Из чего делают контакты пускателей

Содержание

Магнитный пускатель

Для пуска электродвигателя применяются низковольтные пускатели. Выделяют реверсивные, модульные сборки. Устройство магнитного пускателя является востребованным в промышленной сфере деятельности.

Конструкция

Магнитный пускатель по конструкции содержит следующие элементы:

  • контакты;
  • небольшой мостик;
  • сердечник;
  • магнитопровод;
  • одна или несколько катушек;
  • якорь;
  • магнит;
  • пружины над контактами.

Принцип работы

Если интересуют магнитные пускатели, назначение, устройство, принцип действия, стоит разобраться в механизме. У него за счёт мостика обеспечивается разрыв силовой цепи. Поскольку применяется подвижный якорь, обеспечивается надежное электрическое соединение.

Когда магнитопровод переходит в нижнее положение, пружины зажимаются, на устройство воздействует магнитное поле. Якорь отходит от контактов, и обмотки катушки ничего не угрожает.

Интересно! Устройства для функционирования подключаются к источнику напряжения.

Пользователи задаются вопросом, какие бывают магнитные пускатели. На самом деле учитывается категория. В зависимости от расположения элементов выделяют следующие разновидности:

  • модификации открытого типа;
  • автоматические защищённые элементы;
  • устройство с влагонепроницаемым корпусом.

Разделение по конструктивным особенностям:

  • с кнопкой на корпусе;
  • с дополнительными контактами;
  • с тепловым реле.

Открытого исполнения

Пускатели открытого исполнения устанавливаются в шкафах. Они монтируются в панелях, и делается все возможное, чтобы защитить их от влияния атмосферных факторов. Не допускается попадание пыли, а также влаги. Распространенными считаются модификации со следующими характеристиками:

  • Номинальный ток от 9 ампер.
  • Напряжение до 380 Вольт.
  • Контакты — 1 или 3.
  • Степень защиты IP20.
  • Коммутационная износостойкость от 2К.
  • Средние размеры 70 на 40 на 80 мм.

Продаются мощные аппараты в комбинации с тепловым реле. У них высокий параметр допустимой температуры (+ 60 градусов). Также они не боятся повышенной влажности. Если присмотреться к моделям компанию Pro, с номинальным напряжением 380 вольт, у таких моделей имеется изоляция, а мощность потребления катушки доходит до 800 Вт.

К числу прочих особенностей, приписывают оперативное срабатывание и значительную коммутационную износостойкость. Магнитные пускатели производятся с естественным охлаждением. Они, в первую очередь, предназначены для дистанционной остановки, пуска двигателей. Допускаются моторы с короткозамкнутым ротором. Также встречается продукция «Евростандарт», которая имеет следующие характеристики:

  • Номинальный ток 60 ампер.
  • Рабочее напряжение 380 Вольт.
  • Износостойкость — категория as3.
  • Номинальное напряжение изоляции до 600 Вольт.
  • Средние габариты 120 на 85 на 115 мм.
  • Крепление осуществляется по рейке.
  • Мощность двигателей от 30 кВт.
  • Средний вес 1.3 кг.

Защищенного исполнения

Пускатели защищенного исполнения, подходят для помещений с пониженным уровнем влажности. Элементы защищены от воздействия пыли. Установки зачастую производятся компанией «Евростандарт». У них номинальное напряжение доходит до 660 Вольт, потребляемая пусковая мощность 7.5 кВт.

Средние габариты — 160 на 90 на 116 мм, установочные размеры средние 150мм, а масса от 0.5 килограмм. Есть пускатели с реверсивной оболочкой, используется тепловое реле. Степень защиты может быть ip54. Модификации годятся для работы с переменным током в цепи управления. Разрешается использовать сигнальные лампы либо кнопочные реле. Также встречаются пускатели серии ПО для трансформаторов.

  • Частота от 50 герц.
  • Замыкающие контакты — 2 штуки.
  • Номинальный ток 100-200 ампер.
  • Минимальная допустимая температура — минус 40 градусов.
  • Защита ip30.
  • Допустимая максимальная температура окружающей среды — плюс 60 градусов.

Стоит обратить внимание на пускатели серии КТ с номинальным напряжением 380 вольт. Рабочий ток составляет более 100 ампер. У них предусмотрено три и более контактов. Магнитные пускатели серии ПМЛ способны работать в местах с повышенным уровнем вибрации.

У них высокий показатель относительной влажности, плюс они не боятся ультрафиолетового излучения. Установки могут использоваться в нишах, а также в панелях.

Пылебрызгонепроницаемого исполнения

Установки пылебрызгонепроницаемого исполнения должны устанавливаться под навесами. Оборудование не боится воздействия воды, а также пыли. Элементы защищены от воздействия ультрафиолета. Востребованными остаются модификации с напряжением 660 Вольт, которые могут работать в цепи с номинальным током 10 ампер.

Модели поставляются с винтовыми креплениями, монтируются на рейку. Компания «Пускконтакт» предлагает устройства для трехфазных асинхронных электродвигателей. Параметры моделей из серии ПКЛ:

  • Установочные размеры 50 на 30 мм.
  • Мощность двигателя от 4 кВт.
  • Средняя масса 0.4 кг.
  • Номинальный ток более 10 ампер.
  • Напряжение изоляции до 700 Вольт.

Отдельная классификация

Магнитные пускатели различаются по типу предназначения. Есть модификации для слабых, средних и сильных индуктивных нагрузок. Отдельно выпускаются модели для асинхронных электродвигателей переменного тока.

Интересно! Распространенными считаются модификации под реверсивную сеть.

Кнопочный пост на корпусе прибора

Кнопочные посты необходимы для дистанционного управления техникой, устройства отличаются по функциональности. При подборе оборудования учитываются эксплуатационные характеристики. Зачастую кнопочные посты применяются под электрические двигатели. Оператор может находиться удалённо от техники.

В промышленности, установки устанавливаются на краны либо подвижные составы. Также разрешается управлять вентиляторами либо гидронасосами. На рабочем месте можно создать целый комплекс оборудования с одним пультом управления. Основная задача — вовремя включать и отключать электрооборудование. Учитывается класс привода и тип стартера.

Если посмотреть на рынок, кнопочные посты производятся с открытым, закрытым корпусом, поэтому учитывается защищенность. При подборе берется в расчет уровень напряжения. Если рассматривать высоковольтное оборудование, требуется кнопочный пост для работы в цепи постоянного тока. Большинство постов способны воздействовать на коммутатор.

Пример! Если подключить его к асинхронному двигателю, можно управлять оборотами. Тоже самое можно сказать про реверс. В данном случае опять же облегчается работа оператора. За станком он способен менять обороты мотора вперёд, назад, и выбирать необходимый режим.

Подключение двигателя может осуществляться напрямую либо через магнитный пускатель. Контроллер останавливается через кнопку. Распространенными считаются однокнопочные, двухкнопочные посты, на которых изображены обозначения «запуск», «стоп». Простые модификации такие, как токарный станок, делаются с одной кнопкой. В отдельную категорию выделены элементы для регулировки кран-балок. У них кнопки толкателя являются защищенными, отличаются по количеству контактов.

Из элементов используются встроенные пружины и набор специальных фиксаторов. Это необходимо для возвращения контакта в исходное положение. Магнитные пускатели к постам подключаются напрямую. Если рассматривать модели с открытыми корпусами, они считаются менее защищенными и не безопасны в использовании, у них ограниченная сфера применения.

Дополнительные блокировочные и сигнальные контакты

Существуют магнитные пускатели с замыкающими, разъединяющими группами. Плюс встречаются модификации со встроенными контактами, они поставляются с подставками. Если взглянуть на принципиальную схему, применяется электрическая блокировка.

Ток и напряжение втягивающей катушки

Средний параметр тока у пускателей — 15 миллиампер, а сопротивление доходит до 15 Ом. Значительные изменения напряжения для катушки считаются критическими. Если рассматривать реостат, сопротивление доходит до 160 Ом. При оценке элементов, учитывается показатель остаточного тока, который зависит от частоты. Со стабилизатором напряжения данный параметр значительно ниже.

Если требуется рассчитать рабочий ток катушки, учитывается длина кабеля и напряжение. Постоянный ток связан с блоком управления. Катушки высокого рабочего тока восприимчивы к изменению индуктивности, а также сопротивления. Элементы поставляются с якорями, поэтому требуется проверка контакторов. На рынке встречаются модификации с изоляторами, которые защищают токоведущую часть.

Когда двигатель запускается, номинальное напряжение возрастает. Катушки могут перегорать, если повышается пусковой ток. В разомкнутых контактах наблюдается небольшой зазор, но полное сопротивление происходит, когда магнитопровод опускается.

Наличие теплового реле в схеме

Реле называют устройством, восприимчивое к температуре либо тепловому потоку. В цепи встречаются механические, электрические модификации. Современными считаются оптические устройства, которые работают по принципу линейного расширения. Если разбирать элементы, узлы состоят из двух стержней. Встречаются модели с удлинителями и без них.

В отдельную категорию выделены биметаллические реле с высоким показателем преломления. Внутри устройства применяются подвижные контакты, есть пластина. Также в них используется электрическая цепь замкнутого типа. В качестве материала применяется не только сталь, медь, но и латунь. Пластины могут быть со спиралью либо без неё, многое зависит от уровня расширения.

Важно! При помощи специальных приборов выясняется амплитуда изменения. Когда контакты неподвижны, можно управлять цепью.

Монтаж и подключение

В сети представлены схемы подключения с катушкой на 220 вольт. Для этого используются кнопочные посты. Встречаются элементы на 1 и 2 контакта. Для подключения необходимо клемма заземления. При включении пускателя к сети не обойтись без дополнительного шнура, который фиксируется к вилке. Силовые контакты должны находиться в замкнутом состоянии. Посмотрев однофазную цепь, провод подается на ноль.

В случае чего фазу можно перекинуть. Пускатели считаются удобными, поскольку не требуется использовать дополнительные проводники. Специалисты рекомендуют брать рубильник, но это не обязательно. Чтобы наладить стабильную работу двигателя, используется схема с кнопками «пуск» и «стоп». Магнитный пускатель в данном случае позволит изменять режимы работы мотора.

Если рассматривать последовательное подключение, то во время эксплуатации придется удерживать кнопку «пуск». Когда налажено параллельное подключение, придется устанавливать вспомогательные контакты.

Рекомендации по уходу

Пускатель считается простым устройством, однако при эксплуатации могут наблюдаться различные неприятности. При работе с асинхронным двигателем из строя выходят отдельные детали. Таким образом, следует при монтаже выполнять определенные правила:

  • чистка пускателя;
  • проверка магнитной системы;
  • снятие кожуха;
  • проверка свободного хода;
  • оценка главных контактов;
  • проверка сопротивления;
  • затяжка крепления.

Выше рассмотрены устройства магнитного пускателя, а также его виды. Данный элемент требуется для работы двигателя, и незаменим в промышленной сфере. При подборе оборудования стоит ознакомиться с базовым принципом функционирования, знать классификацию и правила монтажа.

Контакты низковольтных аппаратов

Содержание статьи:

  • виды контактов;
  • переходное сопротивление, которое определяет качество сцепления;
  • материалы для контактов;
  • рекомендации по эксплуатации размыкающихся контактов;

  • чем обусловлено применение серебра:
    • низкая скорость окисления под воздействием атмосферного кислорода и озона;
    • что даёт низкое переходное сопротивление, которое незначительно изменяется во времени;
    • из-за низкой температуры плавления применяют металлокерамические контакты с включением Ag.

Контакты для низковольтной аппаратуры (НВА)

Под низковольтными аппаратами понимаются автоматические выключатели, пускатели и контакторы, а также рубильники (выключатели-разъединители).

Читайте также:  Как подключить пакетник

Контактом или контактным соединением называют соединение двух токопроводящих элементов, которое производится при помощи сжатия. Зачастую, пару контактов составляют – подвижный и неподвижный (или малоподвижный) контакт.

Контактные соединения разделяют на следующие группы:

  • неразмыкающиеся контактные соединения (при нормальной работе не разъединяются, только во время ремонтных или профилактических мероприятий – болтовые соединения);
  • размыкающиеся контактные соединения (контакты низковольтных аппаратов, коммутирующие цепь);
  • скользящие контактные соединения (контакты перемещаются друг относительно друга без потери сцепления, например, шарнирное присоединение ножей рубильника с неподвижными контактами).

Виды контактов, встречающиеся в автоматических выключателях и контакторах:

  • главные контакты (или главная контактная группа);
  • дугогасительные контакты (контакты, предназначенные для гашения электрической дуги);
  • вспомогательные контакты (или дополнительные контакты, или блок-контакты).

Практически во всей, массово выпускаемой, низковольтной аппаратуре главные контакты играют роль дугогасительных.

Раздельные главные и дугогасительные контакты имеются у автоматического выключателя Электрон и контактора серии КТ.
Вспомогательные контакты (поставляется как дополнительная заказная опция) служат для сигнализации положения главных контактов.

Переходное сопротивление контактов

Одним из наиболее важных параметров для оценки качества контактного соединения является его переходное сопротивление. Снижение переходного сопротивления, приводит к снижению выделяемого тепла при протекании тока. Проводимый ток в основном ограничивается заданной максимальной температурой. Следовательно, чем ниже переходное сопротивление, тем обеспечен лучший контакт.

На практике определяют значение падения напряжения на контактном соединении, через которое высчитывают переходное сопротивление: Rп = ∆Un / In.

Факторы, влияющие на переходное сопротивление следующие:

  • контактное сжатие;
  • форма контактов в месте соприкосновения;
  • окисление контактов;
  • вибрационные нагрузки.

Контактное сжатие.
Самая тщательная обработка поверхности контактов всё равно оставит микронеровности. Тогда металлический контакт возникает в одной либо нескольких точках. Чтобы обеспечить более полное прилегание поверхностей контактов, создают сжимающую силу, которая сдавливает микроскопические бугорки.

Форма контактов в месте соприкосновения.
Кинематика низковольтного аппарата, а также выполняемые им функции определяют поверхности контактного соединения. По характеру контакта выделяют три вида контактных соединений:

  • точечный контакт рис. а (ток проходит сквозь точку);
  • линейный контакт рис. б (ток протекает по совокупности точек – линию);
  • плоскостной либо многоточечный контакт рис. в (ток течёт сквозь несколько точек).

На рисунках показаны виды контактов:
1 – остриё + плоскость; 2 – остриё + сфера; 3 – сфера + плоскость; 4 – две сферы;
5 – призма + плоскость; 6 – цилиндр + плоскость; 7 – два цилиндра;
8 – две плоскости.
Точечный контакт характерен для блок-контактов, где не столь важно качество сцепления и мал проводимый ток (не выше 10А), усилие сжатия до 5 Н.

Линейный контакт характерен для большинства главных контактов автоматических выключателей, пускателей, контакторов и рубильников, сжимающее усилие до 500 Н.

Многоточечный контакт характерен для неразъёмных болтовых соединений, сжимающее усилие до 5 000 Н. Например, место присоединения кабеля и контактного вывода аппарата, либо электротехнической шины и вывода.

Окисление контактных поверхностей.
Все металлы под воздействием атмосферного кислорода и озона окисляются. Наличие оксидной плёнки может существенно повлиять на переходное сопротивление, которое может возрасти в сотни раз.

Приведём примерное изменение переходного сопротивления при температуре +35⁰С (данные союзной лаборатории Смурова). Приведенный коэффициент α прямо пропорционален переходному сопротивлению.

Материал контактовПродолжительность окисления, сутокКоэффициент αВозрастание переходного сопротивления, раз
до окисленияпосле окисления
медь (Cu)21,10∙10 -4180∙10 -4164
олово (Sn)121,56∙10 -4110∙10 -477
серебро (Ag)1000,50∙10 -411∙10 -422

Как видно, серебро является наиболее предпочтительным материалом для контактов, эксплуатирующихся в продолжительном режиме. Когда выбраны медные контакты (зачастую, из-за относительно низкой стоимости), применяют регулярное смыкание и размыкание контактов для механического стирания оксидной плёнки либо скользящее контактное соединение.

Вибрация.
Вибрационные нагрузки возникают повсеместно, где монтируется низковольтная аппаратура. Например, автоматические выключатели устанавливаются в распределительные щиты, которые монтируются в промышленных цехах; пускатели устанавливаются поблизости с управляемыми асинхронными электрическими двигателями.

Наиболее опасны вибрации, которые направлены по той же линии, что и сжимающее усилие в контактах; а также вибрации, которые могут привести к резонансу крепёжных элементов и контактов. Если сила от вибрации превысит значение сжимающей силы, то произойдёт кратковременное расцепление. При больших токах это грозит свариванием контактов, при малых токах – их обгоранием.

Материалы, применяемые для контактов

Медные контакты
Наиболее распространённым материалом для контактов является медь. Ключевые факторы: высокая электропроводность, хорошая твёрдость, тугоплавкость, а также высокая коммутационная износостойкость. Главным недостаток – быстрое образование оксидной плёнки со значительным возрастанием переходного сопротивления.

Серебряные контакты
Лучший материал для коммутационных аппаратов, работающих в продолжительном режиме. Теплопроводность и электрическая проводимость наилучшая среди металлов. Окисление очень медленное, окислы имеют достаточную проводимость. Отрицательные факторы – плохая коммутационная износостойкость (быстрое выгорание или разбрызгивание серебра), высокая цена.

Вольфрамовые контакты
Механическая прочность вольфрама стабильна в широком диапазоне температур, а также значительно превышает ту же характеристику других контактных материалов. Вольфрам устойчив к высоким температурам электрической дуги (тугоплавкий материал). Отрицательные стороны – подвержен окислению, обладает высокой ценой, переходное сопротивление в разы больше серебряного или медного электрического сопротивления. Основное применение – контакторы с низким амперажём с высокой частотой включений и отключений.

Графитовые контакты
Графит имеет высокое удельное сопротивление и обладает самой высокой температурой эксплуатации. Графитовые контакты применяются в автоматических регуляторах напряжения и отличаются тем, что не свариваются и могут включать большие токи. Износ очень быстрый, что приводит к образованию копоти.

Металлокерамические контакты
Так как у многих массовых коммутационных аппаратов главные контакты совмещены с дугогасительными, то и накладываются противоречивые требования – малое переходное сопротивление, стойкость к высоким температурам электрической дуги, малая подверженность коррозии. Ни один из чистых металлов либо сплавов не проходит проверки. Поэтому нашли выход – гетерогенные сплавы, которые сохраняют свойства отдельно взятых компонентов.

Наиболее простыми двухкомпонентными металлокерамическими контактами работают составы металла с высокой электрической проводимостью в сочетании с маленькой температурой плавления (медь либо серебро) и тугоплавкого металла (молибден или вольфрам). В итоге получается тугоплавкий скелет с вставками из металла с высокой электрической проводимостью. При воздействии дуги, серебро плавиться, но не разбрызгивается, а удерживается в металлокерамике силами смачивания.

Металлы измельчают до получения порошка с частицами порядка 40 мк, затем смешивают, прессуют и запекают при температурах 800 — 900⁰С.
Наибольшее распространение получили сочетания: серебро + окись кадмия (второй материал может заменяться: вольфрамом, молибденом, никелем, графитом), а также медь + графит.

Для обеспечения хорошей электропроводности в месте соединения металлокерамической пластины с контактной деталью, внутреннюю сторону покрывают подслоем серебра (до 1 мм).

Размыкающиеся контакты

По условия работы контакты низковольтных аппаратов распределяют по трём группам:

  • контакты, включающие и отключающие электрические цепи без тока (например, контакты разъединителей). Износ происходит из-за механических факторов, обеспечивают протекание номинального электрического тока либо кратковременное протекание сверхтока;
  • контакты, которые включают и отключают ток при очень малых значениях напряжения (до нескольких вольт). Например, контакты контакторов ускорения. При работе подвержены не только механическому износу, но и незначительному электрическому износу (возникновение искры);
  • контакты, которые коммутируют ток при номинальном напряжении (контакты автоматических выключателей, пускателей и контакторов, рубильников).

Остановимся на последней группе.
Основная задача таких контактов обеспечить беспрепятственное протекание номинального тока и сверхтока (короткие замыкания, перегрузки). Изнашиваются контактные группы в основном из-за выгорания и разбрызгивания материала при гашении электрической дуги, механические факторы играют второстепенную роль. Повторное включение допустимо после остывания контактов.

Интенсивность исчезновения контактного материала зависит от силы отключаемого тока, применяемого материала, способа гашения дуги. При включении, некоторое время контакты вибрируют, что тоже может привести к износу.

Наиболее тяжёлые условия у тех контактов, которые смыкаются во время протекания аварийных токов. Проявляется сильный отброс контактов друг от друга из-за электродинамических сил, рождается мощная электрическая дуга. Близкие условия у контакторов, запускающих мощные электрические двигатели, пусковые токи могут отличаться от номинальных на порядок.

Важными факторами, за которыми нужно следить во время эксплуатации являются:

  • начальное и конечное сжатие (в основном обеспечивается пружиной, которую следует регулярно менять);
  • провал контактов (расстояние между точкой сцепления и положением, которое занимает подвижный контакт при отсутствии неподвижного);
  • состояние контактных поверхностей;
  • наличие проскальзывания или переката, если они гарантируются кинематической схемой.

Посеребренные и металлокерамические контакты не следует зачищать напильником. Зачищают лишь заметные бугорки и остывшие брызги металла. После каждого аварийного отключения следует протереть поверхности ветошью смоченной в бензине для устранения гари. Зачастую, приработанные контакты проводят ток лучше, чем новые. Не следует употреблять какую-либо смазку, так как она сгорает и оставляет копоть на контактах.

Развёрнутая информация по уходу за контактами, измерению контролируемых величин находится в книге, указанной ниже (практические рекомендации со страницы 35).

Список использованной литературы
Образцов В. А. Уход за контактами низковольтных аппаратов. – Ленинград: ГосЭнергоИздат, 1959 – 61 с.
Книга в свободном доступе на странице прайс-лист.

Материалы для электрических контактов

Общая характеристика

Электрические контакты должны свободно коммутировать токи от до 109 А при напряжении от до 106 В. По конструктивному исполнению, если исключить переходные формы, электрические контакты можно разбить на три группы:

— подвижные, функция которых замыкать и размыкать цепь при кратковременной либо длительной коммутации тока;

— скользящие, в которых происходит перемещение контактирующих поверхностей относительно друг друга без нарушения электрического контакта;

— неразъемные, в которых в процессе работы не происходит разъединения контактирующих поверхностей.

Требования к материалам электрических контактов

Материалы для коммутирующих контактов должны удовлетворять следующим основным требованиям: быть коррозионностойкими, стойкими против электрической эрозии и износа; не свариваться; обладать высокой механической износостойкостью, особенно на истирание; легко обрабатываться давлением и металлорежущим инструментом, а также прирабатываться друг к другу; обладать высокими теплофизическими характеристиками; иметь низкую стоимость.

Контактные сплавы на основе золота

Сплавы на основе золота предназначены для коммутации электрического тока до 5 А (в зависимости от конструкции прибора).

Контактные сплавы на основе золота отличаются высокой надежностью контактирования при низких электрических нагрузках. Наиболее полно контактные материалы характеризуются испытаниями в смешанной атмосфере, содержащей H2S, SO2 и NO2. При этом наблюдается увеличение контактного сопротивления всех сплавов, особенно резкое у сплавов с высоким содержанием Ag. Их не рекомендуется применять при повышенных требованиях к надежности контактирования.

Контактные сплавы на основе металлов платиновой группы

Контакты из чистой платины обладают низким и стабильным переходным сопротивлением, но подвержены мостиковой эрозии. Стойкость к эрозии и свариванию выше у сплавов Pt с Ni и Ir. Вместо сплавов Pt—Ir можно применять более экономичные сплавы Pt—Ru. Pd в качестве контактного материала в основном используют в виде гальванических покрытий и в сплавах с Ag. RIi применяют для покрытий прецизионных контактов. Толщина покрытия зависит от требований к механическому износу и составляет

Области применения контактов

Ag—Pd: сигнальная аппаратура, телефонные реле, телефонные номеронабиратели, регуляторы напряжения, управление флюоресцентными лампами, бензино- и маслоизмерители, защитные устройства электродвигателей, органы телевизионного управления, выключатели холодильников и термостатов.

Ag-Pt: радиоаппаратура, приборы автоматики и настройки радио, радиовибраторы и устройства питания от сети радио, электромагнитные счетчики.

Pt—Ir: прецизионные реле, работающие без дуги; кассовые машины, пожарные сигнализаторы, телеграфные реле, малогабаритные и миниатюрные реле радиоэлектроники, регуляторы скорости, магнето авиационные, автомобильные и морские, пирометры, вибропреобразователи, промышленные регуляторы электронапряжения, электробритвы, термостаты и нагреватели, сигнальные реле.

Читайте также:  Нагрев удлинителя при подключении прожектора

Pt—Rh: магнето постоянного и переменного тока; термопары.

Pt—Ni: телеграфная и телефонная аппаратура.

Pt—Ru: регуляторы скорости, кассовые машины, пожарные сигнализаторы, бензино- и маслоизмерители, контрольные реле электрооборудования в авиации, регуляторы напряжения, магнето авиационные и морские, регуляторы освещения, реле железнодорожной сигнализации, термостаты и нагреватели, сигнальные реле.

Pd—Ag: прецизионные реле, сигнальная аппаратура, гнезда телефонных коммутаторов, телефонное оборудование, токосъемники потенциометров, промышленные регуляторы напряжения, звуковые реле, реле уличных сигналов.

Pd—Ag—Ni: часы, скользящие контакты прецизионных потенциометров, термостаты и нагреватели, сигнальные реле.

Pd—Ir; Pd—Ru: звуковое реле, вибрационные регуляторы напряжения и числа оборотов, вибрационные преобразователи, выпрямители.

ОБЛАСТИ ПРИМЕНЕНИЯ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ HA ОСНОВЕ ЗОЛОТА

Материал

Область применения

Форма применения

Антикоррозионная защита серебряных контактов, миниатюрные контактные заклепки, шары и штеккеры

Гальванические и напыленные покрытия, металлургическое золото

Твердое золото Ni или Со)

Дорожки контактов скольжения, поворотные переключатели, штеккерные разъемы

Слабонагруженные контакты в телефонной сети, транзисторных цепях, контакты штепсельных разъемов

Цельносплавные и плакированные заклепки, контактные шары

Контактные пружины, подвижные контакты слаботочных реле

Цельносплавные и плакированные контакты, контактные шары

Au—Co5 ( гетероген ный ); Au—Ni5; Au— Ag26-Ni3

Устойчивые к переносу материала контакты реле, датчиков световой сигнализации, измерительных приборов, электрических часов

Заклепки, плакированные контакты, контактные шары

Контакты для специальных реле и измерительных приборов

Контактные сплавы на основе серебра

Чистое серебро редко используют для коммутирующих контактов. Вместо него в настоящее время применяют сплавы твердого Ag (до 3 % неблагородного легирующего компонента), которые обладают высокой эрозионной стойкостью и стойкостью к свариванию. Реже применяют сплавы Ag с Zn и Cd, а также с высоким содержанием Cu. Вместо них целесообразно использовать гетерогенные материалы, получаемые внутренним окислением (ВО) сплавов Ag. Метод ВО целесообразен также для упрочнения сплавов Ag—Pd .

Основным недостатком серебра как контактного материала является образование токонепроводящей пленки из сульфидов серебра в атмосфере, содержащей сернистые соединения. Стойкость серебра к потускнению повыщается при легировании Cd, Sb, Zn, Sn. Однако при низких электрических нагрузках эти сплавы имеют недопустимо высокое контактное сопротивление и в этих случаях рекомендуется применять сплавы Ag—Pd. Контактное сопротивление этих сплавов уменьшается с увеличением содержания Pd, а стойкость к эрозии минимальна у сплава Ag—10Pd.

Электролитические сплавы Ag с Ni и Со отличаются высокой механической износостойкостью и применяются для покрытий скользящих контактов. Покрытия из сплавов Ag—Pd отличаются стабильным и низким переходным сопротивлением во влажной среде и в раз более износостойки, чем чистое серебро.

При I =10÷15 А, U =380 В хорошие эксплуатационные характеристики у контактов из сплавов Cu—Ag—Cd, содержащих Ag, их рекомендуется использовать вместо материалов с высоким содержанием Ag, например вместо металлокерамики СН30м.

Широко применяют контакты из различных композиций Ag—МеО, получаемых внутренним окислением сплавов. После ВО значительно

Наиболее широко в электротехнике применяют сплавы Ag—CdO CdO). Эффективность ВО повышается при окислении в кислороде при повышенном давлении и в атомарном кислороде.

При этом, помимо увеличения производительности процесса, улучшается стойкость к свариванию, уменьшается разрывное усилие при сваривании и обгорание за счет диспергирования оксидных частиц.

Добавки Be, Ce, Sc, Ba, Y, In, Ga, Sb, Sn, Те увеличивают стойкость к электрической эрозии материалов Ag—CdO, кроме того, добавки Be, Ce, Sc, La, Y, Ga ускоряют процесс ВО. Легирование Ca, Ni, Ti применяют для сдерживания роста зерна при ВО.

Основные области применения контактных серебряных сплавов

Ag: реле, сигнальная аппаратура, контакты вспомогательных цепей, термостаты, бытовые приборы, нагреватели воды, телефонная и телеграфная аппаратура, электроосаждение на контактные детали для электронной техники.

Твердое Ag: реле, магнитные пускатели, бытовые приборы, вспомогательные контакты автоматических выключателей.

Ag—Cu: реле, сигнальная аппаратура, светотехнические выключатели.

Ag—Cu—Ni: реле уличных сигналов, автомобильные и железнодорожные сигнальные реле, тепловые выключатели, преобразователи тока, авиационные реле и выключатели, управление флюоресцентными лампами, регуляторы освещения.

Ag—Cd: реле, бензо- и маслоизмерители, выключатели, стартеры, выключатели перегрузки холодильников и термостатов, тепловые выключатели.

Ag—Cd—Ni; Ag—Cd—Ni—Fe: реле — регуляторы напряжения.

Ag—Pd: сигнальная аппаратура, телефонные реле и номеронабиратели, бензо- и маслоизмерители, защитные устройства электродвигателей, органы телевизионного управления, контактные кольца.

Ag—Pt: радиоаппаратура, приборы автоматики, электромагнитные счетчики.

Ag—Mg—Ni; Ag—Au—Mg—Ni; Ag—Mg—Zr; Ag—Mg—Ni—Zr; Ag—Pd—Mg: заменители контактов из сплавов Pd—Ir, Au—Pd—Pt, Au—Ni, Au—Pt в малогабаритных и миниатюрных электромагнитных реле радиоэлектроники.

Ag—CdO: магнитные пускатели, реле среднего и тяжелого режима, автоматические терморегуляторы, контролеры электровозов и троллейбусов, концевые выключатели, бытовые приборы, кнопки управления.

Ag—CuO: сильно нагруженные контакты постоянного и переменного тока, авиационные реле среднего и тяжелого режима, автоматические предохранители, переключатели тепловозов. Порошковые контактные материалы

В тех случаях, когда применение метода ВО технически неоправданно для производства гетерогенных материалов Ag—MeO, применяют метод порошковой металлургии. Так же как при ВО, технология производства порошкового материала оказывает значительное влияние на дисперсность структуры и эксплуатационные характеристики контактного материала.

Помимо стандартных материалов Ag—CdO и Ag—CuO, известны материалы с высокой стойкостью к обгоранню и свариванию и со стабильным контактным сопротивлением: Ag-10 % ZnO и Ag—5 % PbO. Очень высокой стойкостью к обгоранию обладает материал Ag—10 % SnO2. При использовании этого материала вместо Ag—12 % CdO гарантируемый срок службы при I =1000 А обеспечивается при уменьшении объема контакта на

Псевдосплавы Ag—Ni отличаются высокой пластичностью (при Ni), что позволяет плакировать ими медь и медные сплавы. По стойкости к обгоранию они значительно превосходят серебряные сплавы, но уступают материалам Ag—CdO различного состава и способа производства.

Псевдосплавы Ag—Ni применяют в качестве материала подвижного контакта в паре с неподвижным контактом из Ag—С в автоматических выключателях. Такое сочетание обеспечивает приемлемую эрозионную стойкость и стойкость к свариванию контактной пары.

