля. Разница между автоматизированными комплексами заключается в их функциональном назначении, что отражается на анализе и обработке. Для примера приведем различия между коммерческими и техническими системами (АСТУЭ):

  • Алгоритм обработки данных, для расчета с потребителями, максимально оптимизирован под данную задачу.
  • данные, поступающие в коммерческий центр обработки, используется для формирования счетов потребителям, то есть, по сути это внутренний «продукт» энергокомпании.
  • Согласно законодательству, счетчики учета обязаны иметь все потребители, в то время, как система АСТУЭ внедряется для решения внутренних задач того или иного хозяйствующего объекта. Например, для мониторинга энергопотребления, анализа его структуры и выработки общей энергосберегающей программы и других задач АСУ ТП.

Для понимания структуры АС коммерческого учета, приведем несколько примеров схем реализации.

Схема АСКУЭ в СНТ

Как видите в данной схеме приборы учета, установленные у каждого потребителя, передают сигналы на сумматор, откуда осуществляется передача в центр обработки. Такая реализация практикуется в дачных поселках и садоводствах

Обратим внимание, что подобная АС может использоваться как для учета расхода электрики (электрического тока), так и холодной и горячей воды. Пример такой реализации в жилом доме показан ниже.

Схема системы АСКУЭ дома

Основные элементы АСКУЭ

Как видите, автоматизированная система учета включает в себя ряд элементов (подразделений), которые выполняют определенные задачи. Подобную структуру принято разделять на три уровня. Расскажем детально о назначении каждого из них.

Элементы первого уровня

К таковым относятся электронные приборы учета, у которых имеется специальный модуль, позволяющий отправлять сигналы в центр сбора. В России практикуется использование интерфейса RS-485, это стандарт асинхронной передачи данных, применяемый в системах автоматизации. Его упрощенная организация представлена ниже.

Организация интерфейса RS-485

Основной недостаток подобного устройства – ограничение количества приемо-передатчиков, их не может быть более 32. Выходом из этого может быть каскадирование системы, а именно установка сумматоров, «аккумулирующих» данные от различных источников. Изображение такого прибора показано на рисунке 7.

Рисунок 7. Устройство сбора и передачи данных (УСПД)

Обратим внимание, что разработка АС на базе интерфейса RS-485 велась в то время, когда использование GSM было экономически не обосновано. На текущий момент ситуация радикально изменилась.

Связующее звено (элементы второго уровня)

Данный уровень используется для организации транспортировки данных к центру обработки. На текущий момент большинством приборов учета используется интерфейс RS-485, несмотря на то, что данный способ является явно устаревшим. Сложившаяся ситуация вызвана инертностью структур, отвечающих за стандартизацию, что несколько притормаживает внедрение новой технической базы.

Центр обработки (завершающее звено)

Данный элемент представляет собой АПК, в который поступают и обрабатываются информационные сигналы. Его характеристики напрямую зависят от объема поступающих данных и наличия дополнительных функций системы. Исходя из этих технических условий, для комплекса АС подбираются компьютерные мощности и программное обеспечение.

О технических требованиях к системе

Поскольку надежность работы системы напрямую зависит от первого уровня, то основные требования предъявляются к приборам учета. Именно от их точность определяет достоверность данных.

Не менее важным показателем системы является допустимая погрешность при трансфере данных. Данный момент требует небольшого уточнения. Телеметрический выход прибора транслирует последовательность импульсов с частотой, соответствующей потребляемой мощности. Помехи и тепловые шумы могут вносить погрешность в такие данные, то есть влиять на отчет импульсов.

Чтобы избежать этого, информация передается в двоичном коде, высокий и низкий импеданс сигнала соответствует «1» и «0». Для проверки достоверности данных их определенная порция (как правило, байт) кодируется контрольной сумой.

Бытует мнение, что цифровая форма передачи защищена от погрешностей. Данное утверждение не является корректным, поскольку протокол передачи допускает определенную вероятность ошибки (необнаруженная ошибка). Собственно, данный недостаток, в той или иной мере, присущ любой системе передачи данных. Для уменьшения размера допустимой погрешности применяются специальные алгоритмы обработки.

Компании, занимающиеся разработкой АС, обязаны придерживаться типовых технических требований, разработанных ЕЭС Российской Федерации. В данных нормах указаны точностные характеристики информационного сигнала, класс точности приборов учета, рекомендуемое программное обеспечение, а также другие требования, необходимые для надежной работы системы. Соответственно, производители измерительных приборов, также должны учитывать принятые нормы.

Внедрение

Установка систем АСКУЭ производится по следующему алгоритму:

  • Создание рабочего проекта, где разрабатывается структура системы и ее отдельные уровни, составляется чертеж и другая сопутствующая конструкторская документация.
  • Выбирается система передачи данных, с учетом преимуществ, недостатков и возможностей технической реализации.
  • На основе проектной сметы приобретается необходимое оборудование.
  • Производится монтаж и настройка (наладка) АПК.
  • Осуществляется подбор состава обслуживающего персонала и, при необходимости его обучение.
  • Ввод системы в эксплуатацию.

Обратим внимание, что экономия на проекте, незамедлительно отразится на функциональности. Из-за недочетов могут расходиться данные с реальными показаниями счетчиков энергии, в результате использование такого комплекса будет не эффективным.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector