Какой бывает ток

Содержание

Все об электрических токах

Открытия, которые связаны с электричеством, существенно поменяли жизнь современного человека. Применяя электроток в качестве источника энергии, удалось сделать технологический прорыв, облегчивший существование человечества. На сегодняшний день электричество приводит в действие токарные станки, авто, роботизированную технику, предоставляет связь. В связи с этим важно понять, какие бывают виды тока и принцип их действия.

Что это такое

Электроток — направленное передвижение электрическим полем заряженных элементов. Носители зарядов металлопроводников — электроны, а кислотных и солевых растворов — ионы. Полупроводниковые носители зарядов именуются электронами и «дырками».

Чтобы ток существовал, требуется постоянно поддерживать электрополе. Должна быть разница потенциалов, которая поддерживает само поле. Пока такие условия не будут выполнены, заряды упорядоченно перемещаются по замкнутой электроцепи.

Подобные условия возможно создать, к примеру, посредством электрофорной машины. Когда 2 диска вращаются в обратных направлениях, они заряжаются разноименными зарядами. На щётках, которые прилегают к дискам, возникает разница потенциалов. Соединяя контакты, частицы начинают перемещаться упорядоченно. В такой ситуации машина становится электрическим источником.

Характеристики

Исследовав электрический ток и его ключевые характеристики, возможно понять принцип его функционирования. Главными величинами электрической энергии являются напряжение, сила и сопротивление.

Сила и плотность тока

Чтобы описать характеристики электричества, зачастую применяют термин «сила тока». Он определяет интенсивность перемещения зарядов, которые проходят сквозь поперечное сечение проводника.

Плотность тока является векторной величиной. Вектор направляется в сторону движения положительно заряженных зарядов. Его модуль равняется соотношению силы электротока на определенном перпендикулярном по направлению перемещения зарядов сечении проводника к его площади. Измерение происходит в амперах на метр.

Мощность

Электрические силы осуществляют работу против активного и реактивного сопротивления. На пассивных работах будет преобразовываться в теплоэнергию. Производительностью называется работа, которая выполнена за 1 врем. ед. Относительно электричества применяется понятие «мощность теплопотерь». Мощность теплопотерь проводника равняется силе тока, которая умножена на напряжение. Измеряется мощность в ваттах.

Частота

Ток характеризует частота. Такой параметр покажет, как за врем. ед. меняется число колебаний. Частота измеряется в герцах. Обычная промышленная частота составит 50 Гц.

Ток смещения

Такой термин был введен для комфорта, хотя в привычном понимании его не назовешь током, поскольку нет переноса заряда. Интенсивность электромагнитного поля находится в зависимости от токопроводимости и смещения.

Токи смещения возможно увидеть в конденсаторе. Невзирая на то, что во время зарядки и разрядки меж обкладок конденсатора не перемещается заряд, ток смещения будет протекать сквозь конденсатор и замыкать электроцепь.

Как работает

Условия существования электротока предполагают действие заряженных частиц, проводника и напряжения. Большинство специалистов исследовали электричество и установили, что есть 2 его разновидности: статическая и текущая.

Непосредственно текущая имеет важное значение в ежедневной жизни каждого человека, поскольку является электротоком, проходящим через электроцепь. Человек каждый день использует его, чтобы питать дома и др.

Типы проводников

Процессы образования электротока в разных средах отличаются определенными особенностями:

  • В металлах заряд перемещается свободными отрицательными частицами — электронами. Само вещество не переносится — ионы металла останутся в узлах кристаллической решетки. В процессе нагрева хаотичные колебания ионов усилятся, что препятствует упорядоченному передвижению электронов.
  • В жидкостях заряд перемещают ионы, формирование которых вызывает электролитическая диссоциация. Упорядоченное передвижение в такой ситуации является их перемещением к противоположно заряженным электродам, где они будут нейтрализованы и осядут.
  • В газах под воздействием разницы потенциалов формируется плазма. Заряженные частицы — ионы, положительные и отрицательные, и свободные электроны, которые формируются под действием ионизатора.
  • В вакууме электроток присутствует как электроны, движущиеся от катода к аноду.
  • В полупроводниках будут участвовать электроны, которые перемещаются от 1 атома к 2, и формируются вакантные участки — дырки, считающиеся плюсовыми.

При невысокой температуре полупроводники приблизятся по качествам к изоляторам. В процессе повышения температурных показателей валентные электроны получат необходимую, чтобы разорвать связи, энергию и станут свободными. С увеличением температуры улучшается проводимость полупроводника.

Важно! Положительно заряженные ионы направляются к отрицательному электроду, отрицательные ионы — к плюсовому. Во время увеличения температурных показателей проводимость электролита возрастет, поскольку увеличивается количество разложившихся на ионы молекул.

По типу генерации и характеристикам электроток бывает постоянным и переменным. Постоянный является таковым, который не обладает своим направлением. Он будет течь в любом случае в одну сторону. Переменный время от времени изменяет направленность. Таковым считается любой ток, помимо постоянного. Когда мгновенные показатели повторятся в той же последовательности спустя одинаковые временные интервалы, то подобный электрический ток называется периодическим.

Постоянный

Рассматриваемый ток тот, который на протяжении определенного временного промежутка не изменит собственной величине и направлению. Довольно часто постоянным считают пульсирующий электроток. Он отливается тем, что одинаковое число зарядов регулярно сменяются между собой в одну сторону.

Важно! В процессе определения направления бывают разбежности. Когда электроток формируется передвижением положительных частиц, то направление будет соответствовать перемещению частиц. Когда он сформирован передвижением отрицательных частиц, то направление считается противоположным движению частиц.

Основным достоинством станет то, что его возможно накопить. Делается это собственноручно, с помощью аккумуляторов либо конденсаторов.

Переменный

Для понимания сущности переменного электротока требуется представить синусоиду. Непосредственно она наилучшим образом сможет охарактеризовать изменения в постоянном токе. Переменный электроток постоянно изменяет собственную полярность. Во время одного интервала он положительный, других отрицательный. Для него немаловажным фактором станет скорость смены полярности (частота).

Большинство техники функционирует на переменном токе отличных частот. Благодаря изменениям в частоте возможно менять скорость вращения мотора.

Важно! Увидеть наглядный пример возможно, осмотрев обыкновенную лампу. В частности это заметно на некачественной диодной лампочке. В процессе функционирования на постоянном электротоке они будут гореть равномерным светом, а на переменном еле уловимо мерцать.

Источники тока

Первоисточниками электроэнергии, которые нашли применение на практике, стали гальванические элементы. После усовершенствования они используются и сегодня. Их применяют для энергопитания дистанционных пультов, электронных часов, устройств для детей и различных приборов. С появлением генераторов переменного тока электроэнергия стала использоваться еще интенсивнее. В связи с этим, следует ознакомиться с основными типами источников тока.

Механические источники

В них преобразуется механическая энергия в электричество. Процесс происходит в спецустройствах — генераторах. Главными из них считаются турбогенераторы, где электромашина будет приведена в действие с помощью газового либо парового потока, и гидрогенераторы, которые преобразуют энергию воды в электричество. Основная часть электрической энергии на планете производят непосредственно механические преобразователи.

Тепловые источники

Тут происходит преобразование теплоэнергии в электрическую. Появление электротока обусловливается разницей температурных показателей 2 пар контактирующих металлов. В такой ситуации заряженные частицы перемещаются в сторону холодного участка. Величина электротока будет зависеть непосредственно от температурной разницы: чем она выше, тем сильнее ток. Термопары из полупроводников дают термоэдс выше, чем биметаллические, потому они используются для изготовления источников электротока. Термопары из металла применяют только, чтобы измерять температурные показатели.

Световые источники

Когда начала развиваться физика полупроводников, стали появляться новые токоисточники — солнечные аккумуляторы, где световая энергия будет преобразовываться в электрическую. Они используют качество полупроводников выдачи напряжения во время действии на них светопотока. В частности такой эффект заметен в полупроводниках из кремния. Однако коэффициент полезного действия подобных элементов не превысит 15%. Солнечные аккумуляторы нашли свое применение в космической сфере, в бытовой. Стоимость на данные источники энергопитания регулярно уменьшается, однако по-прежнему высока.

