Как увеличить мощность с помощью трансформатора?

Содержание

Как увеличить мощность с помощью трансформатора?

Во время экспериментов с электронным трансформатором кажется, что эта схема резиновая, сколько не нагружай, а ей всё равно. В этой статье я покажу как можно выжать пол киловатта чистой мощности от вот этой простой схемы.

На рисунке представлена классическая схема электронного трансформатора. Это полумостовой автогенераторный сетевой импульсный источник питания.

В схеме имеется два трансформатора, силовой и трансформатор обратной связи.

Мощность схемы зависит от нескольких компонентов:

  • Входного выпрямителя;
  • Силовых ключей;
  • Ёмкостей полумоста;
  • Силового импульсного трансформатора.

Если заменить их на более мощные, то удастся добиться большой выходной мощности в целом.

Активными компонентами нашей схемы являются транзисторы. Это высоковольтные ключи обратной проводимости. Запуск схемы осуществляет симметричный динистор DB3.

Самые ходовые, бюджетные и мощные высоковольтные транзисторы, которые мне известны, это MJE13009 их и будем использовать, но схема не сияет высоким кпд, и одной пары ключей для наших целей может быть недостаточно, поэтому в схему добавлена вторая пара, в итоге схема приобрела такой вид:

Мощные резисторы в эмиттерных цепях являются выравнивающими, помогают равномерно нагрузить все транзисторы.

Силовой трансформатор тороидальный — намотан очень давно для какого-то проекта, сердечник крутой от эпкос, марка N87. Габаритная мощность трансформатора более 1000 ватт.

Так, как преобразователь автогенераторного типа, а рабочая частота сильно зависит от некоторых параметров и крайне нестабильна, точно рассчитать силовой трансформатор дело нелегкое, но примерный расчет можно сделать по специализированным программам зная начальную частоту преобразователя с небольшой нагрузкой, в моем случае 22 кгц.

Намоточные данные моего трансформатора приводить думаю нет смысла, так как у вас наверняка будет другой сердечник и параметры намотки будут иными.

Диодный мост — в виде 10-и амперной диодной сборки с обратным напряжением 1000 Вольт, греется, но не сильно, при долговременной работе стоит установить его на радиатор.

Трансформатор обратной связи — ферритовое колечко размером 18х12х7,5мм.

Кольцо я выдрал из блока питания компьютера, но тут просьба быть более внимательным — такие кольца стоят во входной части блока на линии 220 вольт, а не на выходе, желто белые, зелено-синие и прочие кольца, которые стоят на выходе блока питания сделаны из порошкового железа и для наших целей не подойдут, нам нужно именно ферритовое кольцо. Я использовал также и иные ферритовые кольца с проницаемостью от 1500- до 3000 работали без нареканий.

Базовые обмотки идентичны и содержать по 3 витка проводом 0,5 мм, обмотка обратной связи – всего один неполный виток проводом 1,25мм.

У многих возникают вопросы с фазировкой обмоток трансформатора обратной связи, если начало и конец обмоток перепутать, ничего не заработает, я неоднократно рассказывал и показывал как все подключается, но вопросы все ровно возникают, поэтому если кто решит повторить, просто собирайте все по плате из архива, и внимательно посмотрите на эти фото.

Естественно и на схеме и на плате точками отмечены начала всех обмоток.

Силовые транзисторы устанавливают на общий теплоотвод, изолируют их подложки например слюдяной прокладкой или более современным теплопроводящим изолирующим материалом.

  • Первый запуск всегда делается через страховочную сетевую лампу 40-60 ватт;
  • Никогда не дотрагивайтесь платы во время работы;
  • Никогда не замыкайте выход электронного трансформатора , он попросту взорвется, так как схема не имеет никаких защит помимо входного предохранителя но тот сгорает только после того как лопнут ключи.

Напряжение на выходе нашего трансформатора переменное, я выпрямил в нечистую постоянку для более менее адекватных замеров, но в выпрямителе естественно у нас будут дополнительные потери.

Сам выпрямитель STTH6003 под корпусом два мощных диода по 30 ампер соединенных катодами, такие применяются в сварочных инверторах. Выпрямитель закрепил на радиатор.

Нагружать будем старыми добрыми и чертовски мощными лампами от кинопроектора, и еще чем нибудь. Так как эти лампы в холодном состоянии имеют очень малое сопротивление нити накала, а следовательно в начальный момент будут потреблять от нашего блока питания токи гораздо больше номинального, ко входу схемы я прицепил мощный термистор, он ограничит ток пока лампы не разогреются.

Максимум, что мне удалось получить с такой нагрузкой это 460Ватт чистой выходной мощности, учитывая потери в ваттметре, а также в выпрямителе и на проводах я думаю, что не у кого не возникнет сомнений, что пол киловатта схема выдаст.

Схема очень простая, не самая капризная. Нагрузочная способность на высоте, но повторить ее особенно начинающим не рекомендую, не смотря на то, что такие схематические решения используются в промышленных блоках питания для офисных низковольтных галогенных ламп.

Как увеличить мощность электронного трансформатора

Бывает, что, собирая то или иное устройство, требуется определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам необходим мощный блок питания. Приобрести железные трансформаторы с необходимыми характеристиками на сегодняшний день не составляет труда. Но они довольно дорогостоящие, а большие размеры и вес являются их главными недостатками. А сборка и наладка хороших импульсных блоков питания весьма сложная процедура. И многие не берутся за это.

Далее, вы узнаете о том, как собрать мощный и при этом несложный блок питания, взяв за основу конструкции электронный трансформатор. По большому счету, разговор пойдет об увеличении мощности таких трансформаторов.

Для переделки был взят 50-ваттный трансформатор.

Планировалось увеличить его мощность до 300 Вт. Этот трансформатор был приобретен в ближайшем магазине и стоил примерно 100 р.

Стандартная схема трансформатора выглядит следующим образом:

Трансформатор представляет собой обычный двухтактный полумостовой автогенераторный инвертор. Симметричный динистор является основным компонентом, осуществляющим запуск схемы, поскольку он подает первоначальный импульс.

В схеме задействованы 2 высоковольтных транзистора с обратной проводимостью.

Схема трансформатора до переделки содержит следующие компоненты:

  1. Транзисторы MJE13003.
  2. Конденсаторы 0,1 мкФ, 400 В.
  3. Трансформатор, имеющий 3 обмотки, две из которых являются задающими и имеют по 3 витка провода сечением 0,5 кв. мм. Еще одна в качестве обратной связи по току.
  4. Входной резистор (1 Ом) используется как предохранитель.
  5. Диодный мост.

Несмотря на отсутствие в этом варианте защиты от КЗ, электронный трансформатор работает без сбоев. Назначение устройства – это работа с пассивной нагрузкой (к примеру, офисные «галогенки»), поэтому стабилизация выходного напряжения отсутствует.

Читайте также:  Что такое замыкание

Что касается основного силового трансформатора, то его вторичная обмотка выдает около 12 В.

Теперь взгляните на схему трансформатора с увеличенной мощностью:

В ней стало даже меньше компонентов. Из первоначальной схемы были взяты трансформатор обратной связи, резистор, динистор и конденсатор.

Оставшиеся детали были извлечены из старых компьютерных БП, а это 2 транзистора, диодный мост и силовой трансформатор. Конденсаторы были приобретены отдельно.

Транзисторы не помешает заменить на более мощные (MJE13009 в корпусе TO220).

Диоды были заменены на готовую сборку (4 А, 600 В).

Также годятся и диодные мосты от 3 А, 400 В. Емкость должна составлять 2,2 мкФ, но можно и 1,5 мкФ.

Силовой трансформатор был изъят из БП формата ATX на 450 Вт. На нем были удалены все штатные обмотки и намотаны новые. Первичная обмотка была намотана тройным проводом 0,5 кв. мм в 3 слоя. Общее количество витков – 55. Необходимо следить за аккуратностью намотки, а также за ее плотностью. Каждый слой изолировался синей изолентой. Расчет трансформатора производился опытным путем, и была найдена золотая середина.

Вторичная обмотка наматывается из расчета 1 виток – 2 В, но это лишь в том случае если сердечник такой же, как в примере.

При первом включении обязательно использовать страховочную лампу накаливания на 40-60 Вт.

Стоит заметить, что в момент запуска лампа не вспыхнет, поскольку после выпрямителя нет сглаживающих электролитов. На выходе высокая частота, поэтому для того чтобы делать конкретные замеры, необходимо сначала выпрямить напряжение. Для этих целей был использован мощный сдвоенный диодный мост, собранный из диодов КД2997. Мост выдерживает токи до 30 А, если прикрепить к нему радиатор.

Вторичная обмотка предполагалась на 15 В, хотя на деле получилось чуть больше.

В качестве нагрузки было взято все, что оказалось под рукой. Это мощная лампа от кинопроектора на 400 Вт при напряжении в 30 В и 5 20-ваттных ламп на 12 В. Все нагрузки подключались параллельно.

Первым делом был произведен замер тока, который показал, что токи свыше 20 А.

После этого нужно измерить выходное напряжение под нагрузкой. Расчетное напряжение составляло около 15 В. Реальное значение без нагрузки – 17 В, а под нагрузкой просело до 15,3 В. В итоге легко узнать мощность, которая составляет примерно 300 Вт. Это чистая мощность на выходе.

Как увеличить мощность с помощью трансформатора?

quote: Originally posted by Уэф:
Как повысить мощность самому? Может трансформатор какой подключить?

3квт, ещё не значит что вы их можете реально получить.
у нас недодавали из-за недостаточно мощного трансформатора, пока один «крутой» не купил за свои деньги трансформатор.
да и сейчас бывают проблемы по выходным в разгар сезона.

ЗЫ через год будет 20 лет как нас подключали.
тогда «выделяли» 1квт на участок и исходя из этого рассчитывали необходимую мощность трансформатора .

Serjant posted 15-3-2011 21:35 купи генератор и бочку топлива к нему.

Уэф posted 15-3-2011 21:58 На счёт 15 квт заманчиво, но пока совершенно не понятно что к чему) Про генератор надеюсь была шутка)

кака posted 15-3-2011 22:11

quote: Originally posted by fkbr:

тогда «выделяли» 1квт на участок и исходя из этого рассчитывали необходимую мощность трансформатора .

Nikofar posted 17-3-2011 12:27

quote: Originally posted by Уэф:

Может трансформатор какой подключить? Поделитесь опытом, наверняка кто-то сталкивался.

Новый трансформатор стоит от одной до нескольких сотен тысяч рублей плюс примерно столько же возьмут за монтаж, подключение и реконструкцию существующей сети (ремонт и замена обветшавших опор ЛЭП и проводов). Проведите собрание и соберите с остальных членов дачного товарищества целевые взносы на замену трансформатора и модернизацию питающей сети. При количестве членов товарищества в несколько сотен, размер такого целевого взноса может составить от 2 до 3 тысяч рублей с абонента. Вполне посильные деньги. Мы у себя в СНТ четыре года назад решили схожую с Вашей проблему таким образом.

Pavel_A posted 17-3-2011 14:36 Офф. А кстати, как работает счётчик? Если будет пониженное напряжение, он работу правильно посчитает или наипёт?

ZavGar posted 17-3-2011 15:22

quote: Originally posted by Pavel_A:

как работает счётчик?

Перемножает мгновенное значение напряжения на мгновенное значение тока (или действующие значения того и другого и на косинус сдвига фаз между ними), и всё это интегрирует по времени. (Прошу тапками не кидаться! )
В двух словах — напряжение влияет на итоговые показания.
С одной поправкой: класс точности счётчика (как и любого другого прибора) обеспечивается лишь при оговоренных отклонениях от номинального напряжения.
Но возможные колебания точности — доли процента.

Nikofar posted 17-3-2011 15:56

quote: Originally posted by Pavel_A:

А кстати, как работает счётчик? Если будет пониженное напряжение, он работу правильно посчитает или наипёт?

На самом деле, старые модели индукционных счетчиков э/э грешат очень высокой погрешностью в показаниях. Современные электронные как правило избавлены от этого недостатка. Точность показаний у них выше. И, при пониженном напряжении в сети, при неизменном сопротивлении потребителей в цепи питания, покажут меньшее количество потребленных киловатт/часов в соответствии с законом Ома и действующими к нему поправками.
Т.е., подводя итог своему словоблудию, могу сказать, что при пониженном напряжении счетчики покажут меньшее количество потребленной э/э в кВт/ч. Если я не ошибаюсь.

Nikofar posted 17-3-2011 16:32

quote: Originally posted by ZavGar:

Перемножает мгновенное значение напряжения на мгновенное значение тока (или действующие значения того и другого и на косинус сдвига фаз между ними), и всё это интегрирует по времени. (Прошу тапками не кидаться! )

Кстати, уважаемыый ZavGar привел весьма выверенную формулировку процесса, который производит уважаемый электросчетчик. Будь он хоть индукционный, хоть электронный. Естественно, счетчик, а не уважаемый ZavGar.

quote: Originally posted by ZavGar:

и всё это интегрирует по времени

Касаемо этой фразы, могу привести следующее пояснение:
1. В индукционном электросчетчике интеграция происходит механически, с помощью колес Чебышева.
2. В электронных счетчиках — после декодировки и обработки данных с контроллеров с установленной скважностью, интеграция производится в сумматорах, с последующим отображением данных на интерфейсных устройствах идикаторного и/или накопительно-регистрационного типа.

Nikofar posted 17-3-2011 16:45 И еще.
Любознательным и пытливым пользователям электроэнергии из сети переменного тока могу порекомендовать для ознакомления статью по ссылке: http://www.pozitron.pp.ru/shem.htm
рассказывающей о принципах устройства обоих типов счетчиков.
Честное слово, статью не я написал.

ZavGar posted 17-3-2011 17:28

quote: Originally posted by Nikofar:

Если счетчик современный, с дисплеем или ЖК-экранчиком — то он электронный, этому вообще пох, какое напряжение в сети. .

. Точность показаний у них выше. И, при пониженном напряжении в сети, при неизменном сопротивлении потребителей в цепи питания, покажут меньшее количество потребленных киловатт/часов в соответствии с законом Ома и действующими к нему поправками.

Т.е., подводя итог своему словоблудию, могу сказать, что при пониженном напряжении счетчики покажут меньшее количество потребленной э/э в кВт/ч. Если я не ошибаюсь.

quote: Originally posted by Nikofar:

этому вообще пох

Как повысить переменное и постоянное напряжение?

В быту и на производстве широко используются электрические и электронные приборы различного назначения. Необходимое условие их функционирования — подключение к электрической сети или иному источнику электрической энергии. Из соображений упрощения создания и последующей эксплуатации сети или источника целесообразно, чтобы выходное напряжение имело определенное значение. Например 220 В бытовой сети переменного тока и 12 В автомобильной сети постоянного тока.

На практике применяются сети как постоянного, так и переменного тока. Например, бытовая 220-вольтовая сеть функционирует на переменном токе, а бортовая автомобильная сеть использует постоянный ток. В зависимости от разновидности сети повышение напряжения до нужного значения решается в них по-разному.

При обращении к современной микроэлектронной элементной базе реализующие эти функции устройства при солидной выходной мощности обладают очень хорошими массогабаритными показателями. Для иллюстрации этого положения на рисунке 1 показан пример платы со снятым корпусом повышающего преобразователя постоянного тока.

Рис. 1. Повышающий преобразователь постоянного тока бестрансформаторного типа

В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и как это делать правильно.

Повышение переменного напряжения

Разновидности трансформаторов

Наиболее простой способ увеличения переменного напряжения – установка между выходом сети и питаемой нагрузкой повышающего трансформатора. Применяемые на практике устройства делятся на две основные разновидности. Первая — классические трансформаторы, вторая — автотрансформаторы. Схемы этих устройств приведены на рисунке 2.

Рис. 2. Схемы трансформатора и автотрансформатора

Классический трансформатор содержит две обмотки: первичную или входную с числом витков W1, а также вторичную или выходную с числом витков W2. Для трансформатора действует правило Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации. Таким образом, в повышающем трансформаторе количество витков вторичной обмотки превышает таковое у первичной.

Повышающий авторансформатор содержит единственную обмотку с W2 витками. Сеть подключается на часть W1 ее витков. Повышение U происходит за счет того, что магнитное поле, создаваемое при протекании тока через входную часть общей обмотки, наводит ток уже во всей обмотке W2. Расчетная формула автотрансформатора аналогична обычному: Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации.

Особенности трансформаторов

Эффективность функционирования трансформаторов наращивают применением сердечника из электротехнической стали. Этот компонент

  • увеличивает КПД устройства за счет уменьшения рассеяния магнитного поля в окружающем пространстве;
  • выполняет функцию несущей силовой основы для обмоток.

Неизбежные потери на вихревые тока уменьшают тем, что сердечник представляет собой наборный пакет из тонких профилированных изолированных пластин.

При прочих равных условиях целесообразно использовать трансформатор. Это связано с тем, что не пропускает постоянный ток, т.е. обеспечивает гальваническую развязку сети от приемника, позволяя добиться большей электробезопасности.

Особенность трансформатора — его обратимый характер, т.е. в зависимости от ситуации он может одинаково успешно выполнять функции повышающего и понижающего устройства. Единственное серьезное ограничение — необходимость соблюдения штатных режимов работы первичной и вторичной обмоток.

В отличие от компьютерных розеток, называемых RJ45, в различных странах при устройстве бытовых сетей электроснабжения устанавливают различные типа розеток. Известны, например, розетки, немецкого, французского, английского и иных стандартов или стилей. Поэтому на трансформатор малой мощности целесообразно возложить функции адаптера, который за счет разных типов вилок и гнезд обеспечивает механическое согласование сети и нагрузки. Пример такого устройства изображен на рисунке 3.

Рис. 3. Пример обратимого маломощного трансформатора с возможностью согласования типов розеток

Лабораторные автотрансформаторы ЛАТР

Сильная сторона автотрансформатора – простота регулирования выходного напряжения простым перемещением токосъемного контакта по обмотке. Устройства, допускающие выполнение этой опции, известны как лабораторные автотрансформаторы ЛАТР. Отличаются характерным внешним видом за счет наличия регулятора напряжения и вольтметра для его контроля, рисунок 4.

ЛАТР востребованы не только в лабораториях. Они массово применяются в гаражах, на садовых участках и других местах, где из-за перегрузки и износа линии напряжение в розетке оказывается ниже минимально допустимого.

При колебаниях сетевого напряжения вместо обычного ЛАТР целесообразно использовать стабилизатор, куда он входит в виде одного из блоков.

Повышение постоянного напряжения

Общий принцип увеличения постоянного напряжения в произвольное число раз

Трансформаторный способ увеличения напряжения не может применяться в сетях постоянного тока. Поэтому при необходимости решения этой задачи используют более сложные устройства, в основу функционирования которых положена следующая схема: постоянный входной ток используется для питания генератора, с выхода которого снимают переменный сигнал. Переменное напряжение увеличивают тем или иным образом, после чего выпрямляют и сглаживают для получения более высокого постоянного.

Структурная схема такого преобразователя показана на рисунке 5.

Рисунок 5. Обобщенная структурная схема повышающего преобразователя

Отдельные разновидности схем отличаются между собой:

  • формой сигнала, снимаемого с выхода генератора (синусоидальное или близкое к нему, пилообразное, импульсное и т.д.);
  • принципом увеличения генерируемого напряжения (трансформатор, умножитель);
  • типом выпрямления и сглаживания напряжения перед подачей его на выход устройства.

В продаже доступны микроэлектронная элементная база, которая позволяет собирать преобразователи данной разновидности при наличии даже начальных навыков радиомонтажника.

Умножители

Умножители применяют в тех случаях, когда из переменного входного напряжения нужно получить постоянное, которое в кратное количество раз превышает входное.

Существует большое количество схем умножителей. Одна из них показана на рисунке 6.

Рис. 6. Принципиальная схема умножителя

Коэффициент умножения можно нарастить увеличением количества каскадов.

Рис. 7. Еще пример: умножитель в 6 и 8 раз Рис. 8. Учетверитель напряжения

Общее для таких схем:

  • мостовой принцип реализации для увеличения общего КПД устройства;
  • использование конденсаторов для накапливания заряда;
  • применение диодов как элемента выпрямления.

Техника безопасности

При сборке и использовании повышающих устройств вне зависимости от их разновидности необходимо соблюдать базовые положения правил техники безопасности. Главные из них:

  • ни при каких условиях нельзя касаться незащищенными частями тела токоведущих элементов схем;
  • запрещается даже кратковременное превышение максимальной нагрузки;
  • устройства в обычном офисном исполнении нельзя эксплуатировать во влажных помещениях;
  • оборудование следует защищать от попадания брызг воды.

Заключение

Приведем несколько областей использования устройств для увеличения напряжения.

Для переменного тока наиболее распространено использование повышающих трансформаторов для подключения различной европейской электронной и электротехнической техники к бытовой 110-вольтовой сети в США.

Примеры из области постоянного напряжения:

  • мощность широко распространенных USB-зарядников достаточна для питания СД-ленты, но последние требуют для работы напряжения 12 В; для такой выгодно ситуации применение повышающего преобразователя;
  • на 3,3-вольтовых литиевых аккумуляторах можно собрать power bank для мобильных телефонов;
  • регулируемые устройства хорошо востребованы при выполнении настроек автомобильных генераторов.

Автомобильный аккумулятор с подключенным к нему повышающим преобразователем может эффективно питать за городом такие 220-вольтовые устройства как телевизор, магнитофон, дрель.

Устройства для увеличения постоянного и переменного напряжения имеют обширную область применения, серьезно отличаясь друг от друга схемотехнически.

Выбор конкретной реализации зависит от ряда факторов, основные среди которых:

  • соотношение входного и выходного напряжения;
  • мощность питаемой нагрузки
  • уровень жесткости требований электробезопасности.

На практике можно воспользоваться как покупными, так и самодельными устройствами. Большинство самодельных схем доступны для воспроизведения при наличии даже среднего уровня подготовки в области электротехники и схемотехники.

Повышающий и понижающий трансформатор

В быту и на производстве используется огромное количество различных электронных устройств, приборов и оборудования. Довольно часто для их нормальной эксплуатации требуется повышающий и понижающий трансформатор. Каждый из них работает на основе самоиндукции, позволяющей изменять ток в ту или иную сторону.

Само название трансформатора означает изменение или преобразование. Они применяются в основном совместно с электроникой зарубежного производства, рассчитанной на токи, отличающиеся от отечественных стандартов. Кроме того, трансформаторы обеспечивают защиту электрооборудования и оптимизируют его питание, делая работу максимально эффективной.

Функции и работа трансформаторов

В электронике трансформаторы являются незаменимыми устройствами. Однако, для их наиболее эффективной работы, необходимо хорошо представлять себе, что понижает или повышает трансформатор. В зависимости от потребностей, они повышают или, наоборот, понижают величину потенциала в цепочках с переменным током.

С появлением отличающихся трансформаторных устройств стала возможной доставка электричества на значительные дистанции. Заметно снижаются потери на проводах ЛЭП, когда переменное напряжение повышается, а ток – понижается. Это происходит на всей протяженности проводников, соединяющих электростанцию с подключенными потребителями. На каждом конце таких линий напряжения снижаются до безопасного уровня, облегчая работу используемого оборудования.

Какой трансформатор называют повышающим, а какой понижающим, и какая между ними разница

Если отвечать коротко, то прибор выдающий более высокий потенциал, в сравнении со входом, считается повышающим. Если же происходит обратный процесс, и потенциал на выходе меньше, чем на входе, такое устройство будет понижающим. В первом случае вторичная обмотка обладает большим количеством витков, чем на первичная, а во втором, наоборот, в работе применяется вторичная обмотка с меньшим количеством витков. Этим они кардинально отличаются друг от друга.

Можно ли понижающий трансформатор использовать как повышающий

Да, можно. Поскольку для перемены функций достаточно изменить схему соединения обмоток с источником потенциала и нагрузкой. Соответственно, изменится и функциональность понижающего трансформатора.

На практике, с целью повышения эффективности устройства, индуктивность всех обмоток рассчитывается для точных рабочих значений тока и напряжения. Эти показатели должны обязательно сохраняться в исходном состоянии, когда повышающий и понижающий трансформатор изменяют свои функции на противоположные.

Как определить принадлежность той или иной обмотки

Конструктивно, трансформаторы выполнены по такому принципу, что невозможно сразу определить их различия, то есть, какие провода называется и фактически являются первичной, а которые из них – вторичной обмоткой. Поэтому, чтобы не запутаться, применяется маркировка. Для высоковольтной обмотки предусмотрен символ «Н», в понижающих устройствах она служит первичной, а в повышающих – вторичной обмоткой. Обмотка с низким вольтажом маркируется символом «Х».

Для того чтобы понять особенности, отличие и принцип действия каждого из этих устройств, их следует рассмотреть более подробно.

Общее устройство и функционирование трансформаторов понижающего типа

Трансформаторы выполняют преобразование более высокого входящего напряжения в низкую характеристику напряжения на выходе, то есть позволяют понизить большие токи до требуемых значений. При необходимости такой прибор может использоваться как повышающий.

Принцип действия этих приборов определяется законом электромагнитной индукции. Стандартная конструкция состоит из двух обмоток и сердечника. Первичная обмотка соединяется с источником питания, после чего вокруг сердечника происходит генерация магнитного поля. Под его воздействием во вторичной обмотке возникает электрический ток с определенными заданными параметрами напряжения.

Выходная мощность определяется по количественному соотношению витков в каждой катушке. Изменяя этот показатель можно управлять характеристиками выходного напряжения и получать требуемый ток для бытового и промышленного оборудования.

С помощью лишь одних трансформаторов невозможно изменить частоту электрического тока. Для этого конструкция понижающего аппарата дополняется выпрямителем, изменяющим частоту тока в диапазоне требуемых значений. Современные приборы дополняются полупроводниками и интегральными схемами с конденсаторами, резисторами, микросхемами и другими компонентами. В результате, получается устройство с незначительными размерами и массой, но достаточно высоким уровнем КПД, работающее на понижение напряжения.

Такие трансформаторы функционируют очень тихо и не подвержены сильному нагреву. Мощность выходного тока может выставляться путем регулировок и отличаться в каждом случае. Все устройства нового типа оборудованы защитой от коротких замыканий.

Понижающий трансформатор отличается простой и надежной схемой, широко применяются на подстанциях между отрезками линий электропередачи. Они выполняют понижение сетевого тока с 380 до 220 вольт. Подобные устройства относятся к промышленным. Используемые в быту, отличаются более низкими мощностями. Принимая на первичную обмотку входа 220 В, они затем выдают пониженное напряжение от 12 до 42 вольт в соответствии с подключенными потребителями. Коэффициент трансформации понижающих устройств всегда ниже единицы. Для того чтобы его определить, нужно знать соотношение между количеством витков в первичной и вторичной обмотке.

Особенности повышающего трансформатора

Повышающие трансформаторные устройства, как их называют специалисты, также используются в быту и на производстве. В основном их назначение – работа по своему профилю на проходных электростанциях. Они должны повысить ток в соответствии с нормативными показателями, поскольку в процессе транспортировки происходит постепенное снижение высокого напряжения в ЛЭП. В конце пути следования электростанция с помощью повышающего трансформатора напряжение поднимается до нормативных 220 В и поставляется в бытовые сети, а 380 В – в промышленные.

Работа трансформатора повышающего типа осуществляется по следующей схеме, включающей в себя несколько этапов:

  • Вначале на электростанции производится электрический ток напряжением 12 киловольт (кВ).
  • Далее по ЛЭП оно поступает на повышающую подстанцию и попадает в повышающий трансформатор, преобразующий это напряжение до 400 кВ. Отсюда ток поступает в высоковольтную ЛЭП и уже по ней приходит на понижающую подстанцию, где его напряжение вновь становится 12 кВ.
  • На последнем этапе ток оказывается в низковольтной линии, в конце которой установлен еще один трансформатор понижающего действия. Здесь напряжение окончательно принимает рабочее значение 220 или 380 В и в таком виде поступает в бытовую или промышленную сеть.

Принцип работы повышающего трансформатора также основан на электромагнитной индукции. Основная конструкция состоит их двух катушек с разным количеством витков и изолированного сердечника.

Низкое переменное напряжение поступает в первичную обмотку и вызывает появление магнитного поля, возрастающего при оптимально подобранном соотношении обмоток. Под его влиянием во вторичной обмотке образуется электрический ток с повышенными показателями – 220 В и более. В случае необходимости изменения частоты, в цепочку дополнительно устанавливается преобразователь, способный выдавать постоянный ток для определенных видов оборудования.

В процессе работы трансформаторы нагреваются, поэтому им требуется использовать охлаждение, которое может быть масляным или сухим. Трансформаторные масла относятся к пожароопасным веществам, поэтому такие системы оборудуются дополнительной защитой. Сухие трансформаторы заполняются специальными негорючими веществами. Они безопасны в эксплуатации, но стоят значительно дороже.

Читайте также:  Какие бывают электросчетчики
Рейтинг
( Пока оценок нет )
Загрузка ...