Что такое защита провода от обрыва?

Способы защиты кабеля от механических повреждений

В населенных пунктах и на территориях предприятий электрические и информационные сети, как правило, — кабельные. Когда кабель только монтируется — его хорошо видно, но если кабель давно проложен, его обычно невозможно увидеть, поскольку он оказывается скрыт где-то внутри конструкции. И стоит начаться земляным работам или какому-нибудь ремонту, как тут же возникает угроза повреждения скрытого кабеля.

Чтобы этого не произошло, кабель защищают от механических повреждений, применяя специальные меры. Так кабель будет застрахован от нарушения его целостности, а вся структура, с которой он связан, — от перебоев в электроснабжении, коммуникации, проще говоря — от аварий.

Безусловно, существуют бронированные силовые кабели, оболочки которых, казалось бы и созданы для того, чтобы защищать внутренние проводники от механических повреждений. Но даже стальная оболочка может проиграть, окажи на нее слишком большое механическое усилие, допустим ковшом экскаватора. Оболочка кабеля в этом случае просто деформируется, а сама деформированная оболочка может запросто нарушить целостность изоляции и непосредственно проводников.

Чтобы заранее обезопасить кабель от подобных трагедий, на тех участках где наиболее вероятны строительные или земляные работы, а иногда и на всем протяжении линии, сооружают защитные конструкции: трубы, шахты, кабельные каналы и т. д. – в зависимости от материала кабеля, места его пролегания, класса напряжения и т. д.

В быту при прокладке кабеля для его механической защиты используются пластиковые кабельные каналы, пластиковые и металлические трубы, гофрированные трубы, металлорукава, специальные кабельные плинтуса.

Для каждой ситуации характерна своя категория средств защиты кабеля от механических повреждений

Для разных мест пролегания кабеля — разная защита

Подземные защитные средства применяют для кабельных трасс, проложенных (согласно ПУЭ 2.3.83) в местах вероятных земляных работ на глубине более 1,2 метров, причем защита устанавливается не по всей длине кабеля, а лишь на уязвимых участках и в тех местах, где высок риск воздействия на людей шагового напряжения.

Защитные средства наружной установки применяются для кабелей, проложенных на опорах либо по стенам зданий. Обычно к таким кабелям относятся слаботочные информационные кабеля либо электропроводка.

Если же кабель проложен внутри стены, то применяется защита внутренняя, монтируемая также внутри стены вместе с кабелем. В этом случае строительные, монтажные или ремонтные работы в здании не повредят кабель.

Подземные кабели комплектуются не только защитной металлической оболочкой, но также требуют применения довольно толстого слоя сыпучих материалов, поскольку именно подземные кабели сложнее всего монтируются, и в случае потребности в ремонте, дело обернется существенными материальными затратами.

Поэтому подземный кабель никогда не размещают в полой траншее, его устанавливают на некотором расстоянии от ее стенки, а если кабелей несколько, то выдерживают определенную дистанцию между ними. Так, если в одном месте кабель окажется поврежден, то соседний кабель вряд ли пострадает, а поврежденное место, будучи локализовано, может быть отремонтировано.

Материалы защищающие кабель

Наиболее прочными средствами механической защиты кабеля выступают железобетонные плиты или кирпичная кладка. Сверху над подземной линией могут даже располагаться какие-нибудь сооружения или проходы, данные материалы это позволяют.

Металлическая защита обычно применяется для небронированных кабелей. Такая защита представляет собой цельные либо перфорированные конструкции, иногда многоцелевого назначения.

Полимерные материалы допускаются только для защиты кабелей внутренней установки, ибо снаружи им грозит разрушительное воздействие ультрафиолета, влаги и т. д.

Если кабель установлен неподвижно глубоко под землей или снаружи здания, где ему принципиально не грозит динамическая нагрузка, применяют асбестовые и керамические защитные средства. Данные материалы также полезны для кабелей установленных в агрессивной внешней среде.

Если в месте пролегания кабеля часто ходят люди, то наиболее приемлема стандартная металлическая защитная конструкция, способная к небольшой деформации и отличающаяся высокой прочностью. Но есть у нее и недостаток — склонность к коррозии. Поэтому металлическая броня требует регулярного контроля.

Конструктивное исполнение защиты

Наиболее крупными по размеру защитными конструкциями для кабелей являются подземные тоннели (галереи, эстакады). Внутри них могут находиться несколько десятков кабелей, расположенных статично на специальных кронштейнах. Кроме кабелей внутри такого тоннеля могут проходить водопроводные, вентиляционные, канализационные и другие трубы.

Внутри зданий для защиты кабелей применяют шахты. Кабель в шахте получается не только защищен, но и поддерживается на всем его протяжении.

Перфорированные каналы и перекрытия плит также подходят для защиты силовых, слаботочных и информационных кабелей в зданиях.

