Для чего нужен трос на опоре влэп?

Провода и тросы воздушных линий электропередачи

На воздушных линиях электропередачи напряжением выше 1000 В применяют голые провода и тросы. Находясь на открытом воздухе, они подвергаются воздействиям атмосферы (ветер, гололед, изменение температуры) и вредных примесей окружающего воздуха (сернистые газы химических заводов, морская соль) и поэтому должны обладать достаточной механической прочностью и быть устойчивыми против коррозии (ржавления).

Раньше на воздушных линиях применялись медные провода, а теперь используют алюминиевые, сталеалюминевые и стальные, а в отдельных случаях и провода из специальных сплавов алюминия – альдрея и др. Грозозащитные тросы выполняются, как правило, из стали.

По конструкции различают:

а) многопроволочные провода из одного металла, состоящие (в зависимости от сечения провода) из 7; 19 и 37 скрученных между собой отдельных проволок (рис. 1, б);

б) однопроволочные провода, состоящие из одной проволоки сплошного сечения (рис. 1, а);

в) многопроволочные провода из двух металлов – стали и алюминия или стали и бронзы. Сталеалюминевые провода обычной конструкции (марки АС) состоят из стальной оцинкованной жилы (однопроволочной или скрученной из 7 или 19 проволок), вокруг которой расположена алюминиевая часть, состоящая из 6, 24 или более проволок (рис. 1, в).

Рис. 1. Конструкция проводов воздушных линий: а – однопроволочные провода; б – многопроволочные провода; в – сталеалюминевые провода.

Конструктивные расчетные данные голых алюминиевых и сталеалюминевых проводов находятся в ГОСТ 839-80.

Медные провода, изготовленные из твердотянутой медной проволоки, обладают малым удельным сопротивлением (r = 18,0 Ом × мм2/ км) и хорошей механической прочностью: предельное сопротивление разрыву sп = 36… 40 кгс/мм2, успешно противостоят атмосферным воздействиям и коррозии от вредных примесей в воздухе.

Медные провода маркируют буквой М с прибавлением номинимального сечения провода. Так, медный провод с номинальным сечением 50 мм2 обозначается М – 50.

Медь в настоящее время является дефицитным дорогостоящим материалом, поэтому в качестве проводов воздушных линий электропередачи практически не используется.

Алюминиевые провода отличаются от медных значительно меньшей массой, несколько большим удельным сопротивлением (r = 28,7…28,8 Ом × мм2/км) и меньшей механической прочностью: sп = 15,6 кгс/мм2 — для проводов из проволок марки АТ и sп = 16…18 кгс/мм2 из проволки Атп. Алюминиевые провода применяют главным образом в местных сетях. Малая механическая прочность этих проводов не допускает большого тяжения. Чтобы избежать больших стрел провеса и обеспечить требуемый ПУЭ минимальный габарит линии до земли, приходится уменьшить расстояние между опорами, а это удорожает линию.

Для повышения механической прочности алюминиевых проводов их изготовляют многопроволочными, из твердотянутых проволок. Хорошо перенося атмосферные воздействия, алюминиевые провода плохо противостоят воздействию вредных примесей воздуха. Поэтому для воздушных линий, сооружаемых вблизи морских побережий, соленых озер и химических предприятий, рекомендуются алюминиевые провода марки АКП, защищенные от коррозии (алюминиевые коррозионно-стойкие, с заполнением межпроволочного пространства нейтральной смазкой). Провода из алюминия маркируются буквой А с добавлением номинального сечения провода.

Стальные провода обладают большой механической прочностью: предельное сопротивление при разрыве sп = 55…70 кгс/мм2. Стальные провода бывают как однопроволочными, так и многопроволочными.

Удельное электрическое сопротивление стальных проводов значительно выше, чем алюминиевых, и в сетях переменного тока оно зависит от величины тока, протекающего по проводу. Стальные провода применяют в местных сетях напряжением до 10 кВ при передаче сравнительно небольших мощностей, когда сооружение линий с алюминиевыми проводами менее выгодно.