Контактное сопротивление композиций Ag—W и Ag—WC снижается с увеличением силы тока вследствие разрушения поверхностных пленок. Стойкость к обгоранию композиций Ag—WC несколько выше, чем Ag—W, и часто подвижный контакт из Ag—WC используется в паре с неподвижным контактом из Ag—W при тяжелых режимах работы.

Наиболее высокая стойкость к свариванию у материалов Ag—С, Ag—W и Ag—CdO

Композиция Ag—MoS2 обладает высокой износостойкостью и низким коэффициентом трения в паре с бериллиевой бронзой и может использоваться для изготовления скользящих контактов.

Дисперсноупрочненное золото является перспективным контактным материалом, так как обладает низким контактным сопротивлением, стойко к обгоранию и свариванию. Материал, содержащий до 1 % (объемн.) дисперсного оксида, обладает высокой прочностью и пластичностью, а электрические свойства его практически соответствуют свойствам чистого золота.

При упрочнении золота оксидами значительно возрастает стойкость к механическому износу.

Области применения псевдосплавов на основе серебра для контактов

Ag—Ni: средненагруженные контакторы и магнитные пускатели, установочные и универсальные автоматические выключатели, реле цепей сигнализации и автоматики железных дорог, реле сварочных машин, контакторы автопогрузчиков, регуляторы напряжения, бытовые автоматические предохранители, светорегуляторы.

Ag—С; установочные и универсальные автоматические выключатели, электроутюги с терморегуляторами, реле сигнализации железных дорог, переключатели диапазонов и выключатели радиоприемников, вспомогательные контакты воздушных выключателей.

Ag—Ni—С: установочные и универсальные автоматические выключатели (в паре с контактами из AgNi).

Ag—W: магнитные пускатели и контакторы с большой частотой включений, выключатели бытовых электроприборов, барабанные переключатели, кнопки управления, высоковольтные переключатели, центробежные регуляторы оборотов электродвигателей постоянного тока, контакты мощных регулирующих трансформаторов, устройства питания радиоприемников, вибраторы, стартеры, кассовые аппараты, тяжело-нагруженные реле и выключатели авиационного оборудования. Контактные материалы с волокнистой структурой

Композиционные материалы с волокнистой структурой являются наиболее современными в технологии изготовления контактных материалов. Значительное упрочнение достигается при армировании серебра волокнами вольфрама, молибдена, никеля, стали. Известны результаты по упрочнению серебра монокристаллическими нитями A l 2 O3 и Si3N4. Степень упрочнения при армировании зависит от параллельности волокон в матрице, расстояния между волокнами, их непрерывности и объемного содержания. Композиционные материалы обладают сильной анизотропией свойств и при ориентации волокон перпендикулярно контактной поверхности можно достичь уменьшения обгорания и сваривания контактных материалов. У серебра, армированного непрерывными волокнами никеля, более чем на 50 % снижается обгорание по сравнению с обычным порошковым материалом. При этом волокнистый материал обладает гораздо большей пластичностью и выдерживает большую степень деформации при высадке заклепок, чем спеченный материал. Существенное улучшение контактных свойств достигается при использовании монокристаллических нитей графита вместо его порошка при производстве материалов на базе A g —С.

Перспективно применение армированных материалов для контактных пружин. Армированные серебряные материалы обладают наилучшими сочетаниями пружинных свойств и электропроводности среди используемых в настоящее время материалов для контактных пружин.

Материалы, содержащие дисперсные оксиды, после экструзии или волочения также приобретают волокнистую структуру с расположением волокон вдоль продольной оси полуфабриката. Контакты из таких материалов с расположением волокон перпендикулярно поверхности контактирования в зависимости от вида оксида в ряде случаев имеют более высокую стойкость к свариванию и обгоранию, чем порошковые материалы; при этом уменьшается время воздействия электрической дуги на поверхность контактирования.

Направленной кристаллизацией получен сплав Ag—28 % Cu с волокнистой структурой, обладающей высокой стойкостью к свариванию.

Контакты электрические коммутационные подвижные и неподвижные

Контакты коммутирующие подвижные и неподвижные любых типов (для пускателей, контакторов, контроллеров или электро-подвижного состава) могут быть как в наличии так и под заказ. Узнать наличие, точную стоимость и приобрести медные, латунные, серебряные (серебросодержащие) или никелированные электрические контакты коммутации вы можете позвонив по телефону +7(812) 449-90-49 или отправить заявку на электронную почту указанную в разделе «Контакты».

Электрические контакты — это поверхности материалов которые соприкасаются и обладают электропроводностью, а также соединяют вместе в электрической цепи несколько токоведущих элементов. Либо это вполне может быть приспособление, при помощи которого обеспечивается соединение и переход тока из одной контактирующей детали в противоположную.

Поставляемые нами подвижные и неподвижные контакты могут быть медными, медными с лужением, латунными, с серебряной напайкой (из технического серебра) различной толщины, по желанию заказчика. Мы можем предложить практически любые типы контактов для пускателей типа ПМ12, ПМА, ПМЛ, ПМЕ, контакторов серий КТ, КПД, КТП, КПВ, КТПВ, МК или контроллеров ККТ, ККП, КА, для отечественных и импортных электропогрузчиков, электротележек, электровозов, электропоездов, а так же контактные узлы предназначенные для лифтовой коммутационной аппаратуры.

Сегодня на электротехническом рынке России появилось множество новых производителей электрических контактов для различного электротехнического оборудования. Далеко не все данные предприятия изготавливают контактные узлы, в четком соответствии с установленной к ним конструкторской документацией. Габаритные размеры медных, латунных и серебряных контактов, а также технология их изготовления на производстве в большинстве своем не соответствуют установленным в ТУ заводов изготовителей. Многие изделия для контакторов и различных магнитных пускателей изготавливают из какой либо листовой меди, игнорируя техническую документацию заводов производителей пускателей. Помимо этого, не обеспечивается прочность сварных или различных паяных соединений. Электрические контакты таких производителей имеют существенно меньший ресурс по фактору коммутационной износостойкости. Применение изделий такого качества может привести к самым различным непредвиденным аварийным ситуациям: отрыву контакт-деталей, свариванию медных и серебряных контактов во время коммутации, перегреву и конечно же слишком быстрому износу, и естественно к поломке как самого пускателя или контактора, так и того прибора непосредственно в котором он устанавливался.