Снаружи проложенный участок кабеля может быть надежно защищен металлической или асбестовой трубой. Участки же кабелей проложенные внутри зданий защищают полимерными трубами. Данные трубы часто гофрированные, позволяющие не только безопасно протянуть кабель через отверстие, но и придать кабелю и его оболочке изогнутую форму по пути следования кабеля.

Когда кабель необходимо просто физически оградить, если он находится в неагрессивной среде, и динамической нагрузки особо нет, то подойдет лоток из сплошного или перфорированного материала, служащий своеобразной направляющей.

Специальные кабельные лотки и каналы используются также при монтаже кабелей в зданиях:

Наконец, для того чтобы обозначить пролегание подземного кабеля, используют сигнальные ленты. Данные ленты своим наличием показывают рабочим, ведущим раскопку, что здесь находится кабель.

Требования к элементам защиты и ее исполнению

Подземные кабели необходимо защищать более надежно. Здесь требуется песчаная (или подобная) подушка, на которую затем укладываются плиты. Если напряжение защищаемой линии более 35 кВ, то толщина плиты менее 50 мм недопустима.

При меньшем рабочем напряжении вместо плиты может быть уложен кирпич из обожженной глины без отверстий. Такие решения выполняют не только защитную, но и сигнальную функцию подобно ленте.

Кабель при укладке никогда не натягивают и сильно не извивают, его укладывают свободно, чтобы деформация от изменений температуры и движения грунта не создала опасных натяжений.

Будучи проложен под магистральным дорожным полотном или даже под грунтовой дорогой, кабель обычно защищается металлической трубой. Сталь или асбест в данном случае защитят кабель при просадке грунта. В данных условиях в одной трубе монтируется всегда только один кабель, а если кабелей несколько, то и труб может быть несколько.

Защитная сигнальная лента размещается не менее чем в 250 миллиметрах от изоляции кабеля, а также выступает не менее чем на 50 миллиметров с каждой стороны над ним. Над местами пересечений и над соединительными муфтами лента не укладывается, чтобы не создавать помех в случае ремонта. Кирпичный защитный слой, в отличие от ленты, укладывается определенным образом в зависимости от ширины траншеи.

Защита домашней электропроводки от обрыва нуля

Обрыв нулевого провода в трехфазной электрической сети – опасное явление, которое может привести к различным негативным последствиям для бытовых электроприборов, а также для людей, которые их эксплуатируют. В данной статье рассмотрим последствия обрыва нулевого провода на конкретном примере и соответствующие способы защиты домашней электропроводки от обрыва нуля.

Последствия обрыва нулевого провода

В качестве примера рассмотрим многоквартирный дом, питающийся по наиболее распространенной системе заземления TN-C-S. Система данного типа предусматривает заземление нейтрали источника питания – трансформатора подстанции.

От подстанции к потребителю, в данном случае в дом, электричество поступает по четырем проводникам – трем фазным и проводнику, который совмещает функции рабочего нулевого и защитного заземляющего проводника.

После ввода в здание совмещенный проводник разделяется на рабочий нулевой проводник и защитный, а затем распределяется между квартирами.

Три фазы электрической сети при вводе в дом распределяются на примерно равное количество квартир. Но при нормальном режиме работы электрической сети нагрузка по трем фазам неравномерная, так как жители квартир по-разному эксплуатируют электроприборы, и в разные промежутки времени нагрузка по фазам отличается, причем значительно.

При этом напряжение по фазам практически равное, так как нулевой провод играет роль балансира, снижает так называемое напряжение смещения нейтральной точки практически до нуля.

В случае обрыва нулевого провода на линии электропередач тут же возникает дисбаланс – возникает перекос фазных напряжений. При этом по одной фазе, где нагрузка меньше напряжение резко возрастает, а на самой загруженной фазе наоборот – падает.

При этом в зависимости от перекоса, напряжение на фазах может колебаться от нескольких десятков вольт до значения линейного напряжения трехфазной сети – 380 В. В данном случае все зависит от величины перекоса нагрузок по фазам электрической сети.

Последствия перепадов напряжения наверняка всем известны. Значительное превышение напряжения в бытовой сети приведет к выходу из строя практически всей техники, которая в данный момент работала от сети. Чрезмерно низкое напряжение за считанные минуты выведет из строя компрессор холодильника или кондиционера, электродвигатель стиральной машины и другие электроприборы, конструктивно имеющие электродвигатели. Ненормальный режим работы электроприборов может закончиться выходом их из строя с последующим возгоранием.

Читайте также:  Возможен ли ремонт патрона в люстре, если он поврежден?

Выход из строя бытовой техники – это не самое страшное. В случае перегорания нуля до ввода в дом, то есть до разделения его на нулевой и заземляющий проводник, на всех заземленных элементах оборудования, бытовых электроприборах появляется фазное напряжение. В случае прикосновения к таким электроприборам человек будет поражен электрическим током.