Химические источники

Их возможно разделить на несколько групп:

Гальванические функционируют благодаря взаимодействию 2 различных металлов, которые помещены в электролит. В виде пар металлов и электролита выступают различные химэлементы и соединения. Это определяет разновидность и параметры элемента.

Важно! Гальванические элементы применяются лишь 1 раз, когда разрядятся их не удастся восстановить.

Дешевизна материалов и простота производства аккумуляторов делает их наиболее дешевыми из доступных. Однако по параметрам они существенно уступят щелочным и литиевым.

Тепловые выступают в качестве источников резервного энергопитания. Они обладают отличными характеристиками по удельной плотности электротока, однако отличаются непродолжительным сроком эксплуатации (до 60 минут). Используются преимущественно в космической отрасли, где требуются точность и кратковременное функционирование.

Как правильно применяются

Вне зависимости от принципа функционирования какого-либо источника электротока, в каждом из разделяются электрозаряды физ.тел. Происходит преобразование какой-либо разновидности энергии в электричество.

Такая энергия в технике применяется повсюду. В любом жилище возможно отыскать быттехнику, существенно облегчающую ведение хозяйства. Помимо этого, предотвращается появление пыли, копоти и других неприятных эффектов использования плит и прочих приборов, актуальных до возникновения электричества.

В промышленной сфере электрическая энергия имеет важную роль. Использование тока дает возможность существенно уменьшить траты, так как такой тип энергии дешевле горючего.

Меры безопасности

Главным правилом безопасности во время работы с токами станет то, что перед любыми действиями требуется обесточить электросеть. В процессе работ также необходимо следовать таким рекомендациям:

  • Запрещено ремонтировать включенное в электросеть приспособление.
  • При осуществлении работ на электрощитке должно присутствовать предупреждение.
  • Работа с высоким напряжением допустимо лишь с помощником.
  • Требуется наблюдать за изоляцией каждого провода и контролировать заземление.
Читайте также:  Как повысить постоянное и переменное напряжение

Напряжение свыше 24 вольт будет опасно для жизни. Во время работы с напряжением больше данного параметра требуется спецдопуск. При работах необходимо пользоваться специнструментами с повышенным уровнем защиты.

Использование электротока разнообразно, так как без него нельзя представить сегодня жизнь. Необходимо понять принципы его функционирования для направления электроэнергии в правильное русло. Электроток течет по законам физики, используемым для создания разнообразных приспособлений. Чтобы грамотно использовать его, требуется ознакомиться с основными электровеличинами.

Что такое электрический ток

Что такое электрический ток? В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

    • Заряд электронов отрицателен.
    • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов. Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое. Именно это перемещение электронов и есть ЭЛЕКТРИЧЕСКИЙ ТОК. Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой. Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток прекратится (батарея «села»).

НАПРЯЖЕНИЕ — это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно. Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10 -31 кг. Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента. Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно. Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет. Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома, и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет. Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов:

1. Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов.

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет. Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают. Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.

Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).
Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, ещё одну сверху — 36 бутылок. Одну из коробок (один этаж) можно принять за единицу аналогичную НАПРЯЖЕНИЮ электрического тока.

Чем шире коробка (меньше сопротивление), тем большее количество бутылок (СИЛУ ТОКА) она может обеспечить.

Увеличив высоту коробок (напряжение), мы можем увеличить общее количество бутылок (МОЩНОСТЬ) без разрушения коробок (проводника).

По нашей аналогии получилось:

Общее количество бутылок это — МОЩНОСТЬ

Количество бутылок в одной коробке (слое) это — СИЛА ТОКА

Количество ящиков в высоту (этажей) это — НАПРЯЖЕНИЕ

Ширина коробки (вместимость) это — СОПРОТИВЛЕНИЕ участка электрической цепи

Путём перечисленных аналогий, мы пришли к «ЗАКОНУ ОМА«, который ещё называется Законом Ома для участка цепи. Изобразим его в виде формулы:

Закон Ома

где I – сила тока, U – напряжение (разность потенциалов), R – сопротивление.

