Как подключить выпрямитель для электромагнитного тормоза двигателя?

Содержание

Схемы торможения асинхронных двигателей

После отключения от сети электродвигатель продолжает движение по инерции. При этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Поэтому скорость электродвигателя через промежуток времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Такая остановка электродвигателя при движении по инерции называется свободным выбегом . Многие электродвигатели, работающие в продолжительном режиме или со значительными нагрузками, останавливают путем свободного выбега.

В тех же случаях, когда продолжительность свободного выбега значительна и оказывает влияние на производительность электродвигателя (работа с частыми пусками), для сокращения времени остановки применяют искусственный метод преобразования кинетической энергии, запасенной в движущейся системе, называемый торможением .

Все способы торможения электродвигателей можно разделить на два основных вида: механическое и электрическое.

При механическом торможении кинетическая энергия преобразуется в тепловую, за счет которой происходит нагрев трущихся и прилегающих к ним частей механического тормоза.

При электрическом торможении кинетическая энергия преобразуется в электрическую и в зависимости от способа торможения двигателя либо отдается в сеть, либо преобразуется в тепловую энергию, идущую на нагрев обмоток двигателя и реостатов.

Наиболее совершенными считают такие схемы торможения, при которых механические напряжения в элементах электродвигателя незначительны

Схемы динамического торможения асинхронных двигателей

Для управления моментом при динамическом торможении асинхронным двигателем с фазным ротором по программе с заданием времени используются узлы схем, приведенные н а рис. 1, из которых схема р и с. 1, а применяется пр и наличии сети постоянного тока, а схема рис. 1, б — при отсутствии ее.

В качестве тормозных резисторов в роторе используются пусковые резисторы R1, включение которых в режиме динамического торможения производится отключением контакторов ускорения, показанных в рассматриваемых узлах схем условно в виде одного контактора КМ3, команда на отключение которого подается блокировочным контактом линейного контактора КМ1.

Рис. 1 Схемы управления динамическим торможением асинхронных двигателей с фазным ротором с заданием времени при наличии и отсутствии сети постоянного тока

Эквивалентное значение постоянного тока в обмотке статора при торможении обеспечивается в схеме рис. 1, а дополнительным резистором R2, а в схеме рис. 1. б соответствующим выбором коэффициента трансформации трансформатора Т.

Контактор торможения КМ2 может быть выбран как на постоянном, так и на переменном токе в зависимости от требуемого числа включений в час и использования пусковой аппаратуры.

Приведенные н а рис. 1 схемы управления могут использоваться для управления режимом динамического торможения асинхронного двигателя с короткозамкнутым ротором. Для этого обычно используется схема с трансформатором и выпрямителем, приведенная на р и с. 1 , б.

Схемы торможения противовключением асинхронных двигателей

При управлении моментом при торможении противовключением асинхронного двигателя с короткозамкнутым ротором с контролем скорости применяется узел схемы, приведенный на рис. 2.

В качестве реле противовключения используется реле контроля скорости SR, укрепляемое на двигателе. Реле настраивается на напряжение отпадания, соответствующее скорости, близкой к нулю и равной (0,1 — 0,2) ω уст.

Схема используется для остановки двигателя с торможением противовключением в реверсивной (рис. 2, а) в в нереверсивной (рис. 2, б) схемах. Команда SR используется для отключения контакторов КМ2 или КМЗ и КМ4, отключающих обмотку статора от напряжения сети при скорости двигателя, близкой к нулю. При реверсировании двигателя команды SR не используются.

Рис. 2 Узлы схемы управления торможения противовключением асинхронного двигателя с коооткозамкнутым ротором с контролем скорости при остановке в реверсивной и нереверсивной схемах

Узел управления асинхронным двигателем с фазным ротором в режиме торможения противовключеиием с одной ступенью, состоящей из R1 и R2, приведен на рис. 3. Управляющее реле противовключения KV, в качестве которого применяется, например, реле напряжения постоянного тока типа РЭВ301, которое подключено к двум фазам ротора через выпрямитель V. Реле настраивается на напряжение отпадания.

Часто для настройки реле KV используется дополнительный резистор R3. Схема в основном применяется при реверсировании АД со схемой управления, приведенной на рис. 3, а, но может использоваться и при остановке в нереверсивной схеме управления, приведенной на рис. 3, б.