Если в доме реализована система уравнивания потенциалов, которая предусматривает электрическое соединение с заземляющей шиной всех металлических элементов конструкции, металлических трубопроводов, то вероятность поражения электрическим током снижается, так как человек не будет касаться двух точек с разным потенциалом.

Но, как показывает практика, такая система в большинстве домов не реализована и в случае появления на корпусе электроприбора опасного потенциала и прикосновения человека одновременно к данному электроприбору и металлическому предмету, имеющему другой потенциал, человек будет поражен электрическим током.

Защита от обрыва нуля

Как защитить себя и бытовые электроприборы от вышеописанных последствий? Основная мера защиты от возможных перепадов напряжения – это установка реле напряжения на вводе домашнего распределительного щитка. В случае чрезмерного снижения или увеличения напряжения реле напряжения мгновенно обесточит электропроводку, защитив при этом включенные в сеть электроприборы.

Что касается заземления в сети системы TN-C-S, то защиты от возможного появления опасного потенциала на корпусе оборудования в случае повреждения нуля до места его разделения нет.

По сути, если линия электропередач находится в неудовлетворительном состоянии и вероятность повреждения совмещенного провода до точки разделения в доме высока, то эксплуатация такого заземления опасна. В любой момент заземленные корпуса оборудования могут оказаться под напряжением. Есть ли выход в данной ситуации?

Владельцам квартир на первом этаже, а также в частных домах можно сделать индивидуальный заземляющий контур, который будет электрически независим от совмещенного нейтрального проводника электрической сети. В данном случае сеть будет конфигурации TT.

В электрической сети, где реализована система TT, обрыв нулевого провода не приводит к появлению опасного потенциала на корпусе оборудования. Но при этом перекос напряжений по фазам может возникнуть, поэтому реле напряжения в данных сетях также необходимо установить для защиты бытовых электроприборов.

Вообще, если говорить о надежности заземления в сети системы TN-C-S, то в данном случае гарантировать безопасность эксплуатации заземленных электроприборов можно только в том случае, если снабжающая организация выполняет периодические проверки состояния сетей от питающей подстанции непосредственно до главного распределительного щитка дома и своевременно устраняет возможные нарушения.

Также следует отметить, что как в системе TT, так и в системе TN-C-S, соответствующее всем требованиям защитное заземление не может обеспечить абсолютной защиты от поражения электрическим током в случае появления опасного потенциала, поэтому необходимо в обязательном порядке устанавливать в распределительный щиток устройство защитного отключения.

В данном случае при возможной утечке тока на заземленный корпус УЗО моментально обесточит электропроводку. Некоторые типы устройств защитного отключения имеют дополнительную функцию защиты от перепадов напряжения, то есть такое устройство будет совмещать в себе функции двух защитных аппаратов.

Как защитить кабель от механических повреждений?

Преимущественное большинство сетей электрического питания в городах или на территории крупных предприятий прокладывается кабелем. Из-за отсутствия возможности визуального контроля при выполнении каких-либо земляных робот в местах прохода подземных коммуникаций существует угроза их повреждения. Для исключения возможности нарушения целостности изоляции, как следствие, прекращения электропитания и для воспрепятствования аварийным ситуациям используется защита кабеля от механических повреждений.

Некоторые модели кабеля защищаются броней, которая покрывается дополнительной изоляцией. Но таких мер бывает недостаточно, так как стальная оболочка не способна воспринять всю нагрузку от механических усилий. Тем более что металлическая оболочка в бронированных кабелях под воздействием усилий может деформироваться, из-за чего возникает сжатие изоляции.

Как защищают кабель от механических повреждений?

С целью защиты кабеля на протяжении всей линии или на особо напряженных участках, где существует вероятность проведения каких-либо работ, сооружаются специальные конструкции. К таким конструкциям относятся кабельные каналы, лотки, шахты, трубы и прочие. В зависимости от места установки, материала и класса напряжения все способы защиты от механических воздействий подразделяются на определенные категории.

По месту установки

В зависимости от места размещения выделяют такие варианты защиты:

  • Подземной установки – используются для размещения кабельной трасы на глубине. Согласно норм ПУЭ 2.3.83 не требуется на всей протяженности участка, а лишь в тех местах, где существует вероятность проведения подземных работ, глубиной более 1,2 м. Или в тех местах, где существует угроза поражения персонала шаговым напряжением.
  • Наружной установки – предназначены для прокладки кабеля по стенам здания, на опорах, эстакадах и т.д. Такие способы защиты используются для контрольных кабелей, слаботочных информационных сетей, наружной электропроводки и т.д.
  • Внутренней установки – подразумевает расположение защитных оболочек внутри стен. Позволяет обезопасить кабель на случай строительных работ или при каких-либо технологических процессах, происходящих вблизи с местом установки.

Рис. 1. Прокладка кабеля в стене

Все кабели, располагающиеся под землей, должны быть укомплектованными металлической оболочкой. Так как этот способ прокладки наиболее трудоемок и требует относительно больших затрат на монтаж и ремонт, в сравнении с другими методами, помимо стальных конструкций в оболочке, необходимо обеспечить определенную высоту слоев сыпучих материалов при укладке.

Рис. 2. Способы засыпки кабеля

Как видите из рисунка, размещать кабели в непосредственной близи внутри траншеи запрещено. Так как существует опасность повреждения рабочего проводника, в случае пробоя или возгорания на соседнем. А также создает угрозу механического повреждения при разработке воронки для отыскания места повреждения и последующего монтажа соединительной муфты.

По материалу

В зависимости от материала определяются и задачи, которые решает защитная конструкция. Поэтому на практике выделяют такие сооружения:

  • Бетонные – реализуются посредством железобетонных лотков, плит, кирпичной кладки и других подобных конструкций. Отличительной особенностью является высокая прочность, которая обуславливает возможность использовать конструкцию для размещения на ней сооружений, технологических проходов и других инженерных решений.
  • Металлические – обладают рядом монтажных преимуществ для размещения в них небронированных кабелей. Могут иметь перфорированную и неперфорированную конструкцию. Второй вариант получается легче и позволяет использовать отверстия для вентиляции или крепления сигнальных приспособлений. Дополнительно покрываются цинком и краской для устойчивости к коррозионному разрушению и для эстетичности.
  • Полимерные – являются наиболее облегченным вариантом, но из-за потери механической защиты под воздействием ультрафиолета и атмосферных явлений их, как правило, не применяют для наружной установки.
  • Керамические и асбестовые – подходят как для внешнего монтажа, так и для укладки под толщей грунта. Могут использоваться в качестве защитных устройств при отсутствии динамической нагрузки. Хорошо зарекомендовали себя в предотвращении воздействия агрессивной среды на изоляцию проводов.

В местах частого движения персонала или выполнения каких-либо технологических операций достаточно широкое распространение получили металлические конструкции для защиты кабеля. Это обуславливается их способностью к деформации и высокой прочностью. Основным недостатком такой металлической брони является подверженность коррозионному разрушению. Так как со временем цинковое покрытие и слой краски изнашивается или повреждается, стальные трубы и профиля быстро ржавеют, из-за чего возникает угроза для изоляции кабеля.

По конструкции

В зависимости от конструктивного исполнения кабельные сооружения подразделяются на:

  • Лотки – представляют собой открытые конструкции для защиты кабеля. В большинстве случаев выполняют роль направляющих из перфорированного или монолитного материала, как для многожильных, так и для одножильных кабелей.
  • Каналы и плиты – представляют собой конструкции, собранные из профилированных листов, железобетонных плит с перекрытиями. Получили широкое распространение, как для силовых кабелей, так и для слаботочных, также применяются для монтажа электропроводки.
  • Трубы – обеспечивают защиту по протяженности определенного участка. Бывают асбестовые и металлические для наружной установки, полимерные для внутренней. Некоторые модели имеют гофрированную структуру, что позволяет перемещать их по проводнику, изгибать и придавать определенную форму, в зависимости от местных условий. Применяют их для защиты электрических соединений, протяжки в проходные отверстия и т.д.
  • Шахты – сооружаются в зданиях для защиты кабеля при укладке в различных строительных конструкциях. Являются тем элементом, задача которого не только защищать провода, но и поддерживать линию на всей ее протяженности.
  • Защитные ленты – позволяют оградить незащищенные провода в подземных сооружениях. В большинстве своем это сигнальные ленты, функция защиты которых в том, что они указывают на пролегание кабеля при раскопке непосредственно под местом работ.
  • Тоннели, галереи и эстакады – используются для укладки от 20 и более кабелей. Посмотрите на рисунок 3, здесь показано их конструкция. 1 – это стенки, 2 – кронштейны для фиксации кабелей – 3. Также кроме кабеля в тоннеле могут располагаться и другие сооружения (водопроводы, вентиляция и т.д.), обозначенные на рисунке номером 4.

Рис. 3. Конструктивное исполнение галерей, эстакад

Требования к защите кабеля

Наиболее жесткие требования по нормам, предъявляются к защите при подземной укладке. Так, в готовой траншее должна обустраиваться подушка из песка или граншлака, на которой размещаются плиты. Для моделей напряжением более 35 кВ толщина плит должна составлять не менее 50 мм.

Линии меньшего напряжения могут иметь защиту не плитами, а кирпичом из обожженной глины. Но для этого категорически запрещается использовать кирпич с отверстиями, через которые будет попадать грунт при засыпке траншеи. Также запрещается использовать силикатный кирпич, так как со временем он утрачивает механическую прочность и не может выполнять сигнальные функции. Так как помимо защиты от повреждения оболочки кабеля кирпич должен сигнализировать о расположении под ним участка трасы.

