Герметизация ввода сигнальных кабелей термодатчиков в помещение морозильной камеры

Содержание

Герметизация вводов инженерных коммуникаций в здание

Методы защиты локальных участков проходов инженерных коммуникаций через ограждающие конструкции зданий, ревизионных колодцев и прочих технических объектов призваны оградить внутренние объемы сооружений от влияния внешних факторов. Прежде всего, это касается блокировки протечек или инфильтрации воды из прилегающих грунтов либо осадков из окружающей атмосферы. Отверстия в стенах (перекрытиях, кабельканалах, боксах, шкафах ВРУ) для ввода кабелей (труб, воздуховодов) могут существенно нарушать результирующую картину тщательно выполненных нормативных требований по гидро- и теплозащите зданий. Постоянно просачивающаяся через них влага будет провоцировать развитие плесени, порчу отделки и теплоизоляции, разрушение стеновых материалов, коррозию технологических элементов. Поэтому узлы герметизации коммуникационных вводов занимают важное место в комплексе создания надежных ограждающих конструкций зданий, сооружений и оборудования, они подлежат правильному обустройству в соответствие со строительными нормативами.

Герметизация вводов в подвальное помещение

В строительном производстве проект инженерной обвязки объекта в вопросах герметизации проходов при вводе кабелей должен опираться на требования ПУЭ и СНиПов. В частности руководствуются указаниями СНИП 3.05.06-85 и ПЭУ 2.1.58, которые устанавливают для подобных технологических узлов:

  • обеспечение возможности замены коммуникационных линий;
  • осуществление проходов в трубах, коробах, гильзах, муфтах, специальных проемах, гарантирующих их сохранность;
  • герметизирующую заделку зазоров легкоудаляемой несгораемой массой (с двух сторон стены), с пределом огнестойкости не менее предела огнестойкости стены.

Материалы для герметизации (герметики для кабельных вводов)

На практике применяется достаточно много вариантов заделки проходок кабелей (труб) сквозь ограждающие конструкции, чтобы осуществить их монтаж с полной гарантией пылевлагозащиты и газонепроницаемости. Современные проектные решения чаще реализуются посредством установки закладных гильз, проемов или специальных систем коммуникационных вводов еще на стадии капитального строительства. Тем не менее, многие технологии герметизации проходок позволяют применять их как для уже проложенных линий, так и для прокладываемых через отверстия, изготавливаемые в установленных конструкциях. Мастика для герметизации

Свободное пространство в закладных трубах (гильзах) после прокладки сквозь них коммуникационных линий можно заделывать посредством целевых пластичных составов – кабельных герметиков (мастик, силиконов, пен). Чтобы обеспечить надежную герметизацию кабельных вводов используемый состав, помимо вышеописанных требований ПУЭ и СНиПов, должен обладать отличной адгезией к материалу гильз и элементам коммуникаций.

Например, зазор между стальной обсадной трубой, асбестовой либо фиброцементной гильзой и кабелем в металлической оболочке при вводе через фундамент или стену подвала здания можно перекрыть полимер-полиуретановым саморасширяющимся аэрозолем (монтажной пеной). Однако сложности возникнут, если материалы кабельных оболочек или закладных каналов имеют плохую адгезию с герметизирующим составом. Та же полиуретановая пена недостаточно хорошо сцепляется с поверхностями полимерных обсадных труб или с полиэтиленовой изоляцией кабелей. Решение проблемы обеспечивает применение дополнительных подклеивающих материалов типа полимерномастичных лент (типа МГ14-16). Ободок из такой ленты обустраивается на внутренней поверхности гильзы, а также вокруг коммуникационного элемента. Оставшийся зазор заполняется монтажной пеной.

Хорошо зарекомендовал себя двухкомпонентный быстротвердеющий расширяющийся состав FST-250. Он поставляется в удобных картриджах под монтажный пистолет, что позволяет работать с ним в самых труднодоступных местах. Выдавливаемые из баллона картриджа компоненты смешиваются в направляющей насадке, через которую вводятся в обрабатываемую полость. После полимеризации (в течение 10-15 минут) состав способен выдержать давление от столба воды высотой 5 м.

