Какой кабель выбрать для подключения асинхронного двигателя?

Пример выбора сечения кабеля для электродвигателя 380 В

Требуется определить сечения кабеля в сети 0,4 кВ для питания электродвигателя типа АИР200М2 мощностью 37 кВт . Длина кабельной линии составляет 150 м. Кабель прокладывается в грунте (траншее) с двумя другими кабелями по территории предприятия для питания двигателей насосной станции. Расстояние между кабелями составляет 100 мм. Расчетная температура грунта 20 °С. Глубина прокладки в земле 0,7 м.

Технические характеристики электродвигателей типа АИР приведены в таблице 1.

Таблица 1 — Технические характеристики электродвигателей типа АИР

1. Определяем длительно допустимый ток:

Согласно ГОСТ 31996-2012 по таблице 21 выбираем номинальное сечение кабеля 16 мм2, где для данного сечения допустимая токовая нагрузка проложенного в земле равна Iд.т. = 77 А, при этом должно выполняться условие Iд.т.=77 А > Iрасч. = 70 A (условие выполняется).

Если же у Вас четырехжильный или пятижильный кабель с жилами равного сечения, например АВВГзнг 4х16, то значение приведенной в таблице следует умножить на 0,93.

Предварительно выбираем кабель марки АВВГзнг 3х16+1х10.

2. Определяем длительно допустимый ток с учетом поправочных коэффициентов:

Определяем коэффициент k1, учитывающий температуру среды отличающуюся от расчетной, выбираем по таблице 2.9 [Л1. с 55] и по таблице 1.3.3 ПУЭ. По таблице 2-9 температура среды по нормам составляет +15 °С, учитывая, что кабель будет прокладываться в земле в траншее.

Температура жил кабеля составляет +80°С в соответствии с ПУЭ изд.7 пунктом 1.3.12. Так как расчетная температура земли отличается от принятых в ПУЭ. Принимаем коэффициент k1=0,96 с учетом, что расчетная температура земли +20 °С.

Определяем коэффициент k2 , который учитывает удельное сопротивление почвы (с учетом геологических изысканий), выбирается по ПУЭ 7 изд. таблица 1.3.23. В моем случае поправочный коэффициент для песчано-глинистой почвы с удельным сопротивлением 80 К/Вт составит k2=1,05.

Определяем коэффициент k3 по ПУЭ таблица 1.3.26 учитывающий снижение токовой нагрузки при числе работающих кабелей в одной траншее (в трубах или без труб). В моем случае кабель прокладывается в траншее с двумя другими кабелями, расстояние между кабелями составляет 100 мм с учетом выше изложенного принимаем k3 = 0,85.

3. После того как мы определили все поправочные коэффициенты, можно определить фактически длительно допустимый ток для сечения 16 мм2:

4. Определяем длительно допустимой ток для сечения 25 мм2:

5. Определяем допустимую потерю напряжения для двигателя в вольтах, с учетом что ∆U = 5%:

6. Определяем допустимые потери напряжения для кабеля сечением 25мм2:

  • Iрасч. – расчетный ток, А;
  • L – длина участка, км;
  • cosφ – коэффициент мощности;

Зная cosφ, можно определить sinφ по известной геометрической формуле:

  • r0 и x0 — значения активных и реактивных сопротивлений определяем по таблице 2-5 [Л2.с 48].

7. Определяем допустимые потери напряжения для кабеля сечением 35мм2:

8. В процентном соотношении потеря напряжения равна:

9. Определим сечение кабеля по упрощенной формуле:

  • Р – расчетный мощность, Вт;
  • L – длина участка, м;
  • U – напряжение, В;
  • γ – удельная электрическая проводимость провода, м/Ом*мм2;
  • для меди γ = 57 м/Ом*мм2;
  • для алюминия γ = 31,7 м/Ом*мм2;

Как мы видим при определении сечения кабеля по упрощенной формуле, есть вероятность занизить сечение кабеля, поэтому я рекомендую при определении потери напряжения, использовать формулу с учетом активных и реактивных сопротивлений.

10. Определяем потерю напряжения для кабеля сечением 35мм2 при пуске двигателя:

  • cosφ = 0,3 и sinφ = 0,95 средние значения коэффициентов мощности при пуске двигателя, принимаются при отсутствии технических данных, согласно [Л6. с. 16].
  • kпуск =7,5 – кратность пускового тока двигателя, согласно технических характеристик двигателя.

Согласно [Л7, с. 61, 62] условие пуска двигателя определяется остаточным напряжением на зажимах электродвигателя Uост.

Считается, что пуск электродвигателей механизмов с вентиляторным моментом сопротивления и легкими условиями пуска (длительность пуска 0,5 — 2c) обеспечивается при:

Пуск электродвигателей механизмов с постоянным моментом сопротивления или тяжелыми условиями пуска (длительность пуска 5 – 10 с) обеспечивается при:

В данном примере длительность пуска электродвигателя составляет 10 с. Исходя из тяжелого пуска электродвигателя, определяем допустимое остаточное напряжение:

Uост.≥0,8*Uн.дв. = 0,8*380В = 304 В

10.1 Определяем остаточное напряжение на зажимах электродвигателя с учетом потери напряжения при пуске.

Uост.≥ 380 – 44,71 = 335,29 В ≥ 304 В (условие выполняется)

Выбираем трехполюсный автоматический выключатель типа C120N, кр.С, Iн=100А.

11. Проверяем сечение кабеля по условию соответствия выбранному аппарату максимальной токовой защите, где Iд.т. для сечения 95 мм2 равен 214 А:

  • Iзащ. = 100 А – ток уставки при котором срабатывает защитный аппарат;
  • kзащ.= 1 – коэффициент кратности длительно допустимого тока кабеля (провода) к току срабатывания защитного аппарата.