Существенный недостаток стальных проводов и тросов – подверженность коррозии. Для уменьшения коррозии провода оцинковывают. Выпускаются две марки многопроволочных стальных проводов: ПС (провод стальной) и ПМС (провод омедненный стальной). Провода ПС имеют присадку меди до 0,2 %, а провода марки ПСО изготовляются диаметром 3; 3,5; 5 мм. Стальные многопроволочные грозозащитные тросы выпускаются марок С-35, С-50 и С-70.

Сталеалюминевые провода имеют то же удельное сопротивление, что и алюминиевые провода равного им сечения, так как в электрических расчетах сталеалюминевых проводов проводимость стальной части не учитывается ввиду ее незначительности по сравнению с проводимостью алюминиевой части проводов.

Конструктивно стальные проволки составляют внутреннюю часть сталеалюминевого провода, а алюминиевые проволки – внешнюю. Сталь предназначена для увеличения механической прочности, алюминий является токопроводящей частью.

Выпускаются следующие марки сталеалюминевых проводов (ГОСТ 839-80):

АС – провод, состоящий из сердечника – стальных оцинкованных проволок, и одного или нескольких наружных повивов из алюминиевых проволок. Провод предназначается для прокладки на суше, кроме районов с загрязненным вредными химическими соединениями воздухом;

АСКС, АСКП – как и провод марки АС, но с заполнением стального сердечника (С) или всего провода (П) смазкой, противодействующей появлению коррозии проволок. Предназначен для прокладки на побережье морей, соленых озер и в промышленных районах с загрязненным воздухом;

АСК – такой же как и провод АСКС, но со стальным сердечником, изолированным полиэтиленовой пленкой. В маркировке провода после буквы А может стоять буква П, которая указывает, что провод повышенной механической прочности (например АпСК).

Сталеалюминевые провода всех марок выпускаются с разным отношением сечения алюминиевой части провода к сечению стального сердечника: в пределах 6,0…6,16 – для работы провода в средних по механической нагрузке условиях; 4,29…4,39 – усиленной прочности; 0,65…1,46 – особо усиленной прочности: 7,71…8,03 – облегченной конструкции и 12,22…18,09 – особо облегченные.

Провода облегченной конструкции применяют на вновь сооружаемых и реконструируемых линиях в районах, где толщина стенки гололеда не превышает 20 мм. Сталеалюминевые провода усиленной прочности рекомендуется применять в районах с толщиной стенки гололеда более 20 мм. Для осуществления больших пролетов на переходах через водные пространства и инженерные сооружения применяют провода особой прочности.

Для более полной характеристики сталеалюминевых проводов в обозначение марки проводов вводится номинальное сечение провода и сечение стального сердечника, например: АС – 150/24 или АСКС – 150/34.

Провода из альдрея

Провода из альдрея обладают примерно тем же электрическим сопротивлением, что и алюминиевые, но имеют большую механическую прочность. Альдрей представляет собой сплав алюминия с незначительными количествами железа (» 0,2 %), магния (» 0,7 %) и кремния (» 0,8 %); по корроизной стойкости он равен алюминию. Недостаток проводов из альдрея – их малая стойкость при вибрации.

Расположение проводов на воздушной линии

Провода на опорах воздушных линий можно располагать различными способами: на одноцепных линиях – треугольником или горизонтально; на двухцепных линиях – обратной елкой или шестиугольником (в виде «бочки»).

Расположение проводов треугольником (рис. 2 , а) применяется на линиях напряжением до 20 кВ включительно и на линиях напряжением 35…330 кВ с металлическими и железобетонными опорами.

Горизонтальное расположение проводов (рис. 2 , б) применятся на линиях напряжением 35…220 кВ с деревянными опорами. Такое расположение проводов является наилучшим по условиям эксплуатации, так как позволяет применять более низкие опоры и исключает схлестывание проводов при сбрасывании гололеда и пляске проводов.

Читайте также:  Какой кабель выбрать для подключения асинхронного двигателя?

На двухценных линиях провода располагают либо обратной елкой (рис. 2 , в), что удобно по условиям монтажа, но увеличивает массу опор и требует подвески двух защитных тросов, либо шестиугольником (рис. 2 , г).

Последний способ предпочтительнее. Он рекомендован к применению на двухценных линиях напряжением 35…330 кВ.

Для всех перечисленных вариантов характерно несимметричное расположение проводов по отношению друг к другу, что приводит к различию электрических параметров фаз. Для уравнения этих параметров применяют транспозицию проводов, т.е. последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу на различных участках линии. При этом провод каждой фазы проходит одну треть длины линии на одном, вторую – на другом и третью – на третьем месте (рис. 3 .).

Рис. 2. Расположение проводов и защитных тросов на опорах: а – треугольником; б – горизонтальное; в – обратной елкой; г – шестиугольником (бочкой).

Рис. 3 . Схема транспозиции проводов одноцепной линии.

Грозозащитные тросы воздушных линий электропередачи

Грозозащитные тросы подвешивают выше проводов для защиты их от атмосферных перенапряжений. На линиях напряжением ниже 220 кВ тросы подвешивают только на подходах к подстанциям. При этом снижается вероятность перекрытия проводов линии вблизи подстанции. На линиях напряжением 220 кВ и выше тросы подвешиваются вдоль всей линии. Обычно используются тросы из стальных проволок.

Ранее тросы на линиях всех номинальных напряжений заземлялись наглухо на каждой опоре. Опыт эксплуатации показал, что в замкнутых контурах заземляющей системы – тросы – опоры появились токи. Они возникли вследствие действия ЭДС, наводимых в тросах путем электромагнитной индукции. При этом в ряде случаев в многократно заземленных тросах получились значительные потери электроэнергии, особенно в линиях сверхвысоких напряжений.

Исследования показали, что при подвеске тросов повышенной проводимости (сталеалюминиевых) на изоляторах тросы могут быть использованы в качестве проводов связи и в качестве токонесущих проводов для электроснабжения потребителей малой мощности.

Для обеспечения соответствующего уровня грозозащиты линий тросы при этом должны присоединяться к заземленным через искровые промежутки.

2.3. Применение грозозащитных тросов на воздушных линиях электропередачи напряжением 35 кВ и выше

Воздушные линии электропередачи напряжением 35 кВ и выше относятся к протяженным элементам электрических систем, поэтому они наиболее часто подвергаются воздействию грозовых перенапряжений. Последние могут как привести к перекрытию линейной изоляции и устойчивому дуговому разряду, так и доходить до подстанций и воздействовать на изоляцию подстанционного оборудования.

В настоящее время не представляется возможным создать абсолютно грозоупорные линии электропередачи, не подверженные перекрытиям и отключениям под воздействием грозовых перенапряжений. Следовательно, основная задача грозозащиты линий состоит не в полном исключении, а только в сокрашении до необходимого уровня количества грозовых отключений линии.

На воздушных линиях электропередачи напряжением 35 кВ и выше, сооружаемых в местности, где количество грозовых часов в год более 20, толщина стенки гололеда менее 20 мм и удельное сопротивление не превышает 1000 Ом м, применяется тросовая защита от прямых ударов молнии. При этом линии напряжением 110 кВ и выше с металлическими и железобетонными опорами защищаются от прямых ударов молнии по всей длине линии.

Воздушные линии электропередачи напряжением 35 кВ, а также линии напряжением 110. 220 кВ с опорами из изоляционного материала (например, дерево, электроизоляционный бетон и т.п.) защищаются от прямых ударов молнии только на подходах к подстанциям. Длина защищаемых тросами подходов составляет:

  • 0,5 км — на линиях напряжением 35 кВ с портальными опорами, двумя тросами, питающих подстанции с трансформаторами мощностью до 1,6 МВ-А;
  • 1.0. ..2.0 км — на линиях напряжением 35 кВ на одностоечных опорах;
  • 1.0. ..3.0 км и 2,0. 3,0 км — на линиях напряжением ПО и 220 кВ соответственно.

Сопротивление заземляющих устройств одностоечных и портальных одноцепных опор должно находиться в пределах

10. 20 Ом, а одностоечных двухцепных — 5. 15 Ом ( в зависимости от удельного сопротивления грунта).