При пуске двигателя реле противовключения КV не вклгочатся и ступень противовключения резистора ротора R1 выводится сразу после подачи управляющей команды на пуск.

Реле KV отключает контакторы КМ4 и КМ5 и тем самым вводит полное сопротивление Rl + R 2 ротор двигателя.

В конце процесса торможения при скорости асинхронного двигателя, близкой к нулю и составляющей примерно 10 — 20 % установившейся начальной скорости ω пер = (0,1 — 0,2) ωуст , реле KV отключается, обеспечивая команду на отключение ступени противовключения R1 с помощью контактора КМ4 и на реверсирование электродвигателя в реверсивной схеме или команду на остановку электродвигателя в нереверсивной схеме.

В приведенных схемах в качестве управляющего устройства может применяться командоконтроллер и другие аппараты.

Схемы механического торможения асинхронных двигателей

При остановке асинхронных двигателей, а также для удержания механизма передвижения или подъема, например в крановых промышленных установках, в неподвижном состоянии при отключенном двигателе применяется механическое торможение. Оно обеспечивается электромагнитными колодочными или другими тормозами с трехфазным электромагнитом переменного тока, который при включении растормаживает тормоз. Электромагнит тормоза YB включается и отключается вместе с двигателем (рис 4, а).

Напряжение на электромагнит тормоза YB может подаваться контактором торможения КМ2, если нужно отключать тормоз не одновременно с двигателем, а с некоторой задержкой по времени, например после окончания электрического торможения (рис. 4, б)

Выдержку времени обеспечивает реле времени КТ, получающее команду на начало отсчета времени, обычно при отключении линейного контактора КМ1 (рис. 4, в).

Рис. 4. Узлы схем, осуществляющих механическое торможение асинхронных двигателей

В асинхронных электроприводах применяются также электромагнитные тормоза постоянного тока при управлении электродвигателем от сети постоянного тока.

Схемы конденсаторного торможения асинхронных двигателей

Для торможения АД с короткозамкнутым ротором применяется также конденсаторное торможение с самовозбуждением. Оно обеспечивается конденсаторами C1 — С3, подключенными к обмотке статора. Включаются конденсаторы по схеме звезды (рис. 5, а) или треугольника (рис. 5, б).

Читайте также:  Как установить блок розеток в стене – инструкция от а до я

Рис. 5. Узлы схем, осуществляющих конденсаторное торможение асинхронных двигателей

Питание тормозов постоянного тока

Традиционным решением является применение классических выпрямителей, однополупериодных или двухполупериодных, в зависимости от напряжения переменного тока.

Серия выпрямителей B2 обеспечивает возможность выполнения соответствующего выбора относительно способа применяемого выпрямления, а также отключения цепей тормоза.

Выпрямитель B2 – 1P представляет собой узел в сборе для непосредственного монтажа. Оснащенный в присоединительную гребенку выпрямитель упрощает монтаж и застройку в работающих совместно цепях. Выпрямитель позволяет на подачу входного напряжения макс. 600VAC, что после выпрямления дает возможность получения постоянного напряжения величиной являющейся частным входного напряжения и постоянной 2,22.

Например, напряжение 380VAC, подаваемое на зажимы выпрямителя, позволяет получить на выходе выпрямителя постоянного тока 170VDC — 380VAC : 2,22 = 170VD — напряжение 220VAC подаваемое на входе выпрямителя позволяет получить на выходе постоянное напряжение 96VD — 220VAC : 2,22 = 96VDC

Выпрямитель B2 – 2P представляет собой узел в сборке для непосредственного монтажа. Оснащенный в присоединительную гребенку выпрямитель упрощает монтаж и застройку в работающих совместно цепях. Выпрямитель позволяет на подачу входного напряжения макс. 400VAC, что после выпрямления дает возможность получения постоянного напряжения величиной являющейся частным входного напряжения и постоянной 1,11.

Например, напряжение 220VAC, подаваемое на зажимы выпрямителя, позволяет получить на выходе выпрямителя постоянного тока 190VDC — 220VAC : 1,11 = 190VDC

Отсоединение цепей питания по стророне переменного тока

Схема включения выпрямителя в контур электродвигателя.