Так как сильная натяжка приводит к порыву во время снижения температуры или при перемещении грунта, то его расположение в траншее должно быть свободным. Но и делать слишком большие волны тоже не стоит.

Читайте также:  Сколько литий-ионных аккумуляторов нужно для работы 10-ти холодильников?

Рис. 4. Прокладка в земле без натяжения

При прохождении линии под дорогами, магистралями защита кабеля осуществляется металлической трубой. При этом асбестовые или стальные трубы защищают от просадки толщи грунта во время движения крупнотоннажных автомобилей. В противном случае может произойти порыв от движения слоев грунта, даже под грунтовыми дорогами. Но, в то же время, запрещено размещать сразу несколько кабелей в одной трубе, в таком случае делается дополнительная прокладка в соседней трубе.

Укладка защитной ленты должна осуществляться из такого расчета, чтобы расстояние от наружной изоляции до ленточной защиты составляло не менее 250 мм. Помимо этого края ленты должны выступать на расстояние не меньше 50мм в каждую сторону над кабелем. А вот в местах пересечений трасы или над кабельными муфтами укладывать ленту категорически запрещается, чтобы защита кабеля не мешала проведению ремонтных работ. Также существует ряд рекомендаций по засыпке траншеи, которые можно увидеть на рисунке 5.

Рис. 5. Укладка ленты над кабелем

Для линий до 1 кВ защита кабеля может осуществляться лишь в местах вероятного повреждения.

Кладка кирпичного слоя для защиты, в отличии от слоя ленты, выполняет не только роль сигнализатора, но и предоставляет реальную защиту от той же лопаты, лома и прочего инструмента или механических воздействий. Но такой способ прокладки регламентирует и ряд особенностей по укладке кирпича. Так, для защиты кабеля, в отличии от кабельных блоков, расположение кирпичей имеет особую технологию. Рассмотрите пример расположения, в зависимости от ширины траншеи на рисунке:

Рисунок 6: Схема укладки кирпича

Обрыв нуля в трехфазной сети — причины и последствия

1. Введение

Обрыв нуля — это аварийный режим работы трехфазной электросети при котором, в результате обрыва (отгорания) нулевого рабочего провода, в случае несимметричной нагрузки, на подключенных к данной сети однофазных электроприемниках возникает напряжение значительно ниже либо наоборот значительно превышающее номинальное напряжение однофазной сети.

Последствия обрыва нуля — это вышедшее из строя электрооборудование и в первую очередь это дорогостоящие электронные приборы, такие как компьютеры, телевизоры, современные стиральные машины и т.д., которые являются наиболее чувствительными к перепадам напряжения сети, и в особенности к его повышению.

Совершенно не важно проживаете вы в частном доме или в квартире, трехфазная у вас сеть или однофазная при обрыве нуля питающей сети и при отсутствии должной защиты вы рискуете стать жертвой подобной аварии.

В данной статье мы разберемся с тем, что происходит при обрыве нуля, откуда в однофазной розетке может появиться 380 Вольт, а так же по каким причинам может произойти обрыв нуля и как от этого защититься.

2. Почему при обрыве нуля повышается напряжение?

Что бы ответить на этот вопрос разберемся с тем как устроена наша электросеть и как в нее подключаются электроприборы.

Есть два основных способа подключения электроприемников — параллельный и последовательный:

На картинке выше представлено параллельное подключение двух лампочек, при таком подключении напряжение на обоих лампочках будет одинаково и равно напряжению сети, вне зависимости от количества лампочек и их мощности, в то время как ток сети (I1) будет равен сумме токов I2 — который проходит через первую лампочку и I3 который проходит через вторую лампочку.

Именно по такой схеме подключается все электрооборудование в квартирах и частных домах.

Рассчитать общий ток при параллельном подключении можно по формуле:

I=U/R

где: U — напряжение сети, Вольт; R — сопротивление сети, Ом.

Из этой формулы видно, что ток в сети обратно пропорционален сопротивлению, т.е. чем выше сопротивление тем ниже ток и наоборот.

Каждый электрический прибор будь то простая лампочка или микроволновая печь имеет свое электрическое сопротивление, причем чем мощнее прибор тем меньше его сопротивление.

Общее сопротивление сети при параллельном подключении определяется по формуле:

  • При подключении двух резисторов:
  • При подключении трех и более резисторов:

где: R1,R2,Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.