Читайте также:  Что такое прожиг кабеля и как его выполняют

Поставляемая нашей компанией продукция изготовлена в полном соответствии с конструкторской технической документацией, специально разработанной заводами производившими электромагнитные пускатели, контакторы и командоконтроллеры. Все неподвижные и подвижные контакты изготавливаются с помощью технологии порошковой металлургии.

Материалы электрических контактов коммутации (серебряные, медные, латунные, никелированные)

От материала электрического контакта очень сильно зависят его надежность работы и срок службы. Вот основные пункты требований, предъявляемых к различным видам материалов из которых сделаны контактные соединения:

  1. Стойкость против коррозии;
  2. Повышенные теплопроводность, а так же электропроводность;
  3. Маленькая твердость материала, для создания уменьшения силы нажатия;
  4. Устойчивость против образования пленки с высоким r.;
  5. Малая эрозия материала;
  6. Высокая твердость — необходима для уменьшения естественного механического износа в случае частых включений и отключений;
  7. Повышенные значения электрического напряжения и тока, которые необходимы для дугообразования;
  8. Высокая дугостойкость материалов (температура плавления);
  9. Низкая стоимость материалов, а так же простота их обработки.

Все вышеперечисленные требования очень противоречивы, и поэтому почти не представляется возможным найти именно тот материал, который мог бы удовлетворять всем этим требованиям.

Неподвижные и подвижные электрические контакты изготавливают из ниже перечисленных материалов:

Медные контакты — отвечают практически всем перечисленным требованиям, кроме требования коррозионной стойкости. В меди, оксиды имеют очень низкую проводимость. Медь — это самый широко распространенный материал контактных соединений и используется как для коммутирующих, так и для разборных контактов. В составе разборных контактных соединений используются антикоррозионные покрытия их рабочей поверхности. В составе коммутирующих контактов медь может применяться при нажатиях превышающих 3Н для любых режимов работы, за исключением продолжительного. Медь не рекомендуется при использовании в продолжительном режиме, но если вдруг она применена, то непременно необходимо принять специальные меры для качественной борьбы с окислением всех рабочих поверхностей. Материалы из меди вполне могут быть использованы в составе дугогасительных контактов. Применять медные контакты при небольших контактных нажатиях (Р

Магнитный пускатель

Для пуска электродвигателя применяются низковольтные пускатели. Выделяют реверсивные, модульные сборки. Устройство магнитного пускателя является востребованным в промышленной сфере деятельности.

Конструкция

Магнитный пускатель по конструкции содержит следующие элементы:

  • контакты;
  • небольшой мостик;
  • сердечник;
  • магнитопровод;
  • одна или несколько катушек;
  • якорь;
  • магнит;
  • пружины над контактами.

Принцип работы

Если интересуют магнитные пускатели, назначение, устройство, принцип действия, стоит разобраться в механизме. У него за счёт мостика обеспечивается разрыв силовой цепи. Поскольку применяется подвижный якорь, обеспечивается надежное электрическое соединение.

Когда магнитопровод переходит в нижнее положение, пружины зажимаются, на устройство воздействует магнитное поле. Якорь отходит от контактов, и обмотки катушки ничего не угрожает.

Интересно! Устройства для функционирования подключаются к источнику напряжения.

Пользователи задаются вопросом, какие бывают магнитные пускатели. На самом деле учитывается категория. В зависимости от расположения элементов выделяют следующие разновидности:

  • модификации открытого типа;
  • автоматические защищённые элементы;
  • устройство с влагонепроницаемым корпусом.

Разделение по конструктивным особенностям:

  • с кнопкой на корпусе;
  • с дополнительными контактами;
  • с тепловым реле.

Открытого исполнения

Пускатели открытого исполнения устанавливаются в шкафах. Они монтируются в панелях, и делается все возможное, чтобы защитить их от влияния атмосферных факторов. Не допускается попадание пыли, а также влаги. Распространенными считаются модификации со следующими характеристиками:

  • Номинальный ток от 9 ампер.
  • Напряжение до 380 Вольт.
  • Контакты — 1 или 3.
  • Степень защиты IP20.
  • Коммутационная износостойкость от 2К.
  • Средние размеры 70 на 40 на 80 мм.

Продаются мощные аппараты в комбинации с тепловым реле. У них высокий параметр допустимой температуры (+ 60 градусов). Также они не боятся повышенной влажности. Если присмотреться к моделям компанию Pro, с номинальным напряжением 380 вольт, у таких моделей имеется изоляция, а мощность потребления катушки доходит до 800 Вт.

К числу прочих особенностей, приписывают оперативное срабатывание и значительную коммутационную износостойкость. Магнитные пускатели производятся с естественным охлаждением. Они, в первую очередь, предназначены для дистанционной остановки, пуска двигателей. Допускаются моторы с короткозамкнутым ротором. Также встречается продукция «Евростандарт», которая имеет следующие характеристики:

  • Номинальный ток 60 ампер.
  • Рабочее напряжение 380 Вольт.
  • Износостойкость — категория as3.
  • Номинальное напряжение изоляции до 600 Вольт.
  • Средние габариты 120 на 85 на 115 мм.
  • Крепление осуществляется по рейке.
  • Мощность двигателей от 30 кВт.
  • Средний вес 1.3 кг.

Защищенного исполнения

Пускатели защищенного исполнения, подходят для помещений с пониженным уровнем влажности. Элементы защищены от воздействия пыли. Установки зачастую производятся компанией «Евростандарт». У них номинальное напряжение доходит до 660 Вольт, потребляемая пусковая мощность 7.5 кВт.

Средние габариты — 160 на 90 на 116 мм, установочные размеры средние 150мм, а масса от 0.5 килограмм. Есть пускатели с реверсивной оболочкой, используется тепловое реле. Степень защиты может быть ip54. Модификации годятся для работы с переменным током в цепи управления. Разрешается использовать сигнальные лампы либо кнопочные реле. Также встречаются пускатели серии ПО для трансформаторов.

  • Частота от 50 герц.
  • Замыкающие контакты — 2 штуки.
  • Номинальный ток 100-200 ампер.
  • Минимальная допустимая температура — минус 40 градусов.
  • Защита ip30.
  • Допустимая максимальная температура окружающей среды — плюс 60 градусов.

Стоит обратить внимание на пускатели серии КТ с номинальным напряжением 380 вольт. Рабочий ток составляет более 100 ампер. У них предусмотрено три и более контактов. Магнитные пускатели серии ПМЛ способны работать в местах с повышенным уровнем вибрации.

У них высокий показатель относительной влажности, плюс они не боятся ультрафиолетового излучения. Установки могут использоваться в нишах, а также в панелях.