Ток катушки прерывается между катужкой и системой питания (выпрямления). Магнитное поле редуцируется очень быстро, малое время действия тормоза приводит к быстрому увеличению тормозного момента. При отключении по стороне постоянного тока в катушке образуется высокое напяжение выброса приводящее к более быстрому изнашиванию контактов в следствие искрения. Для защиты катушки от напряжений выброса и для защиты контактов от чрезмерного изнашивания выпрямляющие системы оснащены в защитные средства позволяющие на соединение тормоза при постоянном токе. Способ управления тормоза согласно указанной схеме позволяет применять привод везде, гре требуются большие количества соединений, а также позиционирование привода.

Отсоединение цепей питания по стороне постоянного тока

Схема представляет собой включение выпрямителя в контур питания электродвигателя.

При отключении напряжения магнитное поле приводит, что ток катушки проходит дальше через выпрямительные диоды и медленно уменьшается. Магнитное поле редуцируется ступенчато, что приводит к длительному времени срабатывания тормоза, а вместе с тем к замедленному росту тормозного момента. Если время срабатывания не имеет значения, то следовало бы соединить тормоз при переменном токе. При отключении системы питания действуют как однонаправленные диоды. Является это несомненным упрощением в соединении двигателя с тормозом, но имеет оговоренные выше недостатки.

Новое поколение систем питания тормозов постоянного тока

Система PS–1 была построена на базе техники полупроводников типа MOSFET, что позволило получить эффекты, недостижимые в традиционных решениях. Электромагнит тормоза, питаемый посредством системы такой же конструкции, позволяет получить тормозом параметры времени включения и отключения аналогичные в случае прерывания контура по стороне постоянного тока. Полученные параметры однако не требуют применения дополнительных электрических контуров и выключателей.

Простота монтажа и получаемые параметры обеспечивают очень широкое применение, особенно там, где требуется позиционирование приводов, работа с большой частотой соединений, обусловленная повторяемостью времени включения и отключения тормозов.

Система питания PS–1 представляет собой готовый узел для непосредственного монтажа. Оснащенная в 4-ех зажимную планку позволяет на свободное приспособление в каждом совместно работающем контуре. Система приспособлена для питания из источника переменного тока величиной 380 — 400VAC, макс. 420VAC, что после выпрямления и соответствующего сформирования позволяет получить постоянное напряжение величиной 170-180VDC для питания тормоза.

Прилагаемая ниже схема представляет способ включения системы PS-1 в контур питания тормоза совместно работающего с электродвигателем 3x380VAC с обмоткой соединенной в звезду.

Система PS-1

Электромагнит тормоза, питаемый выпрямителем такой конструкции, позволяет получить такие же параметры времени включения и выключения, как и в случае прерывания контура традиционным выпрямителем при постоянном токе. Полученные параметры однако не требуют применения дополнительных электрических контуров и выключателей.

Это обеспечивает очень широкое применение, особенно там, где требуется позиционирование приводов, работа с большой частотой соединений, обусловленная повторяемостью времени включения и отключения тормозов.

Система питания PS–1 представляет собой готовый узел для непосредственного монтажа. Выпрямитель принимает входное напряжение 220 — 230 VAC, макс. 250 VAC, что после выпрямления дает постоянное напряжение величиной 190-205 VDC.

Представленные выше конструкционные решения тормозов и самотормозящих электродвигателей не исчерпывают всех решений узла: двигатель — тормоз. В настоящем мы сконцентрировались направленные на представлении основного офертного предложения и применения, связанного с их питанием. Здесь мы представили лишь существо решений, применяемых обычно в нашей фирме.

Питание тормозов постоянного тока

Традиционным решением является применение классических выпрямителей, однополупериодных или двухполупериодных, в зависимости от напряжения переменного тока.

Серия выпрямителей B2 обеспечивает возможность выполнения соответствующего выбора относительно способа применяемого выпрямления, а также отключения цепей тормоза.

Выпрямитель B2 – 1P представляет собой узел в сборе для непосредственного монтажа. Оснащенный в присоединительную гребенку выпрямитель упрощает монтаж и застройку в работающих совместно цепях. Выпрямитель позволяет на подачу входного напряжения макс. 600VAC, что после выпрямления дает возможность получения постоянного напряжения величиной являющейся частным входного напряжения и постоянной 2,22.