Г розозащитные тросы на воздушных линиях подвешиваются выше фазных проводов линии так, чтобы угол защиты а (рис. 2.1) был не более 30°:

  • • для одностоечных металлических и железобетонных опор с одним тросом (рис. 2.1, а, б)
  • • портальных железобетонных и деревянных опор (рис. 2.1, в);
  • • металлических опор с горизонтальным расположением проводов и с двумя тросами при нормативной толщине стенки гололеда 15 мм и более (рис. 2.1, в).

Рис. 2.1. Схемы расположения грозозащитных тросов на опорах воздушных линий электропередачи:

а — одностоечная одноцепная опора с одним тросом; б — одностоечная двухцепная опора с одним тросом; в — портальная (двухстоечная) одноцепная опора с двумя тросами; г — одноцепная металлическая опора с двумя тросами; д—двухцепная металлическая опора с двумя тросами; е — двухцепная трехъярусная портальная железобетонная опора с двумя тросами; ж — подвеска троса с отрицательным углом защиты; 1—3 — провода фаз первой цепи; 4-6 — провода фаз второй цепи; Т. Т|. Т2 — грозозащитные тросы; л — длина гирлянды изоляторов; а — защитный угол; V- расстояние по вертикали между проводом и точкой подвеса троса; — расстояние между двумя тросами на опоре; Д^., ДЛ.], Д^ — расстояния между /-м проводом и тросом Т (при одном тросе на опоре) и тросами Т] и Т2 (при двух тросах на опоре)

Для одностоечных металлических и железобетонных опор с двумя тросами (рис. 2.1, г, д), а также металлических опор с горизонтальным расположением проводов и двумя тросами (рис. 2.1, в, е) при нормативной толщине стенки гололеда до 10 мм угол защиты а не должен превышать 20°. Угол защиты образуется вертикальной прямой, проходящей через точку подвеса троса, и прямой, соединяющей точки подвеса троса и провода.

Расстояние /)„ между тросами на опоре (рис. 2.1, в) не должно превышать пятикратного расстояния V по вертикали между тросом и проводом.

Снижение вероятности прорыва молнии через тросовую защиту на линиях напряжением 750 кВ и выше достигается уменьшением угла защиты троса (в том числе подвеской тросов с отрицательным углом зашиты, когда расстояние по горизонтали от центра стойки до точки подвеса троса больше расстояния от центра стойки до точки подвеса провода) и увеличением расстояния между тросом и проводом по вертикали. Вероятность обратного перекрытия с опоры на провод уменьшается при увеличении количества тросов и разнесении их на большее расстояние (рис. 2.1, ж).

В качестве грозозащитных тросов на воздушных линиях электропередачи применяются стальные канаты сечением 35, 50 и 70 мм 2 (тросовые канаты с наружным диаметром 8,0; 9,1 и

11,0 мм типа ТК8,0; ТК9,1; ТК11) для линий электропередачи напряжением соответственно 35, ПО, 220 кВ и выше, состоящие из отдельных проволок с пределом прочности не менее 120 даН/мм 2 .

Стальные канаты, используемые в качестве грозозащитных тросов, изготавливают (в отличие от стальных проводов) свивкой большего количества проволок, что делает их гибкими. Однако такие канаты имеют малую коррозионную стойкость, что требует их оцинковки и покрытия защитной смазкой.

Необходимым условием надежной зашиты воздушной линии электропередачи от прямых ударов молнии является хорошее заземление троса, так как при ударе молнии в трос с большим сопротивлением заземления на нем, а следовательно, на опоре, создается напряжение, способное вызвать обратное перекрытие гирлянды изоляторов с опоры или троса на провод.

Читайте также:  Почему пробивает фазу на металлические части гаража?

Известно, что кроме защиты проводов воздушной линии от прямых ударов молнии грозозащитный трос способствует снижению индуктированных перенапряжений на опоре, а также уменьшает амплитуду и крутизну фронта волн перенапряжений на подходе к подстанциям.

При использовании грозозащитного троса для организации высокочастотной связи, на особо ответственных переходах через инженерные сооружения и естественные преграды, в зонах повышенного химического воздействия окружающей среды, а также из-за необходимости удовлетворения требования термической стойкости в качестве грозозащитного троса применяются сталеалюминиевые провода общего назначения или специальные, например АС70/72, АС95/141, и провода, выполненные из алюмовелда без внутренней волоконно-оптической линии связи и с нею, обладающие достаточно высокой электрической проводимостью и механической прочностью. Такие тросы называются проводящими.