Представим, что мы параллельно включили в сеть 2 лампочки: одна лампочка мощностью 75 Ватт сопротивление которой R1= 600 Ом, а вторая — 150 Ватт с сопротивлением R2= 300 Ом, тогда общее сопротивление сети будет равно:

Rсети=(600*300)/(600+300)=200 Ом

А теперь добавим в нашу сеть третью лампочку мощностью 75 Ватт с сопротивлением R3= 600 Ом, тогда:

1/Rсети=1/600+1/300+1/600 ➜ 1/Rсети=0,0017+0,0033+0,0017,

отсюда находим общее сопротивление сети:

Rсети=1/(0,0017+0,0033+0,0017)=149 Ом

Как видно из данного расчета при подключении третьей лампочки общее сопротивление сети уменьшилось.

ВЫВОД №1: Чем больше в сеть параллельно подключено электроприемников тем ниже будет ее общее сопротивление.

При последовательном подключении ток протекающий в цепи имеет одинаковую величину на всем ее протяжении (т.е. через обе лампочки протекает одинаковый ток вне зависимости от их мощности)который рассчитывается по той же формуле, что и при параллельном подключении:

Однако общее сопротивление сети при последовательном подключении определяется как сумма сопротивлений всех подключенных электроприемников:

где: R1*R2*Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.

Напряжение сети при последовательном подключении в нее электроприборов разделяется между этими электроприборами пропорционально их сопротивлению. Рассчитать напряжение на каждом приборе можно по следующей формуле:

Uэлектроприемника = Iсети*Rэлектроприемника

Как видно из этой формулы, напряжение на электроприемнике прямо пропорционально его сопротивлению.

Для наглядности произведем расчет напряжения на двух подключенных последовательно в сеть 220 Вольт лампочках мощностью 75 Ватт (сопротивление одной лампочки R=600 Ом) (рис. 1)

В этом случае общее сопротивление сети будет равно:

Rсети= Rлампочки №1 + Rлампочки №2=600+600=1200 Ом

Ток сети будет равен:

Тогда напряжение на лампочке будет равно:

Uлампочки = Iсети*Rлампочки=0,183*600=110 Вольт

Так как сопротивление (мощность) обоих лампочек одинаково напряжение сети разделится между ними поровну.

Таким образом выполняется подключение лампочек в гирляндах, например, если взять десятивольтовые лампочки одинаковой мощности то подключив 22 таких лампочки последовательно в сеть 220 Вольт на каждой лампочке будет как раз 10 Вольт (220Вольт/22лампочки=10Вольт на каждую лампочку), однако если перегорит одна лампочка цепь разорвется и вся гирлянда погаснет.

Теперь представим, что мы заменили одну из лампочек на лампочку мощностью 150 Ватт, сопротивление которой соответственно будет Rлампочки №2 =300 Ом (рис. 2)

Тогда общее сопротивление сети будет равно:

Rсети= Rлампочки №1 + Rлампочки №2=600+300=900 Ом

Ток сети будет равен:

Тогда напряжение на лампочке №1 (75 Ватт) будет равно:

Uлампочки №1 = Iсети*Rлампочки №1=0,2444*600=147 Вольт

А напряжение на лампочке №2 (150 Ватт) составит:

Uлампочки №2 = Iсети*Rлампочки №2=0,2444*300=73 Вольта

То есть менее мощная лампочка будет получать большее напряжение и соответственно ярче гореть.

ВЫВОД №2: При последовательном подключении в сеть электроприборов на менее мощные электроприборы «выделяется» большее напряжение чем на приборы большей мощности.

Ну и наконец разберемся почему при обрыве нуля в вашей розетке может появиться 380 Вольт, для этого представим обычную схему подключения квартир в многоквартирном жилом доме (аналогичным образом подключаются так же и частные жилые дома к линиям электропередач):

На схеме представлено подключение трех квартир, т.к. нагрузка по фазам должна разделяться равномерно все квартиры подключены на разные фазы, при этом во всех трех квартирах общий ноль.

В трехфазной сети напряжение между фазами составляет 380 Вольт, а напряжение между фазой и нулем — 220 Вольт, соответственно при данной схеме в каждой из квартир напряжение сети составляет 220 Вольт и в эту сеть параллельно подключаются электроприборы, ток при этом протекает от фазы к нулю.

Теперь посмотрим что происходит в электросети при обрыве нуля (для большей наглядности и упрощения расчетов представим, что жильцы квартиры №3 уехали в отпуск предусмотрительно отключив все электроприборы в квартире):

На приведенной выше схеме видно, что при обрыве нуля первая и вторая квартиры оказались подключены последовательно в сеть 380 Вольт, ток в этом случае протекает уже не от фазы к нулю, а от фазы к фазе.

Как уже было сказано выше, при последовательном подключении в сеть электроприборов, на менее мощные электроприборы выделяется большее напряжение (вывод №2). Если бы общая мощность включенных в сеть электроприборов в квартире №1 была равна мощности включенных в сеть приборов в квартире №2, то напряжение между квартирами поделилось бы поровну, т.е. по 190 Вольт на квартиру, однако на практике такого как правило не бывает.