Например, напряжение 380VAC, подаваемое на зажимы выпрямителя, позволяет получить на выходе выпрямителя постоянного тока 170VDC — 380VAC : 2,22 = 170VD — напряжение 220VAC подаваемое на входе выпрямителя позволяет получить на выходе постоянное напряжение 96VD — 220VAC : 2,22 = 96VDC

Выпрямитель B2 – 2P представляет собой узел в сборке для непосредственного монтажа. Оснащенный в присоединительную гребенку выпрямитель упрощает монтаж и застройку в работающих совместно цепях. Выпрямитель позволяет на подачу входного напряжения макс. 400VAC, что после выпрямления дает возможность получения постоянного напряжения величиной являющейся частным входного напряжения и постоянной 1,11.

Например, напряжение 220VAC, подаваемое на зажимы выпрямителя, позволяет получить на выходе выпрямителя постоянного тока 190VDC — 220VAC : 1,11 = 190VDC

Отсоединение цепей питания по стророне переменного тока

Схема включения выпрямителя в контур электродвигателя.

Ток катушки прерывается между катужкой и системой питания (выпрямления). Магнитное поле редуцируется очень быстро, малое время действия тормоза приводит к быстрому увеличению тормозного момента. При отключении по стороне постоянного тока в катушке образуется высокое напяжение выброса приводящее к более быстрому изнашиванию контактов в следствие искрения. Для защиты катушки от напряжений выброса и для защиты контактов от чрезмерного изнашивания выпрямляющие системы оснащены в защитные средства позволяющие на соединение тормоза при постоянном токе. Способ управления тормоза согласно указанной схеме позволяет применять привод везде, гре требуются большие количества соединений, а также позиционирование привода.

Отсоединение цепей питания по стороне постоянного тока

Схема представляет собой включение выпрямителя в контур питания электродвигателя.

При отключении напряжения магнитное поле приводит, что ток катушки проходит дальше через выпрямительные диоды и медленно уменьшается. Магнитное поле редуцируется ступенчато, что приводит к длительному времени срабатывания тормоза, а вместе с тем к замедленному росту тормозного момента. Если время срабатывания не имеет значения, то следовало бы соединить тормоз при переменном токе. При отключении системы питания действуют как однонаправленные диоды. Является это несомненным упрощением в соединении двигателя с тормозом, но имеет оговоренные выше недостатки.

Читайте также:  Обзор электрических тепловентиляторов для дома

Новое поколение систем питания тормозов постоянного тока

Система PS–1 была построена на базе техники полупроводников типа MOSFET, что позволило получить эффекты, недостижимые в традиционных решениях. Электромагнит тормоза, питаемый посредством системы такой же конструкции, позволяет получить тормозом параметры времени включения и отключения аналогичные в случае прерывания контура по стороне постоянного тока. Полученные параметры однако не требуют применения дополнительных электрических контуров и выключателей.

Простота монтажа и получаемые параметры обеспечивают очень широкое применение, особенно там, где требуется позиционирование приводов, работа с большой частотой соединений, обусловленная повторяемостью времени включения и отключения тормозов.

Система питания PS–1 представляет собой готовый узел для непосредственного монтажа. Оснащенная в 4-ех зажимную планку позволяет на свободное приспособление в каждом совместно работающем контуре. Система приспособлена для питания из источника переменного тока величиной 380 — 400VAC, макс. 420VAC, что после выпрямления и соответствующего сформирования позволяет получить постоянное напряжение величиной 170-180VDC для питания тормоза.

Прилагаемая ниже схема представляет способ включения системы PS-1 в контур питания тормоза совместно работающего с электродвигателем 3x380VAC с обмоткой соединенной в звезду.

Система PS-1

Электромагнит тормоза, питаемый выпрямителем такой конструкции, позволяет получить такие же параметры времени включения и выключения, как и в случае прерывания контура традиционным выпрямителем при постоянном токе. Полученные параметры однако не требуют применения дополнительных электрических контуров и выключателей.

Это обеспечивает очень широкое применение, особенно там, где требуется позиционирование приводов, работа с большой частотой соединений, обусловленная повторяемостью времени включения и отключения тормозов.

Система питания PS–1 представляет собой готовый узел для непосредственного монтажа. Выпрямитель принимает входное напряжение 220 — 230 VAC, макс. 250 VAC, что после выпрямления дает постоянное напряжение величиной 190-205 VDC.

Представленные выше конструкционные решения тормозов и самотормозящих электродвигателей не исчерпывают всех решений узла: двигатель — тормоз. В настоящем мы сконцентрировались направленные на представлении основного офертного предложения и применения, связанного с их питанием. Здесь мы представили лишь существо решений, применяемых обычно в нашей фирме.

Электродвигатель с тормозом ЭМТ

Электродвигатели со встроенным электромагнитным тормозом

Электродвигатель со встроенным тормозом ЭМТ – модификация стандартного электродвигателя АИР. Комплектуется специальным устройством, мгновенно замедляющим вращение вала электродвигателя. Расположен электромагнитный тормоз между задним подшипниковым щитом и вентилятором.

У «Систем качества» можно купить двигатели со встроенным электротормозом или установить ЭМТ на ваш электродвигатель АИР, 4АМ, 5АМ или 4АМУ.
Заказать новый электродвигатель по телефону

Электромагнитный тормоз

Используется для остановки моторов на конвейерах, станках, талях, кранах, эскалаторах и тд. Основная задача – остановка привода в нужном положении или определенном времени.

Электромагнитный тормоз двигателя бывает двух видов:

  • Подключаемые к сети переменного тока
  • Подключаемые к постоянному току

Устройство ЭМТ

Устройство встроенного электромагнитного тормоза электродвигателя (далее ЭМТ) изображено на чертеже.

  1. Якорь.
  2. Нажимные пружины.
  3. Ротор.
  4. Втулка.
  5. Вал.
  6. Штифт.
  7. Корпус эл. магнита.
  8. Катушка тормоза.
  9. Втулочные винты.
  10. Фрикционные кольца.
  11. Шпонка.
  12. Стопор.

δ – воздушный зазор.

Электромагнитный дисковый тормоз переменного и постоянного тока

Электромагнитные дисковые тормоза переменного тока наиболее распространенные. Обладают простой конструкцией и легкостью в производстве – не используется дополнительное оборудование для выпрямления тока. В сравнении с постоянным током, менее надежные и требуют постоянной регулировки. Подключается к трехфазным электросетям с напряжением 380 и 220 В. Не предназначены для тяжелых режимов работы, используются при отсутствии потребности в частых включениях. При торможении возникают большие динамические усилия, которые сопровождаются толчками и ударами.

Встроенные электромагнитные тормоза постоянного тока, обладают высокими энергетическими показателями, надежны, экономичны и лишены недостатков переменного тока. Для преобразования напряжения, в конструкции ЭМТ постоянного тока предусмотрен выпрямитель – отображается на стоимости конструкции. Торможение происходит плавно – электромагнитные тормоза не подвергаются высокому износу.

Принцип работы и регулировка

Принцип работы заключается в затормаживании вала ротора с помощью тормозного диска. В состоянии бездействия, электродвигатель находится в заторможенном состоянии. Тормозной момент создается за счет нажима пружин на якорь, который в свою очередь прижимает тормозной диск и блокирует его. При подаче напряжения на катушки электромагнита якорь притягивается, обеспечивает свободное вращение вала электродвигателя.

Регулировка электромагнитного тормоза выполняется регулировочной гайкой, которая изменяет усилия нажатия пружин на якорь тормоза, тем самым регулируя тормозной момент.

Особенности конструкции и строение

Компонент двигателяОсобенности
1.Режим работы — S4Предназначен для повторно-кратковременного режима работы
2. Вал ротораДлинее чем у общепромышленного мотора, дополнительная длина предназначена для установки тормоза между подшипниковым щитом и вентилятором
3. Рычаг тормозаДает возможность ручного растормаживания

Габаритно-присоединительные размеры электродвигателей с электромагнитным тормозом

Присоединительные размеры не меняются при комплектации двигателя тормозом, габариты меняются. У электромоторов с тормозом габариты отличаются от обычных двигателей длиной (L30)

Длина АИР 71, 80, 90

(Сравнение электродвигателей с электромагнитным тормозом и без него)