На больших переходах через водные преграды применяются стальные грозозащитные тросы диаметром 15 и 18,5 мм (площадью поперечного сечения 140 и 200 мм 2 ) для линий электропередачи напряжением соответственно 220 и 330 кВ.

Провода и тросы воздушных линий

Провода ВЛ служат непосредственно для передачи электроэнергии и различаются по конструкции и используемому проводниковому материалу. Наиболее экономически целесообразным материалом для проводов ВЛ является алюминий и сплавы на его основе.

Медные провода для ВЛ применяются исключительно редко и при соответствующем технико-экономическом обосновании. Медные провода используются в контактных сетях подвижного транспорта, в сетях специальных производств (шахт, рудников), иногда при прохождении ВЛ вблизи морей и некоторых химических производств.

Стальные провода для ВЛ не применяются, поскольку имеют большое активное сопротивление и подвержены коррозии. Применение стальных проводов оправдывается при выполнении особенно больших пролетов ВЛ, например при переходе ВЛ через широкие судоходные реки.

Сечения проводов соответствуют ГОСТ 839-74. Шкала номинальных сечений проводов ВЛ составляет следующий ряд, мм 2 :

1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 600; 700; 800; 1000.

По конструктивному выполнению провода ВЛ делятся:

многопроволочные из одного металла (монометаллические);

многопроволочные из двух металлов;

Однопроволочные провода, как следует из названия, выполняют из одной проволоки (рис. 1.2,а). Такие провода выполняются небольших сечений до 10 мм 2 и используются иногда для ВЛ напряжением до 1 кВ.

Многопроволочные монометаллические провода выполняются сечением более 10 мм 2 . Эти провода изготовляются свитыми из отдельных проволок. Вокруг центральной проволоки выполняется повив (ряд) из шести проволок такого же диаметра (см. рисунок 1.2,б). Каждый последующий повив имеет на шесть проволок больше, чем предыдущий. Скрутку соседних повивов выполняют в разные стороны для предотвращения раскручивания проволок и придания проводу более круглой формы.

Количество повивов определяется сечением провода. Провода сечением до 95 мм 2 выполняются с одним повивом, сечением 120… 300 мм 2 — с двумя повивами, сечением 400 мм 2 и более — с тремя и более повивами. Многопроволочные провода по сравнению с однопроволочными более гибкие, удобные для монтажа, надежные в эксплуатации.

Рисунок 1.2 – Конструкции неизолированных проводов ВЛ

Для придания проводу большей механической прочности многопроволочные провода изготовляют со стальным сердечником 1 (см. рисунок 1.2,в,г,д). Такие провода называются сталеалюминиевыми. Сердечник выполняется из стальной оцинкованной проволоки и может быть однопроволочным (см. рисунок 1.2,в) и многопроволочным (см. рисунок 1.2,г). Общий вид сталеалюминиевого провода большого сечения с многопроволочным стальным сердечником показан на рисунке 1.2,д.

Сталеалюминиевые провода широко применяются для ВЛ напряжением выше 1 кВ. Эти провода выпускаются различных конструкций, отличающихся соотношением сечений алюминиевой и стальной частей. Для обычных сталеалюминиевых проводов это соотношение приблизительно равно шести, для проводов облегченной конструкции — восьми, для проводов усиленной конструкции -четырем. При выборе того или иного сталеалюминиевого провода учитывают внешние механические нагрузки на провод такие, как гололед и ветер.

Провода, в зависимости от используемого материала, маркируются следующим образом: М — медный, А — алюминиевый,

АН, АЖ — из сплавов алюминия (имеют большую механическую прочность, чем провод марки А);

АСО — сталеалюминиевый облегченной конструкции;

АСУ — сталеалюминиевый усиленной конструкции.

В цифровом обозначении провода указывается его номинальное сечение. Например, А95 это алюминиевый провод с номинальным сечением 95 мм 2 . В обозначении сталеалюминиевых проводов может дополнительно указываться сечение стального сердечника.

Например, АСО240/32 — сталеалюминиевый провод облегченной конструкции с номинальным сечением алюминиевой части 240 мм 2 и сечением стального сердечника 32 мм 2 .

Стойкие к коррозии алюминиевые провода марки АКП и сталеалюминиевые провода марок АСКП, АСКС, АСК имеют межпроволочное пространство, заполненное нейтральной смазкой повышенной термостойкости, противодействующей появлению коррозии. У проводов АКП и АСКП такой смазкой заполнено все межпроволочное пространство, у провода АСКС — только стальной сердечник, у провода АСК стальной сердечник заполнен нейтральной смазкой и изолирован от алюминиевой части двумя полиэтиленовыми лентами. Провода АКП, АСКП, АСКС, АСК применяются для ВЛ, проходящих вблизи морей, соленых озер и химических предприятий.

Самонесущие изолированные провода (СИП) применяются для ВЛ напряжением до 20 кВ. При напряжениях до 1 кВ (см. рисунок 1.3,а) такой провод состоит из трех фазных многопроволочных алюминиевых жил 1. Четвертая жила 2 является несущей и одновременно нулевой. Фазные жилы скручены вокруг несущей таким образом, чтобы вся механическая нагрузка воспринималась несущей жилой, изготовляемой из прочного алюминиевого сплава АВЕ.

Рисунок 1.3 – Самонесущие изолированные провода

Фазная изоляция 3 выполняется из термопластичного светостабилизированного или сшитого светостабилизированного полиэтилена.

Благодаря своей молекулярной структуре, такая изоляция обладает очень высокими термомеханическими свойствами и большой стойкостью к воздействию солнечной радиации и атмосферы. В некоторых конструкциях СИП нулевая несущая жила выполняется с изоляцией.

Конструкция СИП для напряжений выше 1 кВ приведена на рисунке 1.3,б.

Такой провод выполняется однофазным и состоит из токоведущей сталеалюминиевой жилы 1 и изоляции 2, выполненной из сшитого светостабилизированного полиэтилена.

ВЛ с СИП по сравнению с традиционными ВЛ имеют следующие преимущества:

меньшие потери напряжения (улучшение качества электроэнергии), благодаря меньшему, приблизительно в три раза, реактивному сопротивлению трехфазных СИП;

не требуют изоляторов;

практически отсутствует гололедообразование;

допускают подвеску на одной опоре нескольких линий различного напряжения;

меньшие расходы на эксплуатацию, благодаря сокращению, приблизительно на 80%, объемов аварийно-восстановительных работ;

возможность использования более коротких опор благодаря меньшему допустимому расстоянию от СИП до земли;

уменьшение охранной зоны, допустимых расстояний до зданий и сооружений, ширины просеки в лесистой местности;

практическое отсутствие возможности возникновения пожара в лесистой местности при падении провода на землю;

высокая надежность (5-кратное снижение числа аварий по сравнению с традиционными ВЛ);

полная защищенность проводника от воздействия влаги и коррозии.

Стоимость ВЛ с самонесущими изолированными проводами выше, чем традиционных ВЛ.

Провода ВЛ напряжением 35 кВ и выше защищаются от прямого удара молнии грозозащитным тросом, закрепляемым в верхней части опоры (см. рисунок 1.1).

Грозозащитные тросы являются элементами ВЛ, аналогичными по своей конструкции многопроволочным монометаллическим проводам. Тросы выполняют из стальных оцинкованных проволок. Номинальные сечения тросов соответствуют шкале номинальных сечений проводов. Минимальное сечение грозозащитного троса 35 мм 2 .

При использовании грозозащитных тросов в качестве высокочастотных каналов связи вместо стального троса используется сталеалюминиевый провод с мощным стальным сердечником, сечение которого соизмеримо или больше сечения алюминиевой части.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9147 — | 7302 — или читать все.

95.47.253.202 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Читайте также:  Принцип работы электродвигателя переменного тока

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Монтаж кабеля по опорам и столбам

При строительстве сетей связисты часто сталкиваются с невозможностью использовать кабельную канализацию или здания. Для прохода методом воздушного подвеса, в таких случаях монтаж кабеля по опорам освещения или столбам электропередач может существенно облегчить задачу.

Существует несколько стандартных методов монтажа:
1. Поддерживающий.
2. Натяжной.
3. Комбинированный.

Рассмотрим более детально каждый из методов.

1. Монтаж оптического кабеля с использованием поддерживающих зажимов.

Поддерживающие зажимы используются для участков, где кабель идет по прямой линии, максимальный угол поворота при использовании таких зажимов составляет от 10 до 20 °. Отечественные и зарубежные производители предлагают множество вариантов зажимов для поддерживающего монтажа самонесущих (ADSS) и 8-образных кабелей.

Зажимы ППО-6,5/8,0-06 или ЗП-8-1(2)

Зажимы ППО или ЗП можно использовать на трассах с риском падения деревьев, повреждения столбов. При падении дерева на кабель или повреждении столба, кабель вырывается из зажима и как правило остается неповрежденным.

Примеры использования зажимов ППО в сочетании с различными узлами крепления.

Зажимы поддерживающие спиральные.

Спиральные зажимы используются для монтажа самонесущего кабеля (ADSS) на опорах ЛЭП, столбах освещения и связи. Выпускается множество модификаций для различных длин пролета и прочности заделки кабеля. Крепеж состоит из протектора — для защиты оболочки кабеля от повреждения, силовой спирали и коуша.

Поддерживающий зажим SC30/34 или CS

Универсальный зажим для подвеса «8-образных кабелей», может крепиться с помощью стальной ленты, либо с помощью болта на деревянные опоры.Позволяет проводить монтаж кабеля с диаметром троса от 4 до 9мм.
Отличается простым и быстрым монтажом, но имеет ряд ограничений. При использовании таких зажимов важно точно подобрать диаметр кабеля, на практике встречались случаи проскальзывания тросика через зажим, так же важно точно соблюдать рекомендованную длину пролета. Практика использования таких зажимов показала, что лучше всего их использовать в комбинированном варианте монтажа (Чередование анкерных и поддерживающих зажимов).

Поддерживающий зажим НС 10/15.

Зажимы НС 10/15 используются для монтажа кабеля ADSS, диаметром до 20мм, рекомендуется применять на прямых участках трассы.
По опыту использования можно сказать, что такие зажимы хороши на небольших пролетах — до 60-70м, монтаж во время дождя практически не возможен, поскольку кабель проскальзывает через втулку.

2. Монтаж кабеля оптического использованием натяжных зажимов.

Натяжные (анкерные) зажимы используются для жесткого крепления кабеля, применяются как на поворотных, ответвительных, концевых участках монтажа, так и на всей протяженности трассы.
Анкерные зажимы натяжные AN-250(500,700,800), AC 6(7), PA 06(07),
Анкерные зажимы могут использоваться как с «8-образными», так и с самонесущими кабелями. Зажимы для подвеса кабелей с несущим элементом из стального троса позволяют быстро провести монтаж кабеля, без зачистки и отделения силового элемента. Пластиковая петля на тросе зажима обеспечивает изоляцию несущего элемента в случае замыкания на массу опоры. НЕ рекомендуется применять такие зажимы при монтаже кабеля с силовым элементом из стальной проволоки, при долговременной нагрузке зубцы клиньев начинают проскальзывать по гладкой проволоке, что приводит к повреждению кабеля.

Натяжные спиральные зажимы.

Натяжные спиральные зажимы используют для монтажа самонесущих кабелей (ADSS) на опорах ЛЭП, столбах электропередач, освещения, контактной сети ЖД. Крепеж состоит из протектора, петлеобразной силовой спирали покрытой специальным абразивом и коуша.

3. Монтаж оптического кабеля методом комбинированного подвеса.

Метод комбинированного подвеса широко применяется при использовании зажимов ППО, SC3034. Суть метода в чередовании поддерживающих и натяжных (анкерных) зажимов. Таким образом можно повысить надежность линии и сократить издержки на строительство и эксплуатацию. Оптимальное соотношение — 4 поддерживающих к одному натяжному зажиму.

Провода и грозотросы

Для того, чтобы увидеть все марки проводов, представленных на сайте, выберите нужный раздел.

Провода и кабели

Провода и тросы в составе линий электропередачи служат для обеспечения передачи электроэнергии и защиты линии от грозовых воздействий. Без проводов линия не сможет функционировать, однако без грозозащитных тросов (грозотросов) линия рискует быть выведенной из строя в процессе эксплуатации.

Провода на опоре ВЛ

Ввиду того, что ЛЭП имеют различное назначение и в совокупности представляют сеть различных напряжений, используются различные провода для линий разных номиналов. В электроэнергетики используются как изолированные, так и голые провода. Грозотросы на линиях напряжением менее 35 кВ не используются.

Кратко расскажем о том, какие бывают провода и тросы.

Провода для линий электроснабжения

Тип провода выбирается в зависимости от напряжения линии. Сечение провода определяется, исходя из электрических нагрузок в линии. Используются следующие марки проводов:

  • СИП — самонесущий изолированный провод (применяются провода марок СИП-1, СИП-2, СИП-3, СИП-4);
  • М — медный провод. Практически не применяется ввиду высокой стоимости материала;
  • А — алюминиевые провода. По электрическим характеристикам они уступают медным, однако имеют меньшую стоимость. Такие провода плохо реагируют на воздействие окружающей среды, особенно при наличии в опасной близости соленых водоемов. Для монтажа вблизи побережий следует использовать защищенные от коррозии алюминиевые провода;
  • С — стальные провода. Имеют более высокие механические характеристики, однако уступают проводам М и А по электрическим параметрам. Чаще используются в качестве грозозащитных тросов, чем в качестве проводов. Маркируются как ПС и ПСО. ПС — это провод стальной многопроволочный, ПСО — однопроволочный провод.
  • АС — провода, имеющие стальной сердечник (из оцинкованных проволок, сплетенных в тросик) и обмотку вокруг него алюминиевых проволок. За счет стальной части обеспечивается прочность провода, а алюминиевая часть служит для передачи электроэнергии.
  • АСКС, АСКП — алюминиевостальной провод, дополнительно обработанный специальной смазкой, которая предусматривает воздействие высоких температур;
  • АСУ — провод из алюминия и стали усиленного типа. Соотношение алюминий/сталь у него меньше, соответственно, он является более прочным и более тяжелым;
  • АСО — провод из алюминия и стали облегченного типа. Соотношение алюминий/сталь у него больше, соответственно, он является менее прочным и не таким тяжелым;
  • АСУС — особенно усиленные провода АС. Используются там, где механические характеристики имеют определяющее значение.

Как расположены провода на опорах ВЛ

В зависимости от типа линии и характеристик местности расположение проводов на опорах и конструкции опор могут быть различны. Для того, чтобы наглядно объяснить каждый тип подвески, рассмотрим иллюстрацию:

Таким образом можно увидеть, что основных типов расположения проводов на опорах всего несколько штук. При этом практикуются различные модификации этих вариантов подвески.

Грозозащитные тросы на ВЛ (грозотросы)

Грозотросы применяются в целях обеспечения безопасности линии электропередачи во время грозы. Тросы в большинстве случаев выполнены из стали, либо из повивов стальных и алюминиевых проволок. Сталь используется в качестве упрочняющего элемента, алюминий — в качестве проводящего слоя.

На линиях с напряжением выше 35 кВ без грозотросов не обойтись

Обозначение тросов

Грозозащитные тросы условно обозначаются материалом изготовления и номинальным сечением. Примером может служить трос С-50. Расшифровывается он следующим образом: стальной трос с площадью сечения 50 мм2.

Выбор и применения тросов

Грозозащитные тросы выбираются исходя из характеристик линии (токи короткого замыкания, длительность срабатывания устройств защиты, наличие и время срабатывания АПВ и др.) Для того, чтобы подобрать нужный трос, следует ознакомиться с типовыми разработками проектных институтов СССР и РФ.

Применяют тросы не только для защиты линии, но и для организации волоконно-оптических сетей связи на базе линий электропередачи.

Рейтинг
( Пока оценок нет )
Загрузка ...