Читайте также:  Какие бывают подрозетники?

В нашем случае у жильцов в квартире №1 в сеть включены только компьютер, телевизор и одна лампочка общей мощностью 475 Ватт в то время как в квартире №2 в сеть включены: стиральная машина, электропечь, и 2 лампочки общей мощностью 3950 Ватт следовательно, т.к. общая мощность квартиры №1 значительно ниже, напряжение в электросети квартиры №1 будет намного выше.

Произведя расчет можно определить, что напряжение в электросети квартиры №2 составит 40 Вольт, при таком напряжении электроприборы в квартире №2 перестанут работать, нити накала в лампочках будут едва раскалены, в то же время напряжение сети в квартире №1 составит 340 Вольт, при таком высоком напряжении электроприборы в квартире №1 начнут выходить из строя, в первую очередь выйдут из строя наиболее чувствительные к перепадам напряжения сети электронные приборы, т.е. телевизор и компьютер, причем после их поломки общая мощность квартиры №1 уменьшится, а напряжение сети при этом соответственно будет увеличиваться пока все включенное в сеть электрооборудование в квартире №1 не»сгорит»:

После выхода из строя последнего электроприбора в квартире №1 электрическая цепь будет разорвана (ток перестанет протекать), при этом напряжение в электросети квартиры №2 станет равным нулю, а замерив напряжение в розетке квартиры №1 мы увидим 380Вольт.

Причины обрыва нуля.

Можно выделить несколько причин обрыва нуля:

1) Некачественное и не своевременное техническое обслуживание электрощитков (либо его полное отсутствие). Данная проблема особенно остро стоит в многоквартирных жилых домах.

Периодическое техническое обслуживание — залог безаварийной работы электрооборудования. К сожалению эксплуатирующие организации (ЖКХ) зачастую пренебрегают этим важным принципом и их электрики заглядывают в этажные электрощитки только после того как случается очередная авария.

Пример отгорания нуля от нулевой шинки в результате плохо зажатого контактного соединения:

2) Несимметричное распределение нагрузки.

Как уже было написано выше, нагрузка по фазам должна распределяться как можно более равномерно (симметрично).

Как видно из приведенных выше схем, при симметричной нагрузке (когда подключенная мощность на всех трех фазах одинакова) токи взаимоуравновешиваются, в результате ток в нулевом проводе отсутствует, однако при несимметричной нагрузке на фазах в нулевом проводнике протекает так называемый ток уравнивания компенсирующий неравномерность нагрузки, причем чем выше данная несимметрия, тем больше величина тока уравнивания и следовательно выше риск отгорания нуля.

3) Старая электропроводка. Если вам не посчастливилось жить в новостройке, то вполне возможно, что ваш дом проектировался лет 30-40 назад, когда нагрузка среднестатистической квартиры представляла собой пару лампочек и одно радио, в наше время в каждой квартире есть множество энергоемкого оборудования такого как СВЧ печи, электрочайники, электрические печи и т.д., но на такие нагрузки старая электропроводка конечно же не рассчитывалась.

Защита от обрыва нуля

Есть два основных способа защиты от обрыва нуля: повторное заземление нулевого проводника и установка реле напряжения:

1) Повторное заземление нуля — такой способ защиты подходит для частных жилых домов заземление которых выполняется по системе TN-C-S, при этом во вводном электрощитке дома к нулевому проводнику подключается контур заземления:

Как видно на схеме, при обрыве (отгорании) нуля, ток уравнивания продолжает протекать к контуру заземления, благодаря чему фазное напряжение сохраняется на уровне 220 Вольт. Подробнее о том как выполнить повторное заземление читайте статью: Заземление в частном доме.

2) Установка реле напряжения — данный способ применяется для защиты от обрыва нуля электросети квартир в многоквартирных жилых домах, а так же для защиты электросети частных жилых домов с заземлением выполненным по системе TT, либо вовсе не имеющих контура заземления.

Реле напряжения — это прибор контролирующий уровень напряжения электросети, в случае повышения или снижения его до недопустимого уровня реле напряжения отключает электросеть до того момента, как напряжение сети не вернется в норму.

Подробнее читайте статью реле напряжения.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Защита от обрыва нулевого провода

В России, как и на всем постсоветском пространстве, широкое распространение получили трехфазные электросети, с подключением нагрузок «звездой», то есть с применением нулевого провода. В такой сети напряжение между фазой и «нулем» составляет около 220В, а между фазами — около 380В.

Все знают, что напряжение в сети может быть выше или ниже номинала. Какие причины могут быть? К чему надо быть готовым? Как защитить электроприборы? Рассмотрим один из самых опасных случаев.