Кабельный уплотнитель вводов (уплотнение)

Различные кабельные уплотнители (сальники) – гермовводы, коннекторы, нашли широкое применение для проходок в электротехнические щиты, шкафы ВРУ, распределительные коробки. Модельный ряд уплотнителей отечественного типа:

  • PG и MG – из полипропилена, полиамида,
  • PMG и М – никелированной латуни,

охватывает все известные типоразмеры кабелей и проводов, поэтому для них всегда можно подобрать сальник, подходящий для решения задач электромонтажа. Простота устройства, небольшие габариты и высокие показатели изоляции делают гермовводы востребованными герметизирующими элементами. За счет надежного механического обжатия вокруг кабеля прокладки из эластомера (резины, неопрена) накидной прижимной гайкой удается достичь степени защиты узла герметизации IP68. Следует добавить, что к отечественному модельному ряду кабельных сальников можно подобрать импортные аналоги с соответствующими характеристиками производства Hummel, We >Герметизацию проходов при вводе кабелей через ограждающие конструкции зданий или оболочки сооружений удобно осуществлять посредством амортизирующих резиновых уплотнителей (гермовтулок). Изолирующий эффект от их применения достигается за счет сжатия упругого кольцевого элемента из эластомера между двух фланцев. Эластичная муфта расширяется в плоскости перпендикулярной к оси уплотнителя, перекрывая зазоры и плотно обжимая коммуникационный элемент. Усилие на фланцы передается от затягивания гаек на стяжных винтах с доступной стороны изделия. Амортизирующие вставки рассчитаны на установку в полимерные (стальные, фиброцементные и т.п.) обсадные трубы, а также допускают инсталляцию непосредственно в разбуренные отверстия (с незначительными дефектами поверхностей) в стеновых материалах. Уплотнитель, оснащенный встроенным компенсатором Asoka SPD/M

Характерным представителем подобных изделий являются резиновые уплотнители серии GPD от компании UGA (Германия). Они широко используются по всему миру, а также заслужили признание монтажников в РФ.

Кабельные уплотнители производятся в исполнениях:

  • для защиты проходок находящихся под давлением воды (до 5 бар) и без непосредственных гидравлических нагрузок;
  • разборными и неразборными;
  • с интегрированным опорным кольцом для гофрированных коммуникаций;
  • на один или несколько вводов, для которых возможно также использовать сменные эластичные вкладыши с заданным количеством и диаметрами отверстий.
Читайте также:  Схема подключения узо и автоматов в квартире

Гермовтулки и гермовставки SALEX

Изделия SALEX являются близким аналогом систем GPD. Однако они производятся в исполнении амортизирующих уплотнителей двух основных типов – гермовтулок и гермовставок. Главное различие этих элементов для изоляции кабельных или трубных проходок в том, что гермовтулки предназначены для установки в круглые отверстия, а гермовставки в проемы квадратной либо прямоугольной формы. И те и другие могут изготавливаться:

  • разъемного или неразъемного исполнения. Разъемные позволяют герметизировать уже смонтированные коммуникации;
  • для ввода одного элемента или нескольких;
  • с симметричным, ассиметричным размещение вводных отверстий одного либо нескольких различных диаметров.

Предлагаемые предприятиями гермовтулки и гермовставки, производятся для установки на всю стандартную трубную и кабельную продукцию отечественных и европейских брендов. Кроме того, на профильных предприятиях можно заказать изготовление герметизирующих элементов по индивидуальным чертежам.

Акт герметизации кабельных вводов

Качество выполнения работ по герметизации подземных либо внутренних проходок кабелей (труб) подтверждается составлением соответствующего акта. Коммуникационные вводы/выводы обследуются представителями:

  • подрядной строительно-монтажной организации;
  • технадзора заказчика;
  • проектной организации.

Приемочный акт подписывается перечисленными лицами, с указанием в документе:

  • наименования объекта;
  • типов инженерных линий (кабельных, водопроводных, газовых и т.д.);
  • соответствия выполненных работ государственным строительным стандартам и проектным требованиям.

На основании заключений акта по герметизации коммуникационных проходок на объекте разрешается проведение плановых работ или предписывается выполнение соответствующих внеплановых.

Герметизация ввода сигнальных кабелей термодатчиков в помещение морозильной камеры

3.19.1 Ввод кабелей местных сетей связи как с металлическими жилами, так и оптических, производится по трубопроводам кабельной канализации от станционного колодца или коллектора (сцепки) в помещение ввода кабелей объекта связи и далее в помещение кросса до оконечных кабельных устройств. Способ ввода кабелей определяется проектом.

3.19.2 Помещение ввода кабелей объекта связи является головным сооружением кабельной канализации и должно отвечать следующим требованиям.

Помещение должно строиться без окон, со стенами, полом и потолком из огнеупорных материалов (железобетон, кирпич), с надежной гидроизоляцией. Оно размещается под помещением кросса и его площадь примерно равна площади последнего (рисунок 3.46). Помещение ввода кабелей должно быть оборудовано центральным (водяным) отоплением, приточно-вытяжной вентиляцией, герметичным электроосвещением и отдельным запираемым входом.

3.19.3 В помещение ввода кабелей от станционных колодцев вводятся крупные блоки кабельной канализации емкостью до 96 каналов. В здания АТС емкостью от 10 тысяч номеров и более ввод кабельной канализации должен осуществляться с двух противоположных направлений. При определенных условиях ввод от станционного колодца целесообразно осуществлять путем устройства коллектора (тоннеля) небольшой протяженности (рисунок 3.47).

Рисунок 3.46 — Помещение ввода кабелей
Рисунок 3.47 Ввод кабелей через тоннель

Вводному трубопроводу или тоннелю должен придаваться некоторый уклон — от помещения ввода кабелей в сторону станционного колодца. Это необходимо для предотвращения или ограничения поступления воды из станционного колодца.

3.19.4 Для раскладки и распайки линейных кабелей помещение ввода кабелей следует оборудовать кронштейнами, укрепляемыми на стенах и, при необходимости, на полу и потолке, расположенными в два и более рядов. Для придания большей прочности в загруженных помещениях ввода кронштейны могут скрепляться полосовыми или угловыми стальными конструкциями, образующими единый металлический каркас. На кронштейнах крепят многоместные чугунные консоли.

Крепежные конструкции должны размещаться таким образом, чтобы расстояния от первых (нижних) рядов консолей допола было равно 300 мм, а между рядами (ярусами) консолей — не менее 200 мм. В отдельных случаях допускается уменьшение расстояний между консолями от 150 до 180 мм. При этом должны обеспечиваться вертикальные и горизонтальные изгибы кабелей с установленными радиусами.

В верхней части каркаса должны быть проложены металли­ческие желоба (кабельросты) шириной от 0,5 до 0,6 м в горизонтальном направлении для раскладки пакетов мелких (обычно 100-парных) кабелей, подаваемых в кросс. С этой целью в перекрытие между помещением ввода кабелей и кроссом долж­ны быть заложены отрезки металлических труб (патрубки) диаметром от 38 до 63 мм, в каждый из которых может быть пропущено до трех кабелей включительно. Трубы должны выступать на расстояние от 100 до 150 мм от пола в помещении кросса и на расстояние от 30 до 50 мм от потолка в помещении ввода кабелей. Со стороны кросса патрубки должны быть герметично заделаны.

Распайку линейных кабелей большой емкости производят в разветвительных муфтах («перчатках»), размещаемых между консолями в горизонтальных рядах, как и в кабельных колодцах.

Читайте также:  Как подключить узо в трехфазной сети

3.19.5 Каждое помещение ввода кабелей должно быть надежно защищено от попадания воды и горючих (взрывоопасных) газов, могущих проникнуть в кабельную канализацию.Для этого необходимо, чтобы вводный блок асбестоцементных труб, а также каналы, свободные и занятые, были герметичными.

Устройство герметичного блока, осуществляемое на стадии строительства здания, выполняется послойным бетонированием рядов асбестоцементных труб бетонной смесью марки 200, состоящей из гипсоглиноземистого расширяющегося цемента марки 300, песка и мелкозернистого гравия.

Количество материалов на 1 м3 бетона: цемент — 280 кг, песок — 0,4 м3, гравий — 0,8 м3.

При устройстве ввода из коллектора в стенном проеме здания должен быть устроен герметичный блок из отрезков асбестоцементных труб, длина которых определяется толщиной стены.

3.19.6 Проверка герметичности ввода труб должна осуществляться путем обдува забетонированного проема с внешней стороны колодца струей воздуха от передвижного компрессора (ЗИФ-55 или другого) с давлением 39,2-104 Па (4 кгс/см2) в течение 1 мин. В помещении ввода кабелей по поверхности вводного блока должна быть нанесена мыльная пена, наблюдение за которой позволяет определить надежность герметичности.

3.19.7 Кабели, вводимые в помещение ввода кабелей объекта связи и прокладываемые в помещении кросса, должны быть в оболочке, не поддерживающей горение. Марки кабелей и способ их прокладки должны быть приведены в проекте.

3.19.8 В помещениях ввода кабелей достаточной высоты допускается вертикальное расположение специальных разветвительных муфт (рисунок 3.48).

Рисунок 3.48 — Ввод кабелей в кросс из помещения ввода кабелей

3.19.9 На станциях малой емкости для ввода линейных кабелей может быть устроен приямок с вводным шкафом или оборудован ввод с применением изогнутых труб от станционного колодца до помещения кросса (рисунок 3.50). В последнем случае распайка линейных кабелей производится непосредственно в станционном колодце.

Рисунок 3.50 — Ввод кабелей с распайкой в станционном колодце

3.19.10 Для герметизации каналов ввода кабелей рекомен­дуется применять один из нижеперечисленных способов. Первый способ заключается в применении герметизирующих устройств, состоящих из двух стальных дисков диаметром 97 мм и толщиной 4 мм, стягивающихся по центру шпилькой М6х100 или болтом с гайкой М6.

Для герметизации свободных каналов между дисками закладывается герметизирующая нетвердеющая строительная мастика, изготовленная на основе этиленпропиленового каучука, бутилкаучука, наполнителей и пластификаторов. Герметизация каналов, занятых кабелями, осуществляется аналогично, но с использованием дисков, стягивающихся несколькими болтами и имеющих 1-4 отверстия для кабелей (рисунок 3.51)

Рисунок 3.51 — Герметизирующее устройство для заделки каналов трубопровода в помещении ввода кабелей

Герметизация каналов достигается тем, что при завинчивании гаек на болтах пластичная герметизирующая мастика, сжимаемая дисками, уплотняется, заполняя объем между дисками и внутренней поверхностью канала, а также между кабелями и кромками отверстий в дисках. При этом мастика надежно адгезирует с поверхностями.

Извлечение в случае необходимости герметизирующего устройства из канала производится с помощью специальных съемников.

Испытание герметичности канала с герметизирующим устройством осуществляется путем подачи воздуха под давлением в каналы с одновременным нанесением пенообразующего раствора на герметизирующее устройство. Отсутствие пузырей свидетельствует о герметичности вводного отрезка канала.

При герметизации вводов кабелей приведенным выше способом необходимо пользоваться «Руководством по герметизации вводов кабелей предприятий связи», М., ССКТБ, 1986.

3.19.11 Второй способ герметизации каналов ввода кабелей заключается в применении пенополиуретана Вилан-405 или импортных пенополиуретанов в аэрозольной упаковке (монтажные пены).

Указанные пенополиуретаны обладают свойством на выхо­де из аэрозольного баллона отверждаться под действием влаги воздуха, увеличиваясь при этом в объеме в несколько раз.

Герметизацию каналов (свободных и занятых) в помещении ввода кабелей производят в следующей технологической последовательности:

а) внутреннюю поверхность канала и кабели на расстоянии от 100 до 150 мм от ввода в канал очищают от загрязнений ветошью, смоченной в воде (поверхность насухо вытирать не следует, так как влага способствует лучшему образованию структуры пены и ускоряет ее затвердевание);

б) на глубине от 100 до 150 мм канала делают перегородку толщиной от 30 до 50 мм из бумаги, ветоши или другого легко формируемого волокнистого материала;

в) в ограниченное перегородкой пространство из аэрозольного баллона через трубку вводят пенополиуретан. Для этого баллон необходимо интенсивно взболтать от 15 до 30 секунд, после чего соединить трубку с вентилем баллона и, держа его вверх дном, нажать через основание трубки на курок вентиля, выпустить пену (рисунок 3.52);

Рисунок 3.52 — Заполнение ограниченного объема канала полимером из аэрозольного баллона

В связи со значительным увеличением в объеме сжиженного пенополиуретана, ограниченный объем канала следует заполнять на 1/3, распределяя полимер равномерно по площади перегородки канала. Количество вышедшей из баллона пены регулируют продолжительностью нажатия на курок вентиля;

г) с помощью одного баллона емкостью 0,75 л сжиженного пенополиуретана можно загерметизировать ориентировочно до 40-60 каналов. Следует иметь ввиду, что полимер через промежуток времени от 5 до 10 минут может начать отвердевать в трубке и в вентиле. Поэтому рекомендуется перегородки сделать в возможно большем количестве каналов, после чего с минимальными перерывами времени вводить в каналы пенополиуретан. Через 40 минут после введения происходит его частичное отвердение.

Полное отвердение пенополиуретана в канале происходит от 3 до 12 часов в зависимости от состава компонентов.

д) проверка эффективности герметизации каналов производится путем подачи воздуха в канал из станционного колодца или из коллектора (сцепки) при помощи компрессора или баллона со сжатым воздухом. При этом шланг (рукав) вставляется в канал с таким расчетом, чтобы расстояние от его конца до герметизирующей пробки было 5 м при показании манометра компрессора 39,2х104 Па (4 кгс/см 2 ).

Одновременно с поступлением воздуха под давлением в канал, с внутренней стороны ввода каналов, на загерметизированный канал наносится пенообразующий (мыльный) раствор. Образование воздушных пузырей свидетельствует о негерметичности канала. В этом случае необходимо добавить в канал пенополиуретан и снова проверить его герметичность.

Читайте также:  Выключатель на схеме

3.19.12 Технология герметизации каналов пенополиуретаном приведена в «Технологической карте на герметизацию каналов и люков кабельной канализации связи», ОАО «ССКТБ-ТОМАСС», М., 1996.

3.19.13 Применение пенополиуретанов требует выполне­ния определенных правил охраны труда и техники безопасности:

а) необходимо пользоваться защитными очками и перчатками;

б) работы должны проводиться в хорошо проветриваемом помещении;

в) необходимо иметь ввиду, что аэрозоль пенополиуретана огнеопасен, поэтому в помещении, где выполняются работы с его применением, запрещено курить, работать с огнем, производить работы, дающие искры.

3.19.14 Имеется еще ряд способов герметизации каналов , например, способ, разработанный фирмой 3М. В состав комплекта при данном способе герметизации входят:

полоса поролоновая для уплотнения отверстия канала;

салфетка Scotchcast для очистки канала и кабеля;

сетка объемная размером 51×254 мм для обертывания кабеля;

компаунд саморасширяющийся в пакете для заливки в канал;

трубка пластмассовая длиной 305 мм для заливки компаунда в канал.

Герметизация канала производится в следующей технологической последовательности:

а) кабель и внутреннюю поверхность канала на расстоянии 150 мм от его конца очищают от загрязнений салфеткой Scotchcast;

б) обматывают вокруг кабеля смятый лист бумаги (газеты) и продвигают полученную «бумажную пробку» внутрь канала на расстояние 150 мм от края канала (рисунок 3.53 а);

в) обматывают кабель у конца канала объемной сеткой так, чтобы диаметр обмотки от 2 до 3 мм превышал внутренний диаметр канала. Продвигают с помощью пластмассовой трубки обмотку до соприкосновения ее с бумажной пробкой (рисунок 3.53 б);

г) поролоновую полоску обматывают вокруг кабеля и помещают ее в канал заподлицо с ее торцом. При этом полоса поролона должна плотно прилегать к поверхности оболочки кабеля и стенкам канала (рисунок 3.53 в);

Рисунок 3.53 — Уплотнение канала

д) пластмассовую трубку из комплекта разрезают пополам и ее отрезки вставляют в канал сверху и с одной из боковых сторон между предпоследним и последним витками поролона.

е) выпускной наконечник пакета вставляют в верхнюю трубку и выдавливают компаунд в канал. Такую же операцию выполняют через боковую трубку (рисунок 3.55). Оставив трубки в канале, дают вытечь излишкам компаунда после его увеличения в объеме. Кабель и весь участок герметизации должен оставаться неподвижным не менее одного часа.

Рисунок 3.55 — Заливка компаунда в канал

3.19.15 Способ герметизации каналов, применяемый фирмой «Jackmoon» отличается тем, что герметизирующие устройства представляют из себя пластмассовые уплотнители (рисунок 3.56). Они применяются для герметизации каналов на вводах в здания и могут использоваться многократно.

Монтаж и демонтаж их производится инструментами — торцовыми гаечными ключами. При их монтаже не требуется никаких дополнительных материалов.

Признаки поломки датчика температуры холодильника

Каждый на сегодняшний день пользуется холодильниками и морозильными камерами, но не все задумываются о том — как же эти устройства замораживают продукты и поддерживают температуру необходимую для сохранения их свежести.

Принцип работы холодильника

Не углубляясь в технические термины и сложные схемы, работу рефрижератора можно описать примерно так:

  • компрессор изымает пары фреона из испарителя и переносит их путем нагнетания в конденсатор;
  • где эти пары охлаждаются и конденсируются обратно в жидкость;
  • после чего снова попадает в испаритель, где приобретает газообразное состояние.

Рассмотри каждый из элементов это цепочки чуть подробнее.

Компрессор — он же мотор — основной рабочий центр любого холодильника, который гоняет фреон по системе, обеспечивая охлаждение. Бывают холодильники с одним и с двумя компрессорами. Ко второму виду относятся такие модели как LG LSR 100 RU, Атлант XM 6321-101, Либхерр SBSes 7353-25 001 и многие другие.

Конденсатор — перегоняет пары охладителя в жидкое состояние под давлением путем отвода тепла. В небольших охладителях конденсаторы обычно имеют вид змеевика, который располагается на задней стенке устройства. У более крупных моделей данный аппарат представляет из себя радиатор, расположенный снизу холодильника в непосредственной близости к компрессору.

Испаритель — то место, где происходит процесс кипения фреона с последующим его испарением.

Помимо этих компонентов, система также включает в себя капиллярную трубку (понижает давление по пути от конденсации до испарения), осушитель (фильтр, который находится на входе в капиллярную трубку и предохраняет систему от засора) и докипатель (как видно из названия — основное предназначение — докипание фреона, что предотвращает его попадание в мотор)

Регулировкой работы системы охлаждения в холодильнике занимается тандем датчика и реле.

В старых моделях рефрижераторов реле представляет собой пластиковую коробку, расположенную на стене холодильника, внутри камеры, снабженную ручкой регулятора.

В современных аппаратах реле встроено в корпус, чаще в верхней части, а на всеобщее обозрение выведена панель управления, снабженная кнопками, экраном и светодиодами.

Как это работает? На реле (независимо от его вида) выставляется желаемый уровень охлаждения камер рефрижератора, после чего в работу вступает датчик температуры холодильника, который непрерывно измеряет температурные показатели и передает их на реле.

Как только уровень охлаждения камеры падает ниже заданного, термодатчик посылает сигнал, и компрессор на время прекращает свою работу, дабы избежать переохлаждения и переморозки продуктов. Некоторое время спустя, когда по причине отдыха мотора, температура начинает расти, термодатчик снова подает сигнал, система активируется и запускается охлаждение.

Отключение работы двигателя морозильного аппарата достигается путем прерывания электрической цепи терморегулятором. При повышении уровня нагрева, цепь снова замыкается и охлаждение возобновляется.

Современные модели оснащены несколькими измерителями температуры, которые регулируют микроклимат в каждом отсеке персонально. Это особенно актуально в многокамерных устройствах, снабженных зонами свежести и прочими «наворотами». В таком случае, работы одного датчика будет недостаточно, ведь поддержание микроклимата в вышеуказанной зоне в корне отличается от норм для простой холодильной камеры, а значит одного анализатора в таком случае будет недостаточно.

Сохраняйте остатки чистого материала в герметичной посуде. Срок хранения Stopaq FN2100 не ограничен.

Герметизация кабельных вводов Герметиком Stopag FN2100 — надежный способ.

Представитель STOPAQ в Москве: +7 (495) 733 99 79.

Компания «ИГОРЬ и АНДЕРС Эдвэнсед Технолоджи»
142791 Новая Москва, Сосенки-15
телефон: + 7 (495) 733 99 79

Рейтинг
( Пока оценок нет )
Загрузка ...