По-простому, это звучит так: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Кроме того, мы пришли и к «ЗАКОНУ ВАТТА«. Так же изобразим его в виде формулы:

Закон Ватта

где I – сила тока, U – напряжение (разность потенциалов), Р – мощность.

По-простому, это звучит так: Мощность равна произведению силы тока на напряжение.

Сила электрического тока измеряется прибором называемым Амперметром. Как вы догадались, величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. Например: Говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в обычной жизни не реальны. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10 -9 Ампер.

Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром, как вы догадались, напряжение, т. е. разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В). Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро — микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ). Напряжение ещё называют ЭДС – электродвижущей силой.

Электрическое сопротивление измеряется прибором называемым Омметром, как вы догадались, единица измерения сопротивления – Ом (Ом). Так же, как для тока и напряжения, существуют приставки кратности: кило – килоом (кОм), мега – мегаом (МОм). Другие значения в обычной жизни не реальны.

Ранее, Вы узнали, что сопротивление проводника напрямую зависит от диаметра проводника. К этому можно добавить, что если к тонкому проводнику приложить большой электрический ток, то он будет не способен его пропустить, из-за чего будет сильно греться и, в конце концов, может расплавиться. На этом принципе основана работа плавких предохранителей.

Атомы любого вещества располагаются на некотором расстоянии друг от друга. В металлах расстояния между атомами настолько малы, что электронные оболочки практически соприкасаются. Это дает возможность электронам свободно блуждать от ядра к ядру, создавая при этом электрический ток, поэтому металлы, а также некоторые другие вещества являются ПРОВОДНИКАМИ электричества. Другие вещества – наоборот, имеют далеко расставленные атомы, электроны, прочно связанные с ядром, которые не могут свободно перемещаться. Такие вещества не являются проводниками и их принято называть ДИЭЛЕКТРИКАМИ, самым известным из которых является резина. Это и есть ответ на вопрос, почему электрические провода делают из металла.

Читайте также:  Как заземлить газовый котел в частном доме?

О наличии электрического тока говорят следующие действия или явления, которые его сопровождают:

;1. Проводник, по которому течет ток, может нагреваться;

2. Электрический ток может изменять химический состав проводника;

3. Ток оказывает силовое воздействие на соседние токи и намагниченные тела.

При отделении электронов от ядер освобождается некоторое количество энергии, которое нагревает проводник. «Нагревательную» способность тока принято называть рассеиваемой мощностью и измерять в ваттах. Такой же единицей принято измерять и механическую энергию, преобразованную из электрической энергии.

Опасность электрического тока и другие опасные свойства электричества и техника безопасности

Электрический ток нагревает проводник, по которому течёт. Поэтому:

1. Если бытовая электрическая сеть испытывает перегрузку, изоляция постепенно обугливается и осыпается. Возникает возможность короткого замыкания, которое очень опасно.

2. Электрический ток, протекая по проводам и бытовым приборам, встречает сопротивление, поэтому «выбирает» путь с наименьшим сопротивлением.

3. Если происходит короткое замыкание, сила тока резко возрастает. При этом выделяется большое количество тепла, способное расплавить металл.

4. Короткое замыкание может произойти и из-за влаги. Если в случае с коротким замыканием происходит пожар, то в случае с воздействием влаги на электроприборы в первую очередь страдает человек.

5. Удар электричеством очень опасен, вероятен смертельный исход. При протекании электрического тока через организм человека, сопротивление тканей резко уменьшается. В организме происходят процессы нагревания тканей, разрушения клеток, отмирания нервных окончаний.

Как обезопасить себя от поражения электрическим током

Чтобы обезопасить себя от воздействия электрического тока, используют средства защиты от поражения электрическим током: работают в резиновых перчатках, используют резиновый коврик, разрядные штанги, устройства заземления аппаратуры, рабочих мест. Автоматические выключатели с тепловой защитой и защитой по току, так же являются не плохим средством защиты от поражения током, способным сохранить жизнь человека. Когда я не уверен в отсутствии опасности поражения электрическим током, при выполнении не сложных операций в электрощитовых, блоках аппаратуры, я как правило работаю одной рукой, а другую руку ложу в карман. Тем самым исключается возможность поражения током по пути рука-рука, в случае случайного прикосновения к корпусу щита, или другим массивным заземлённым предметам.

Для тушения пожара, возникшего на электрооборудовании используют только порошковые или углекислотные огнетушители. Порошковые тушат лучше, но после засыпания аппаратуры пылью из огнетушителя, эту аппаратуру не всегда возможно восстановить.

Видео по теме: что такое электрический ток

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Электрический ток.

Электрический ток — направленное (упорядоченное) движение заряженных частиц. Такими частицами могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводников (в сверхпроводниках не происходит выделения теплоты);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников).

Классификация:

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток.

Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.

Постоянный ток — ток, направление и величина которого слабо меняются во времени.

Переменный ток — ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Квазистационарный ток — «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Переменный ток высокой частоты — ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Пульсирующий ток — ток, у которого изменяется только величина, а направление остаётся постоянным.

Вихревые токи (токи Фуко) — «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики:

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Основные типы проводников:

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Какие существуют токи (электрические).
Основные виды электротока (постоянный и переменный), их особенности и различия.

Многие должны были слышать, что электрический ток бывает разный (постоянный, переменный). Те, кто особо не знаком с темой электрики и электроники порой могут путаться в типах тока, когда подают электрическую энергию на то или иное электрооборудование. Для одних устройств нужно именно постоянное напряжение (ток), другие же питаются только от переменного. Поскольку эти виды тока принципиально разные, то ошибка при подаче питания может привести к не работе (в лучшем случае), а в худшем варианте просто вывести электрооборудование из строя.

Итак, напомню, что электрический ток представляет собой упорядоченное движение электрически заряженных частиц (электронов) вдоль проводника. То есть, это простое, однонаправленное перемещение очень маленьких частичек (с огромной скоростью) внутри электрических проводников (в большинстве случаев металлов — медь, алюминий, серебро, золото и различных сплавов, хорошо проводящих ток).

Само же движение возникает по причине появления определённой разности электрических потенциалов, называемое напряжением. У электрического источника имеются два полюса, положительный (где сосредотачивается положительный заряд некой величины) и отрицательный (где сосредотачивается отрицательный заряд). Если нет замкнутой цепи между полюсами, то имеется только напряжение (стремление зарядов перейти на противоположный полюс). Как только цепь замыкается, появляется путь для прохождения зарядов в виде электрического проводника, то заряды стремительно начинают своё движение, что и создают их ТОК в проводнике.

Читайте также:  Как обозначается трансформатор на схеме?

Основных видов электрического тока существует два — постоянный и переменный (импульсный, это частичный случай переменного). Постоянный ток — это, не что иное как простое однонаправленное перемещение электрических зарядов в одну сторону. От одного полюса к другому без изменения направления во времени. На деле в твёрдых веществах (проводниках) электрический ток течет от минуса к плюсу (происходит перемещение отрицательных зарядов, электронов). В жидких и газообразных средах постоянный ток бежит, наоборот, от плюса к минусу (движение ионов, положительно заряженных частиц). В теоретической области было принято считать, что постоянный электрический ток всегда течет от плюса к минусу (при работе с принципиальными электрическими схемами).

Постоянный ток имеет постоянную величину своего напряжения (обычно наиболее используемые величины 3, 5, 6, 9, 12, 24 вольт). При работе его величина может изменяться всего на несколько процентов, по причине падения напряжения при динамической работе самой нагрузки (к примеру, постоянный электродвигатель, который может иметь плавающую механическую нагрузку на своём вале, ну и т.д.). Для постоянного напряжения (точнее электрических схем, работающие на постоянном типе тока) важно оставаться неизменным. Если схема рассчитана на постоянное напряжение 12 вольт, то и подаваться на неё должно строго 12 вольт с небольшим отклонением в несколько процентов. Для обеспечения этого используются различные решения начиная от правильно подобранных электрических деталей, компонентов, и заканчивая всевозможными электрическими, электронными схемами различных стабилизаторов, фильтров и т.д.

Постоянный ток имеет как свои достоинства, так и свои недостатки. Иначе бы использовался только этот тип электрического тока! Практически все электронные схемы нуждаются в питании именно постоянным током. Сам принцип действия и работа электронных элементов основан на этом виде тока. Также электрические аккумуляторы могут работать только с постоянным током, ну и т.д. Основным недостатком этого вида электротока является плохая передача электроэнергии на значительные расстояния (возникают большие потери). Кроме этого для его преобразования нужны более сложные электрические устройства.

Переменный электрический ток представляет собой упорядоченное, плавно изменяющееся (синусоидальное) движение электрических зарядов вдоль проводника, которое периодически меняет свои полюса. Наиболее распространённой частотой переменного тока является 50 Герц. То есть, за одну секунду направление тока в электрической цепи меняется с плюса на минус и наоборот аж 50 раз. Хотя это считается ещё и низкой частотой. Переменный ток может быть однофазным (используются 2 провода и напряжение между ними 220 вольт) или же трёхфазным (используются 3 фазных провода, напряжение между двумя любыми из них 380 вольт и один нулевой).

Переменный вид тока легко преобразуется и передается на большие расстояния с минимальными потерями на самой линии электропередач. Наиболее используемые величины переменного напряжения, от которых питаются конкретные электроприборы, это 220 вольт (напряжение для бытового использования населением) и 380 вольт (для промышленного использования, где важны именно 3 фазы). Для того, чтобы получить из одной величины тока или напряжения другую величину обычно применяют всего одно устройство, которое называется силовым трансформатором. На его вход подают одни значения напряжения или тока, а на выходе получают другие, более высокие или низкие.

Постоянный электрический ток: определение, механизм, характеристики

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A , действующих на заряд, равна работе сторонних A s t . Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:

ε = A q ( 1 ) , где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε = В .

Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.

Основные характеристики электрического тока

Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.

Электрический ток обладает силой тока.

Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S :

Ток может быть постоянным и переменным. При неизменной силе тока с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:

I = q t ( 3 ) , где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.

По системе С И основная единица измерения силы тока – Ампер ( А ) .

Плотность – это векторная локальная характеристика. Вектор плотности тока j → способен показывать, каким образом распределяется ток по сечению S . Его направление идет в сторону, куда движутся положительные заряды.

Значение вектора плотности тока по модулю равно:

j = d I d S ‘ ( 4 ) , где d S ‘ является проекцией элементарной поверхности d S на плоскость, перпендикулярную вектору плотности тока, d I – элементом силы, которая идет через поверхности d S и d S ‘ .

Представление плотности в металле возможно по формуле:

j → = — n 0 q e » open=» υ → ( 5 ) , где n 0 обозначается концентрацией электронов проводимости, q e = 1 , 6 · 10 — 19 К л – зарядом электрона, » open=» υ → – средней скоростью упорядоченного движения электронов. Если значение плотностей тока максимальное, то

» open=» υ → = 10 — 4 м с .

Закон сохранения заряда

Основным физическим законом считается закон сохранения электрического заряда. При выборе произвольной замкнутой поверхности S , изображенной на рисунке 1 , ограничивающей объем V количество выходящего электричества в единицу времени ( 1 секунду) из объема V можно определить по формуле ∮ s j n d S . Такое же количество электричества выражается через заряд — ∂ q ∂ t , тогда получаем:

∂ q ∂ t = — ∮ S j n d S ( 6 ) , где j n считается проекцией вектора плотности на направление нормали к элементу поверхности d S , при этом:

j n = j cos a ( 7 ) , где a является углом между направлением нормали к d S и вектором плотности тока. Уравнение ( 6 ) показывает частое употребление производной для того, чтобы сделать акцент на неподвижности поверхности S .

Выражение ( 6 ) считается законом сохранения электрического заряда в макроскопической электродинамике. Если ток постоянен во времени, тогда запись этого закона примет вид:

∮ S j n d S = 0 ( 8 ) .

Найти формулу для того, чтобы рассчитать конвекционный ток при его возникновении в длинном цилиндре с радиусом сечения R и наличием его равномерной скорости движения υ , который заряжен по поверхности равномерно. Значение напряженности поля у поверхности цилиндра равняется E . Направление скорости движения вдоль оси цилиндра.

Основой решения задачи берется определение силы тока в виде:

I = d q d t ( 1 . 1 ) .

Из формулы ( 1 . 1 ) следует, что возможно нахождение элемента заряда, располагающегося на поверхности цилиндра.

Напряженность поля равномерно заряженного цилиндра на его поверхности находится по выражению:

E = σ ε 0 ( 1 . 2 ) , где σ является поверхностной плотностью заряда, ε 0 = 8 , 85 · 10 — 12 К л Н · м 2 . Выразим σ из ( 1 . 2 ) , тогда:

σ = E · ε 0 ( 1 . 3 ) .

Связь поверхностной плотности заряда с элементарным зарядом выражается при помощи формулы:

d q d S = σ ( 1 . 4 ) .

Используя ( 1 . 3 ) , ( 1 . 4 ) , имеем:

d q = E · e 0 d S ( 1 . 5 ) .

Выражение элемента поверхности цилиндра идет через его параметры:

d S = 2 π · R d h ( 1 . 6 ) , где d h является элементом высоты цилиндра. Запись элемента заряда поверхности цилиндра примет вид:

d q = E · ε 0 · 2 h · R d h ( 1 . 7 ) .

Произведем подстановку из ( 1 . 7 ) в ( 1 . 1 ) :

I = d ( E · ε 0 · 2 π · Rdh ) d t = 2 πRε 0 E dh dt ( 1 . 8 ) .

Движение цилиндра идет вдоль оси, тогда запишем:

d h d t = υ ( 1 . 9 ) .

I = 2 π R ε 0 E υ .

Ответ: конвективный ток I = 2 π R ε 0 E υ .

Изменение тока в проводнике происходит согласно закону I = 1 + 3 t . Определить значение заряда, проходящего через поперечное сечение проводника, за время t , изменяющегося от t 1 = 3 с до t 2 = 7 c . Каким должен быть постоянный электрический ток, чтобы за аналогичное время происходило то же значение заряда?

Основа решения задачи – выражение, связывающее силу тока и заряд, проходящий через поперечное сечение проводника:

I = d q d t ( 2 . 1 ) .

Формула ( 2 . 1 ) показывает, что нахождение количества заряда, проходящего через поперечное сечение проводника за время от t 1 до t 2 возможно таким образом:

q = ∫ t 1 t 2 I d t ( 2 . 2 ) .

Произведем подстановку имеющегося по условию закона в ( 2 . 2 ) для получения:

q = ∫ t 1 t 2 ( 1 + 3 t ) d t = ∫ t 1 t 2 d t + ∫ t 1 t 2 3 t d t = t 2 — t 1 + 3 · t 2 2 t 1 t 2 = ( t 2 — t 1 ) + 3 2 t 2 2 — t 1 2 ( 2 . 3 ) .

q = 7 — 3 + 3 2 ( 7 2 — 3 2 ) = 4 + 3 2 · 40 = 64 ( К л ) .

Чтобы определить постоянный ток для получения силы используется формула:

I c o n s t = q t ( 2 . 3 ) , где t считается временем, за которое поперечное сечение проводника пройдет заряд q .

Тогда время протекания заряда равняется:

t = t 2 — t 1 ( 2 . 4 ) .

Выражение ( 2 . 3 ) примет вид:

I c o n s t = q t 2 — t 1 ( 2 . 5 ) .

Произведем подстановку и вычислим:

I c o n s t = 64 7 — 3 = 64 4 = 16 ( A ) .

Ответ: q = 64 К л . I c o n s t = 16 А . .

Рейтинг
( Пока оценок нет )
Загрузка ...