Длина L30, ммМасса, кгДлина L30, ммМасса, кг
ДвигательС эмтБез эмтС ЭМТБез эмтДвигательС эмтБез эмтС ЭМТБез эмт
АИР 71А2330270128.7АИР 80В237632118.115
АИР 71В4149.4АИР 80В417.213.8
АИР 71В29.5АИР 80В618.715.3
АИР 71А4128.1АИР 80В818.414.8
АИР 80А235229715.812.4АИР 90L239233724.119
АИР 80А415.211.9АИР 90L422.918.1
АИР 80А615.111.6АИР 90L623.719
АИР 80А816.712.8АИР 90LA822.117.7
АИР 90LB825.120.5

Длина АИР 100, 112, 132

(Сравнение электродвигателей с электромагнитным тормозом и без него)

Длина L30, ммМасса, кгДлина L30, ммМасса, кг
ДвигательСБезСБезДвигательСБезСБез
АИР 100S442439030.923АИР 112МА85684434533.4
АИР 100L44443729.2АИР 112МВ850.539
АИР 100L63527АИР 132M25935467460.4
АИР 100L834.724АИР 132S45554837553.5
АИР 112М25684434540АИР 132M45938566.3
АИР 112М46738.5АИР 132S65557152.3
АИР 112МА647.533.4АИР 132M65938864.5
АИР 112МВ65238.8АИР 132S85555466352.2
АИР 132M85938862.2

Длина АИР 160, 180

(Сравнение электродвигателей с электромагнитным тормозом и без него)

Длина L30, ммМасса, кгДлина L30, ммМасса, кг
ДвигательСБезСБезДвигательСБезСБез
АИР 160S2830670118106АИР 180S2860710170160
АИР 160M2700141133АИР 180S4175170
АИР 160S4670135127АИР 180M2900203180
АИР 160M4700150140АИР 180M4190
АИР 160S6670134122АИР 180M6180175
АИР 160M6700154150АИР 180M8175160

Купить электродвигатель с тормозом

Купить электродвигатель с электромагнитным встроенным тормозом, либо отдельно ЭМТ для вашего двигателя АИР, можно у «Систем Качества». Также предлагаем установку тормозов на ваш электродвигатель и ремонт двигателей с последующей гарантией.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

Схемы торможения асинхронных двигателей

После отключения от сети электродвигатель продолжает движение по инерции. При всем этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Потому скорость электродвигателя через просвет времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Такая остановка электродвигателя при движении по инерции именуется свободным выбегом . Многие электродвигатели, работающие в длительном режиме либо со значительными нагрузками, останавливают методом свободного выбега.

В тех же случаях, когда длительность свободного выбега значительна и влияет на производительность электродвигателя (работа с частыми запусками), для сокращения времени остановки используют искусственный способ преобразования кинетической энергии, запасенной в передвигающейся системе, именуемый торможением .

Все методы торможения электродвигателей можно поделить на два главных вида: механическое и электронное.

При механическом торможении кинетическая энергия преобразуется в термическую, за счет которой происходит нагрев трущихся и прилегающих к ним частей механического тормоза.

При электронном торможении кинетическая энергия преобразуется в электронную и зависимо от метода торможения мотора или отдается в сеть, или преобразуется в термическую энергию, идущую на нагрев обмоток мотора и реостатов.

Более совершенными считают такие схемы торможения, при которых механические напряжения в элементах электродвигателя малозначительны

Схемы динамического торможения асинхронных движков

Для управления моментом при динамическом торможении асинхронным движком с фазным ротором по программке с заданием времени употребляются узлы схем, приведенные н а рис. 1, из которых схема р и с. 1, а применяется пр и наличии сети неизменного тока, а схема рис. 1, б — при отсутствии ее.

В качестве тормозных резисторов в роторе употребляются пусковые резисторы R1, включение которых в режиме динамического торможения делается отключением контакторов ускорения, показанных в рассматриваемых узлах схем условно в виде 1-го контактора КМ3, команда на отключение которого подается блокировочным контактом линейного контактора КМ1.

Рис. 1 Схемы управления динамическим торможением асинхронных движков с фазным ротором с заданием времени при наличии и отсутствии сети неизменного тока

Эквивалентное значение неизменного тока в обмотке статора при торможении обеспечивается в схеме рис. 1, а дополнительным резистором R2, а в схеме рис. 1. б подходящим выбором коэффициента трансформации трансформатора Т.

Контактор торможения КМ2 может быть избран как на неизменном, так и на переменном токе зависимо от требуемого числа включений в час и использования пусковой аппаратуры.

Приведенные н а рис. 1 схемы управления могут употребляться для управления режимом динамического торможения асинхронного мотора с короткозамкнутым ротором. Для этого обычно употребляется схема с трансформатором и выпрямителем, приведенная на р и с. 1 , б.

Схемы торможения противовключением асинхронных движков

При управлении моментом при торможении противовключением асинхронного мотора с короткозамкнутым ротором с контролем скорости применяется узел схемы, приведенный на рис. 2.

В качестве реле противовключения употребляется реле контроля скорости SR, укрепляемое на движке. Реле настраивается на напряжение отпадания, соответственное скорости, близкой к нулю и равной (0,1 — 0,2) ω уст.

Схема употребляется для остановки мотора с торможением противовключением в реверсивной (рис. 2, а) в в нереверсивной (рис. 2, б) схемах. Команда SR употребляется для отключения контакторов КМ2 либо КМЗ и КМ4, отключающих обмотку статора от напряжения сети при скорости мотора, близкой к нулю. При реверсировании мотора команды SR не употребляются.

Рис. 2 Узлы схемы управления торможения противовключением асинхронного мотора с коооткозамкнутым ротором с контролем скорости при остановке в реверсивной и нереверсивной схемах

Узел управления асинхронным движком с фазным ротором в режиме торможения противовключеиием с одной ступенью, состоящей из R1 и R2, приведен на рис. 3. Управляющее реле противовключения KV, в качестве которого применяется, к примеру, реле напряжения неизменного тока типа РЭВ301, которое подключено к двум фазам ротора через выпрямитель V. Реле настраивается на напряжение отпадания.

Нередко для опции реле KV употребляется дополнительный резистор R3. Схема в главном используется при реверсировании АД со схемой управления, приведенной на рис. 3, а, но может употребляться и при остановке в нереверсивной схеме управления, приведенной на рис. 3, б.

При пуске мотора реле противовключения КV не вклгочатся и ступень противовключения резистора ротора R1 выводится сходу после подачи управляющей команды на запуск.

Реле KV отключает контакторы КМ4 и КМ5 и тем вводит полное сопротивление Rl + R 2 ротор мотора.

В конце процесса торможения при скорости асинхронного мотора, близкой к нулю и составляющей приблизительно 10 — 20 % установившейся исходной скорости ω пер = (0,1 — 0,2) ωуст , реле KV отключается, обеспечивая команду на отключение ступени противовключения R1 при помощи контактора КМ4 и на реверсирование электродвигателя в реверсивной схеме либо команду на остановку электродвигателя в нереверсивной схеме.

В приведенных схемах в качестве управляющего устройства может применяться командоконтроллер и другие аппараты.

Схемы механического торможения асинхронных движков

При остановке асинхронных движков, также для удержания механизма передвижения либо подъема, к примеру в крановых промышленных установках, в недвижном состоянии при отключенном движке применяется механическое торможение. Оно обеспечивается электрическими колодочными либо другими тормозами с трехфазным электромагнитом переменного тока, который при включении растормаживает тормоз. Электромагнит тормоза YB врубается и отключается совместно с движком (рис 4, а).

Напряжение на электромагнит тормоза YB может подаваться контактором торможения КМ2, если необходимо отключать тормоз не сразу с движком, а с некой задержкой по времени, к примеру после окончания электронного торможения (рис. 4, б)

Выдержку времени обеспечивает реле времени КТ, получающее команду на начало отсчета времени, обычно при выключении линейного контактора КМ1 (рис. 4, в).

Рис. 4. Узлы схем, осуществляющих механическое торможение асинхронных движков

В асинхронных электроприводах используются также электрические тормоза неизменного тока при управлении электродвигателем от сети неизменного тока.

Схемы конденсаторного торможения асинхронных движков

Для торможения АД с короткозамкнутым ротором применяется также конденсаторное торможение с самовозбуждением. Оно обеспечивается конденсаторами C1 — С3, присоединенными к обмотке статора. Врубаются конденсаторы по схеме звезды (рис. 5, а) либо треугольника (рис. 5, б).

Рис. 5. Узлы схем, осуществляющих конденсаторное торможение асинхронных движков

Читайте также:  Как провести скрытую проводку в деревянном доме?
Рейтинг
( Пока оценок нет )
Загрузка ...