Плохой контакт, или ошибка монтажника, могут привести к опасной ситуации, которую называют «обрыв нулевого провода». Надо понимать, что собственно обрыв провода не вызывает поломки нагрузки, но вызывает изменение напряжения в сети. Так, если на щитке, входящем в дом, пропал контакт на нулевом проводе, и подключена равномерная нагрузка (например, трехфазный двигатель) то все будет нормально работать. Но на практике, нагрузки на фазах отличаются по номиналу. И чем больше это отличие, тем больше перекос фаз. Дело в том, что номинал нулевого провода в доме (подъезде, цеху, или другом участке сети) сместится от фактического нуля в сторону наибольшей нагрузки ( наименьшего сопротивления). Если на фазе А лампочка 40Вт, на фазе В компьютер 200 Вт, а к фазе С подключается обогреватель 3000 Вт, то напряжение в локальной сети на фазе С приблизится к нулю, на фазе А будет почти 380В, а на фазе В — поменьше, например, 350В. Понятно, что и для лампочки, и для компьютера это приведет к поломке. Пониженное напряжение на фазе также может привести к плачевным последствиям для подключенной нагрузки. Трехфазная нагрузка (например, электродвигатель насоса) подключенная к сети с такой разницей напряжений по фазам, также будет повреждена. Если обрыв нулевого провода произошел на более раннем участке сети, например, в щитовой большого цеха или поселка, то номинал подключенных нагрузок будет отличаться не так сильно, и потенциал на «нуле» будет «плавать» до тех пор, пока не приведет к поломкам и аварийному отключению сети. Кроме выхода из строя подключенных приборов, есть еще опасные моменты. Повышенное напряжение может привести к пожару! Не пытайтесь проверять сеть подключением другой нагрузки. Работайте с электрооборудованием, соблюдая правила безопасности. Помните, что на нулевом проводе может быть опасное для жизни напряжение до 220В!

Если вы живете в квартире, и пользуетесь подключением к однофазной сети, то не следует считать, что обрыв нулевого провода Вас не коснется никак. Ваша однофазная сеть — это участок одной из фаз большой трехфазной сети. Например, в подъезд входит три фазы, а на этаже они распределяются по квартирам. Таким образом, при обрыве нулевого провода, в некоторых квартирах будет заниженное напряжение, а в других — завышенное, что приведет, как минимум, к массовым поломкам электроприборов.

Как защититься от последствий обрыва нулевого провода? Нам необходимо отключить нагрузку при повышении напряжения между фазой и нулевым проводом (а также при понижении ниже установленного минимума). Время срабатывания реле при аварийных значениях напряжения может быть фиксированным или регулируемым. Реле напряжения Line Energy позволяют установить время реакции от 0, 1 до 99, 9 секунд. Для защиты трехфазных потребителей электроэнергии применяют трехфазные реле напряжения. Например, RN-03-02 (рис.1)

отключит трехфазную нагрузку при помощи внешнего пускателя. Схема подключения на рис.2.

Рис.1. Реле напряжения RN-03-02

Рис.2. Схема подключения RN-03-02

Реле напряжения RN-03-04 имеет две группы переключающих контактов на выходе, а RN-03-30 (рис.3) позволяет подключить нагрузку без применения пускателя, так как имеет три встроенных исполнительных реле.

Рис.3. Реле напряжения RN-03-30

Если у Вас однофазная сеть, или Вы подключаете к трехфазной сети только однофазные нагрузки, то можно применить однофазное реле напряжения RN-01-02, RN-01-30, RN-01-63 (см.рисунки ниже). Эти реле отличаются максимальной мощностью подключаемой нагрузки. В случае однофазных нагрузок, подключенных к трехфазной сети, понадобится три реле. Реле RN-01-02 рассчитано на ток нагрузки до 10А, более мощные нагрузки подключаются через пускатель (схема приведена на рис.7).

Рис.4. Реле напряжения RN-01-02


Рис.5. Реле напряжения RN-01-30


Рис.6. Реле напряжения RN-01-63

Рис.7. Схема подключения RN-01-02

Кроме повышенного или пониженного напряжения в сети, трехфазные нагрузки подвержены другим опасным аварийным факторам. Их необходимо защищать от склеивания фаз, нарушения порядка чередования фаз. От таких аварийных ситуаций защитят реле контроля фаз RKF-03-02, реле защиты электродвигателя RZD-03-02, RZD-03-30. Эти приборы обеспечит наиболее полную защиту трехфазных нагрузок. Подключаются к сети также, как и реле напряжения.

Релейные приборы защиты сети обеспечивают отключение потребителей электроэнергии при аварийном отклонении напряжения в сети и, тем самым, спасают подключенные электроприборы от поломки, а саму сеть от повреждения и возможного пожара. После устранения причины аварийного отключения, реле напряжения проверяет параметры напряжения в сети, и подключит защищаемую цепь (на схемах обозначена символом Rн).

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector