Как возможен транзистор с двумя ножками?

Транзистор

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Биполярный транзистор

Автор: Владимир Васильев · Опубликовано 9 сентября 2015 · Обновлено 29 августа 2018

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Читайте также:  Как звукоизолировать розетку от соседей – 3 эффективных способа

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Читайте также:  Подключение 380 вольт в частном доме схема

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

Устройство транзистора — и его диагностика. Проверка транзистора мультиметром

Устройство транзистора

В начале темы немного о самих транзисторах. Транзистор используется для управления электрическим током, то есть с помощью данного элемента можно управлять величиной тока с использованием его для:

Состоит транзистор из трех областей перехода со свойственной для каждого перехода своей проводимостью.

Данные свойства проводимости мы можем наблюдать путем измерения сопротивления:

  • база — коллектор;
  • база — эмиттер;
  • коллектор — эмиттер.

Большое применение транзисторы нашли в радиотехнике. Рассмотрим устройство транзисторов:

Основной функцией для транзисторов рис.1 является усиление сигналов.

Из чего изготавливается транзистор

Изготавливается транзистор либо из германия либо из кремния.

Для взаимодействия областей биполярного транзистора:

— к транзистору необходимо приложить правильное напряжение. Если приложить напряжение от внешнего источника к p -n — переходу, — данный переход называют смещением. Когда положительный потенциал подается на p — область, а отрицательный потенциал на n — область, данный p — n — переход открывается. Ток при таком переходе протекает прямой. При обратном n — p — переходе значение сопротивления будет велико и так называемый обратный ток принимает малое значение.

рис.2: Устройство n — p — n транзистора

Для данного n — p — n транзистора, представленном в рис.2, наглядно показаны так называемые — переходы:

  • область эмиттерного перехода;
  • область коллекторного перехода

и соответственно схематические обозначения транзисторов обоих типов.

Более наглядное объяснение устройства биполярного транзистора, — показано на рис.3

По данному рисунку устройства биполярного транзистора — можно вполне ясно наблюдать, что биполярный транзистор состоит из трех областей с чередующимся типом проводимости.

Проверка транзистора мультиметром

Мы как бы уже частично ознакомились с устройством транзистора и теперь необходимо усвоить навыки, — проведения диагностики для данных элементов.

На фотоснимке показан один из двух способов диагностики транзисторов.

Для данного наглядного примера, диагностика транзистора проводится следующим образом:

Ножки транзистора вставляются в соответствующее гнездо мультиметра, учитывая при этом тип транзистора:

  • p — n — p — переход;
  • n — p — n — переход.

На дисплее прибора здесь наблюдается проводимость между переходами в транзисторе.

Следующим методом проведения диагностики для транзистора, — является метод измерения сопротивления:

Проведение диагностики транзистора — методом измерения сопротивления в переходах

Для этого, прибор мультиметр выставляется в соответствующий диапазон для измерения сопротивления.

Два разъема проводов вставляются в гнезда прибора и двумя щупами проводится измерение сопротивления переходов в транзисторе.

Дисплей прибора при этом будет указывать либо на малое сопротивление, при котором ток в данном направлении будет — прямым; либо дисплей прибора выдаст наибольший показатель сопротивления, — в данном примере, переход будет являться обратным n — p — переход.

В данном фотоснимке, дисплей прибора мультиметр показывает сопротивление при прямом и обратном переходах в транзисторе. При прямом переходе — сопротивление принимает наименьшее значение, при обратном переходе — наибольшее значение.

Наличие сопротивления в прямом и обратном направлениях

При следующем приведенном примере, дисплей прибора показывает — единицу. Из этого следует, что в двух переходах:

Отсутствие сопротивления в переходах неисправность транзистора

Как правильно припаять транзистор

При замене транзистора, как мы убедились, учитываются значения сопротивления в переходах или же другими словами — подбирается серия транзистора.

Научившись правильно пользоваться мультиметром и зная устройство того или иного элемента, — можно выполнить определенный объем работы по устранению подобных поломок.

На схеме, как правило, имеются обозначения для припаивания ножек транзистора эмиттер, коллектор, база. Для транзисторов обоих типов среднюю область называют базой, две другие внешние области называют — коллектором и эмиттером.

Данная тема будет содержать дополнение, касающееся типов транзисторов, их замене, — а также обучающие видеоролики в этом направлении.

Как это устроено: транзисторы

Про­цес­со­ры в ком­пью­те­рах, теле­фо­нах и любой элек­тро­ни­ке состо­ят из тран­зи­сто­ров. В про­цес­со­ре Apple A13 Bionic, кото­рый сто­ит внут­ри один­на­дца­то­го айфо­на, 8,5 мил­ли­ар­да тран­зи­сто­ров, а в Core i7 4790, кото­рый сто­ял внут­ри мно­гих настоль­ных ком­пью­те­ров в 2014 году, — в 6 раз мень­ше.

Имен­но тран­зи­сто­ры выпол­ня­ют всю ком­пью­тер­ную рабо­ту: счи­та­ют, запус­ка­ют про­грам­мы, управ­ля­ют дат­чи­ка­ми и отве­ча­ют за рабо­ту устрой­ства в целом.

При этом сам тран­зи­стор — про­стей­ший при­бор, кото­рый по сути похож на кран или элек­три­че­ские воро­та. Через тран­зи­стор идёт какой-то один ток, а дру­гим током этот поток мож­но либо про­пу­стить, либо забло­ки­ро­вать. И всё.

Вот при­мер­ная схе­ма. В жиз­ни нож­ки тран­зи­сто­ра могут быть рас­по­ло­же­ны не так, как на схе­ме, но для нагляд­но­сти нам надо имен­но так:

Ток пыта­ет­ся прой­ти сквозь тран­зи­стор, но тран­зи­стор «закрыт»: на его управ­ля­ю­щую ногу не подан дру­гой ток.

А теперь мы пода­ли на управ­ля­ю­щую ногу немно­го тока, и теперь тран­зи­стор «открыл­ся» и про­пус­ка­ет через себя основ­ной ток.

Из мил­ли­ар­дов таких про­стей­ших кра­нов и состо­ит любая совре­мен­ная вычис­ли­тель­ная маши­на: от чай­ни­ка с элек­трон­ным управ­ле­ни­ем до супер­ком­пью­те­ра в под­ва­лах Пен­та­го­на. И до чипа в вашем смарт­фоне.

В сере­дине XX века тран­зи­сто­ры были боль­ши­ми: сот­ней тран­зи­сто­ров мож­но было набить кар­ман, их про­да­ва­ли в радио­тех­ни­че­ских мага­зи­нах, у них были проч­ные кор­пу­са и метал­ли­че­ские нож­ки, кото­рые нуж­но было паять на пла­те. Такие тран­зи­сто­ры до сих пор про­да­ют­ся и про­из­во­дят­ся, но в мик­ро­элек­тро­ни­ке они не исполь­зу­ют­ся — слиш­ком боль­шие.

Совре­мен­ный тран­зи­стор умень­шен в мил­ли­о­ны раз, у него нет кор­пу­са, а про­цесс его мон­та­жа мож­но срав­нить ско­рее с про­цес­сом лазер­ной печа­ти. Тран­зи­сто­ры раз­ме­ром несколь­ко нано­мет­ров в бук­валь­ном смыс­ле печа­та­ют поверх пла­стин, из кото­рых потом полу­ча­ют­ся наши про­цес­со­ры и память. Такие пла­сти­ны назы­ва­ют ваф­ля­ми, и если смот­реть на них без мик­ро­ско­па, это будут про­сто такие радуж­ные поверх­но­сти. Радуж­ные они пото­му, что состо­ят из мил­ли­ар­дов малень­ких выемок — тран­зи­сто­ров, рези­сто­ров и про­чих мик­ро­ком­по­нен­тов:

Что внутри транзистора

Если бы мы мог­ли раз­ре­зать один тран­зи­стор в мик­ро­про­цес­со­ре, мы бы уви­де­ли что-то вро­де это­го:

Сле­ва — про­вод­ник, по кото­ро­му бежит ток, спра­ва — про­сто про­вод­ник, пока без тока. Меж­ду ними нахо­дит­ся про­во­дя­щий канал — те самые «воро­та». Когда воро­та откры­ты, ток из лево­го про­вод­ни­ка посту­па­ет в пра­вый. Когда закры­ты — пра­вый оста­ёт­ся без тока. Что­бы воро­та откры­лись, на них нуж­но подать ток откуда-то ещё. Если тока нет, то воро­та закры­ты.

Теперь, если гра­мот­но посо­еди­нять тыся­чу тран­зи­сто­ров, мы полу­чим про­стей­шую вычис­ли­тель­ную маши­ну. А если посо­еди­нять мил­ли­ард тран­зи­сто­ров, полу­чим ваш про­цес­сор.

Почему все так полюбили транзисторы

До тран­зи­сто­ров у учё­ных уже было некое подо­бие вычис­ли­тель­ных машин. Напри­мер, счё­ты: там опе­ра­тор управ­лял пере­ме­ще­ни­ем бусин в реги­страх и скла­ды­вал таким обра­зом чис­ла. Но опе­ра­тор мед­лен­ный и может оши­бать­ся, поэто­му систе­ма была несо­вер­шен­ной.

Были меха­ни­че­ские счёт­ные маши­ны, кото­рые уме­ли скла­ды­вать и умно­жать чис­ла за счёт слож­ных шестер­ней, бочон­ков и пру­жин, — напри­мер, ариф­мо­метр. Они рабо­та­ли мед­лен­но и были слиш­ком доро­ги­ми для мас­шта­би­ро­ва­ния.

Читайте также:  Выбираем 3d телевизор для дома

Были вычис­ли­тель­ные маши­ны на базе меха­ни­че­ских пере­клю­ча­те­лей — реле. Они были очень боль­ши­ми — те самые «залы, напол­нен­ные одним ком­пью­те­ром». Их мог­ли застать наши роди­те­ли, бабуш­ки и дедуш­ки.

Поз­же при­ду­ма­ли элек­трон­ные лам­пы: там управ­лять током уже мож­но было с помо­щью дру­го­го тока. Но лам­пы пере­гре­ва­лись, лома­лись, на них мог при­ле­теть моты­лёк.

И толь­ко в кон­це соро­ко­вых учё­ные изоб­ре­ли твер­до­тель­ные тран­зи­сто­ры: вся кух­ня с вклю­че­ни­ем и выклю­че­ни­ем тока про­хо­ди­ла внут­ри чего-то твёр­до­го, устой­чи­во­го и без­опас­но­го, не при­вле­ка­ю­ще­го вни­ма­ния мотыль­ков. За осно­ву взя­ли гер­ма­ний и крем­ний и ста­ли раз­ви­вать эту тех­но­ло­гию.

Кайф твер­до­тель­ных тран­зи­сто­ров в том, что вза­и­мо­дей­ствия там про­ис­хо­дят на ско­ро­стях, близ­ких к ско­ро­сти све­та. Чем мень­ше сам тран­зи­стор, тем быст­рее по нему про­бе­га­ют элек­тро­ны, тем мень­ше вре­ме­ни нуж­но на вычис­ле­ния. Ну и сло­мать твер­до­тель­ный тран­зи­стор в хоро­шем проч­ном кор­пу­се намно­го слож­нее, чем хруп­кую стек­лян­ную лам­пу или меха­ни­че­ское реле.

Как считают транзисторы

Тран­зи­сто­ры соеди­не­ны таким хит­рым обра­зом, что, когда на них пода­ёт­ся ток в нуж­ных местах, они выда­ют ток в дру­гих нуж­ных местах. И всё вме­сте про­из­во­дит впе­чат­ле­ние полез­ной для чело­ве­ка мате­ма­ти­че­ской опе­ра­ции.

Пока что не будем думать, как имен­но соеди­не­ны тран­зи­сто­ры. Про­сто посмот­рим на прин­цип.

Допу­стим, нам надо сло­жить чис­ла 4 и 7. Нам, людям, оче­вид­но, что резуль­тат будет 11. Зако­ди­ру­ем эти три чис­ла в дво­ич­ной систе­ме:

Деся­тич­наяДво­ич­ная
40100
70111
111011

Теперь пред­ста­вим, что мы собра­ли некую маши­ну, кото­рая полу­чи­ла точ­но такой же резуль­тат: мы с одной сто­ро­ны пода­ли ей ток на вхо­ды, кото­рые соот­вет­ству­ют пер­во­му сла­га­е­мо­му; с дру­гой сто­ро­ны — пода­ли ток на вхо­ды вто­ро­го сла­га­е­мо­го; а на выхо­де под­све­ти­лись выхо­ды, кото­рые соот­вет­ство­ва­ли сум­ме.

Смот­ри­те, что тут про­ис­хо­дит: есть восемь вхо­дов и четы­ре выхо­да. На вхо­ды пода­ет­ся элек­три­че­ство. Это про­сто элек­три­че­ство, оно не зна­ет, что оно обо­зна­ча­ет чис­ла. Но мы, люди, зна­ем, что мы в этом элек­три­че­стве зашиф­ро­ва­ли чис­ла.

Так же на выхо­де: элек­три­че­ство при­шло на какие-то кон­так­ты. Мы как-то на них посмот­ре­ли и уви­де­ли, что эти кон­так­ты соот­вет­ству­ют какому-то чис­лу. Мы дела­ем вывод, что эта про­стей­шая маши­на сло­жи­ла два чис­ла. Хотя на самом деле она про­сто хит­рым обра­зом пере­ме­ша­ла элек­три­че­ство.

Вот про­стей­ший при­мер ком­пью­те­ра, собран­но­го на тран­зи­сто­рах. Он скла­ды­ва­ет два чис­ла от 0 до 15 и состо­ит толь­ко из тран­зи­сто­ров, рези­сто­ров (что­бы не спа­лить) и вся­ких вспо­мо­га­тель­ных дета­лей типа бата­рей­ки, выклю­ча­те­лей и лам­по­чек. Мож­но сра­зу посмот­реть кон­цов­ку, как он рабо­та­ет:

Вот ров­но это, толь­ко в мил­ли­ард раз слож­нее, и про­ис­хо­дит в наших ком­пью­те­рах.

Что мы зна­ем на этом эта­пе:

  1. Тран­зи­сто­ры — это про­сто «кра­ны» для элек­три­че­ства.
  2. Если их хит­рым обра­зом соеди­нить, то они будут сме­ши­вать элек­три­че­ство полез­ным для чело­ве­ка обра­зом.
  3. Все ком­пью­тер­ные вычис­ле­ния осно­ва­ны на том, что­бы пра­виль­но соеди­нить и очень плот­но упа­ко­вать тран­зи­сто­ры.

В сле­ду­ю­щей части раз­бе­рем, как имен­но соеди­не­ны эти тран­зи­сто­ры и что им поз­во­ля­ет так инте­рес­но всё счи­тать.

Как определить выводы неизвестного биполярного транзистора

Что будет, если перепутать коллектор и эмиттер в схеме

Для опыта мы возьмем простой и всеми нами любимый транзистор КТ815Б:

Соберем знакомую вам схемку:

Для чего я поставил перед базой резистор, читаем здесь.

На Bat1 выставляю напряжение в 2,5 вольта. Если подавать более 2,5 Вольт, то лампочка уже ярче гореть не будет. Скажем так, это граница, после которой дальнейшее повышение напряжение на базе не играет никакой роли на силу тока в нагрузке

На Bat2 я выставил 6 Вольт, хотя лампочка у меня на 12 Вольт. При 12 Вольтах транзистор у меня ощутимо грелся, и я не хотел его спалить. Здесь мы видим, какую силу тока потребляет наша лампочка и даже можем рассчитать мощность, которую она потребляет, перемножив эти два значения.

Ну и как вы видели, лампочка горит и схема нормально работает:

Но что случится, если мы перепутаем коллектор и эмиттер? По логике, у нас ток должен течь от эмиттера к коллектору, потому как базу мы не трогали, а коллектор и эмиттер состоят из N полупроводника.

Но на практике лампочка гореть не хочет.

Потребление на блоке питания Bat2 каких-то 10 миллиампер. Значит, ток через лампочку все-таки течет, но очень слабый.

Почему при правильном подключении транзистора ток течет нормально, а при неправильном нет? Дело все в том, транзистор делают не симметричным.

В транзисторах площадь соприкосновения коллектора с базой намного больше, чем эмиттера и базы. Поэтому, когда электроны устремляются из эмиттера к коллектору, то почти все они “ловятся” коллектором, а когда мы путаем выводы, то не все электроны из коллектора “ловятся” эмиттером.

Кстати, чудом не пробило P-N переход эмиттер-база, так как напряжение подавали в обратной полярности. Параметр в даташите UЭБ макс . Для этого транзистора критическое напряжение считается 5 Вольт, у нас же оно было даже чуть выше:

Итак, мы с вами узнали, что коллектор и эмиттер неравнозначны. Если в схеме мы перепутаем эти выводы, то может произойти пробой эмиттерного перехода и транзистор выйдет из строя. Так что, не путайте выводы биполярного транзистора ни в коем случае!

Как определить выводы транзистора

Способ №1

Думаю, самый простой. Скачать на этот транзистор даташит. В каждом нормальном даташите есть рисуночек с подробными надписями, где какой вывод. Для этого вводим в гугл или яндекс крупненькие циферки и буковки, которые написаны на транзисторе, и рядышком добавляем слово “даташит”. Пока еще не было такого, чтобы я не отыскивал даташит на какой-то радиоэлемент.

Способ №2

Думаю, с поиском вывода базы проблем возникнуть не должно, если учесть, что транзистор состоит из двух диодов, включенных последовательно или катодами, или анодами:

Здесь все просто, ставим мультиметр на значок прозвонки “•)))” и начинаем пробовать все вариации, пока не найдем эти два диода. Вывод, где эти диоды соединяются либо анодами, либо катодами – это и есть база. Чтобы найти коллектор и эмиттер, сравниваем падение напряжение на этих двух диодах. Между коллектором и базой ом оно должно быть меньше, чем между эмиттером и базой. Давайте проверим, так ли это?

Для начала рассмотрим транзистор КТ315Б:

Ставим мультиметр на прозвонку и базу находим без проблем. Теперь замеряем падение напряжения на обоих переходах. Падение напряжения на базе-эмиттере 794 милливольт

Падение напряжения на коллекторе-базе 785 милливольт. Мы убедились, что падение напряжения между коллектором и базой меньше, чем между эмиттером и базой. Следовательно, средний синий вывод – это коллектор, а красный слева – эмиттер.

Проверим еще транзистор КТ805АМ. Вот его цоколевка (расположение выводов):

Это у нас транзистор структуры NPN. Предположим, базу нашли (красный вывод). Узнаем, где у него коллектор, а где эмиттер.

Делаем первый замер.

Делаем второй замер:

Следовательно, средний синий вывод – это коллектор, а желтый слева – эмиттер.

Проверим еще один транзистор – КТ814Б. Он у нас PNP структуры. База у него – синий вывод. Замеряем напряжение между синим и красным выводом:

а потом между синим и желтым:

Во фак! И там и там 720 милливольт.

Этот способ этому транзистору не помог. Ну не переживайте, для этого есть третий способ…

Способ №3

Почти в каждом современном муль тиметре есть 6 маленьких отверстий, и рядом какие-то буковки, что-то типа NPN, PNP, E, C, B. Вот эти шесть крохотных отверстий как раз и предназначены для того, чтобы замерять коэффициент бета. Я же эти отверстия буду называть дырками. На отверстия они не очень похожи))).

Ставим крутилку мультиметра на значок “hFE“.

Определяем какой он проводимости, то есть NPN или PNP, в такую секцию его и толкаем. Проводимость определяем расположением диодов в транзисторе, если не подзабыли. Берем наш транзистор, которые в обе стороны показал одинаковое падение напряжения на обоих P-N переходах, и суем базу в ту дырочку, где буковка “В”.

Далее суем оставшихся два вывода в дырочки С и Е в этом ряду и смотрим на показания мультика:

Базу не трогаем, а тупо меняем местами два вывода. Опа-на, мультик показал намного больше, чем в первый раз. Следовательно, в дырочке Е находится в настоящее время эмиттер, а в дырочке С – коллектор. Все элементарно и просто ;-).

Способ №4

Думаю, является самым легким и точным способом проверки распиновки транзистора. Для этого достаточно приобрести Универсальный R/L/C/Transis tor-metr и сунуть выводы транзистора в клеммы прибора:

Он сразу вам покажет, жив ли ваш транзистор. И если он жив, то выдаст его распиновку.

Рейтинг
( Пока оценок нет )
Загрузка ...