Пылебрызгонепроницаемого исполнения

Установки пылебрызгонепроницаемого исполнения должны устанавливаться под навесами. Оборудование не боится воздействия воды, а также пыли. Элементы защищены от воздействия ультрафиолета. Востребованными остаются модификации с напряжением 660 Вольт, которые могут работать в цепи с номинальным током 10 ампер.

Модели поставляются с винтовыми креплениями, монтируются на рейку. Компания «Пускконтакт» предлагает устройства для трехфазных асинхронных электродвигателей. Параметры моделей из серии ПКЛ:

  • Установочные размеры 50 на 30 мм.
  • Мощность двигателя от 4 кВт.
  • Средняя масса 0.4 кг.
  • Номинальный ток более 10 ампер.
  • Напряжение изоляции до 700 Вольт.

Отдельная классификация

Магнитные пускатели различаются по типу предназначения. Есть модификации для слабых, средних и сильных индуктивных нагрузок. Отдельно выпускаются модели для асинхронных электродвигателей переменного тока.

Интересно! Распространенными считаются модификации под реверсивную сеть.

Кнопочный пост на корпусе прибора

Кнопочные посты необходимы для дистанционного управления техникой, устройства отличаются по функциональности. При подборе оборудования учитываются эксплуатационные характеристики. Зачастую кнопочные посты применяются под электрические двигатели. Оператор может находиться удалённо от техники.

В промышленности, установки устанавливаются на краны либо подвижные составы. Также разрешается управлять вентиляторами либо гидронасосами. На рабочем месте можно создать целый комплекс оборудования с одним пультом управления. Основная задача — вовремя включать и отключать электрооборудование. Учитывается класс привода и тип стартера.

Если посмотреть на рынок, кнопочные посты производятся с открытым, закрытым корпусом, поэтому учитывается защищенность. При подборе берется в расчет уровень напряжения. Если рассматривать высоковольтное оборудование, требуется кнопочный пост для работы в цепи постоянного тока. Большинство постов способны воздействовать на коммутатор.

Пример! Если подключить его к асинхронному двигателю, можно управлять оборотами. Тоже самое можно сказать про реверс. В данном случае опять же облегчается работа оператора. За станком он способен менять обороты мотора вперёд, назад, и выбирать необходимый режим.

Подключение двигателя может осуществляться напрямую либо через магнитный пускатель. Контроллер останавливается через кнопку. Распространенными считаются однокнопочные, двухкнопочные посты, на которых изображены обозначения «запуск», «стоп». Простые модификации такие, как токарный станок, делаются с одной кнопкой. В отдельную категорию выделены элементы для регулировки кран-балок. У них кнопки толкателя являются защищенными, отличаются по количеству контактов.

Из элементов используются встроенные пружины и набор специальных фиксаторов. Это необходимо для возвращения контакта в исходное положение. Магнитные пускатели к постам подключаются напрямую. Если рассматривать модели с открытыми корпусами, они считаются менее защищенными и не безопасны в использовании, у них ограниченная сфера применения.

Дополнительные блокировочные и сигнальные контакты

Существуют магнитные пускатели с замыкающими, разъединяющими группами. Плюс встречаются модификации со встроенными контактами, они поставляются с подставками. Если взглянуть на принципиальную схему, применяется электрическая блокировка.

Ток и напряжение втягивающей катушки

Средний параметр тока у пускателей — 15 миллиампер, а сопротивление доходит до 15 Ом. Значительные изменения напряжения для катушки считаются критическими. Если рассматривать реостат, сопротивление доходит до 160 Ом. При оценке элементов, учитывается показатель остаточного тока, который зависит от частоты. Со стабилизатором напряжения данный параметр значительно ниже.

Если требуется рассчитать рабочий ток катушки, учитывается длина кабеля и напряжение. Постоянный ток связан с блоком управления. Катушки высокого рабочего тока восприимчивы к изменению индуктивности, а также сопротивления. Элементы поставляются с якорями, поэтому требуется проверка контакторов. На рынке встречаются модификации с изоляторами, которые защищают токоведущую часть.

Когда двигатель запускается, номинальное напряжение возрастает. Катушки могут перегорать, если повышается пусковой ток. В разомкнутых контактах наблюдается небольшой зазор, но полное сопротивление происходит, когда магнитопровод опускается.

Наличие теплового реле в схеме

Реле называют устройством, восприимчивое к температуре либо тепловому потоку. В цепи встречаются механические, электрические модификации. Современными считаются оптические устройства, которые работают по принципу линейного расширения. Если разбирать элементы, узлы состоят из двух стержней. Встречаются модели с удлинителями и без них.

В отдельную категорию выделены биметаллические реле с высоким показателем преломления. Внутри устройства применяются подвижные контакты, есть пластина. Также в них используется электрическая цепь замкнутого типа. В качестве материала применяется не только сталь, медь, но и латунь. Пластины могут быть со спиралью либо без неё, многое зависит от уровня расширения.

Важно! При помощи специальных приборов выясняется амплитуда изменения. Когда контакты неподвижны, можно управлять цепью.

Монтаж и подключение

В сети представлены схемы подключения с катушкой на 220 вольт. Для этого используются кнопочные посты. Встречаются элементы на 1 и 2 контакта. Для подключения необходимо клемма заземления. При включении пускателя к сети не обойтись без дополнительного шнура, который фиксируется к вилке. Силовые контакты должны находиться в замкнутом состоянии. Посмотрев однофазную цепь, провод подается на ноль.

В случае чего фазу можно перекинуть. Пускатели считаются удобными, поскольку не требуется использовать дополнительные проводники. Специалисты рекомендуют брать рубильник, но это не обязательно. Чтобы наладить стабильную работу двигателя, используется схема с кнопками «пуск» и «стоп». Магнитный пускатель в данном случае позволит изменять режимы работы мотора.

Если рассматривать последовательное подключение, то во время эксплуатации придется удерживать кнопку «пуск». Когда налажено параллельное подключение, придется устанавливать вспомогательные контакты.

Рекомендации по уходу

Пускатель считается простым устройством, однако при эксплуатации могут наблюдаться различные неприятности. При работе с асинхронным двигателем из строя выходят отдельные детали. Таким образом, следует при монтаже выполнять определенные правила:

  • чистка пускателя;
  • проверка магнитной системы;
  • снятие кожуха;
  • проверка свободного хода;
  • оценка главных контактов;
  • проверка сопротивления;
  • затяжка крепления.

Выше рассмотрены устройства магнитного пускателя, а также его виды. Данный элемент требуется для работы двигателя, и незаменим в промышленной сфере. При подборе оборудования стоит ознакомиться с базовым принципом функционирования, знать классификацию и правила монтажа.

Рейтинг
( Пока оценок нет )
Загрузка ...