Данные значения Iзащ. и kзащ. определяем по таблице 8.7 [Л5. с. 207].

Исходя из всего выше изложенного, принимаем кабель марки АВВГзнг 3х35+1х25.

  1. Справочная книга электрика. Под общей редакцией В.И. Григорьева. 2004 г.
  2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
  3. ГОСТ 31996-2012 Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66, 1 и 3 кВ.
  4. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
  5. Расчет и проектирование систем электроснабжения объектов и установок. Издательство ТПУ. Томск 2006 г.
  6. Как проверить возможность подключения к электрической сети двигателей с короткозамкнутым ротором. Карпов Ф.Ф. 1964 г.
  7. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. А.В.Беляев. 2008 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Требуется выбрать автоматический выключатель (АВ) для питания цепей управления (шинки ±ШУ), ячейки 6 кВ.

Читайте также:  Как подключить зеркало с подсветкой и розеткой в ванной?

В данной статье будет рассматриваться пример выбора контакторов для схемы управления 3-х фазным.

Выбор сечения кабеля на напряжение до 1000 В независимо это электродвигатель или другая нагрузка. Сводится.

Под термином рабочая емкость подразумевается та емкость, которая постоянно включена. Правильно.

В данном примере нужно выбрать сечение гибких шин для питания ЗРУ-10 кВ от силового трансформатора типа.

Спасибо за статью. Очень толковая.

чтоб запустить двигатель 37 квт нужен С125 а автомат а не С100 а

Здравствуйте! Автомат выбран типа C120N, кр.С, Iн=100А, автомата типа С100а у Шнайдера нету!

Здравствуйте!
А если у меня электродвигатель мощностью от 500 до 700 Ватт, я могу подключить его кабелем сечением 1,5 кв.мм.?

Здравствуйте! Исходя из длительно допустимого тока 1,5 мм2 — проходит, но нужно еще проверить на допустимые потери напряжения, если длина кабеля более 50 м, то скорее всего нужно брать большее сечение. В любом случае это нужно считать.Напишите длину и номинальное напряжение сети, и я вам скажу какое сечение вам нужно брать.

10. Определяем потерю напряжения для кабеля сечением 35мм2 при пуске двигателя:
1,73 * 69,82 * 0,15 * 7,5 * ( 0,894 + 0,3 * 0,064 * 0,95 ) = 44,757
Почему у Вас получилось 19,02 ?

Здравствуйте! Спасибо, опечатку исправили!

Наконецто нашел сайт, где приведен достойный академический расчет сечения кабеля. Спасибо друг!

До пункта 10.1 вы вели расчет до сечения 35мм2 и вроде как все выполняется в пункте 11 выбираете сечение 95мм2?
А почему в итоге приняли кабель сеч.95мм2, если расчет вели для сеч.35мм2 и все вроде как бы проходило?

Это опечатка, нужно принимать кабель сечением 35 мм2. Спасибо, что указали.

при соединение в звезду токи меньше. Здесь я так понял вы считали для треугольника?

Здравствуйте!
Используя схему переключения обмоток двигателя со звезды на треугольник, мы уменьшаем пусковые токи при пуске двигателя на пониженном напряжении, а затем его повышаем до номинального. Соответственно выбирать сечение кабеля мы должны исходя из номинальной мощности двигателя.

В данном примере прямой пуск двигателя!

Статья толковая, но есть недочеты. Формула для синуса не правильна

Как может быть формула — неправильная, если cosφ2 + sinφ2 = 1 — это теорема Пифагора используется в тригонометрии.

Здравствуйте, для квартирного щита, какой нужен автомат для кабеля 1,5 и 2,5 мм2?

Здравствуйте! Автомат выбирается исходя нагрузки, а не из сечения кабеля. Для кабеля сечением 1,5 мм2 длительно допустимый ток равен — 19 А, для сечения 2,5 мм2 — 27 А. Если нагрузка у вас более 19 А можно взять автомат Iн = 25 А, кривая В.

Спасибо, толковая статья! Буду пользоваться на практике.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Кабель для подключения электродвигателя

Подписка на рассылку

Какой кабель нужен для подключения электродвигателя? Это зависит от мощности двигателя, напряжения электросети, в которой он работает, а также условий прокладки кабеля. В этой статье будет показано, как выбирать кабель для подключения электродвигателя 380 В.

На примере покажем, как проводить расчет сечения кабеля для подключения электродвигателя. Допустим, у нас есть двигатель типа АИР200М2, работающий в сети 380 В. Мощность двигателя 37 кВт. Необходимо подобрать кабель АВБШв, который будет проложен в траншее вместе с двумя другими кабелями расположенными в одной плоскости (расстояние между кабелями в свету 100 миллиметров), на глубине 0.7 м, длина – 150 м, температура грунта 20°С. Почва песчано-глинистая.

Используя данные из таблицы, определяем длительно допустимый ток:

В таблице 21 ГОСТ 31996-2012, в соответствии с которым изготавливается кабель АВБШв, находим сечение кабеля, при котором допустимая токовая нагрузка не ниже, чем Iрасч. Для данного кабеля, проложенного в земле, минимально допустимое сечение получается равным 16 мм² (Iд.т. = 77 А > Iрасч. = 70 А).

Однако ещё нужно учесть поправочные коэффициенты, которые могут изменять значение Iд.т.:

Коэффициент k1 зависит от температуры среды, в которой проложен кабель, и равен 0.96 (при 20°С). Коэффициент k2 зависит от удельного сопротивления земли, для песчано-глинистой почвы равен 1.05. Коэффициент k3 зависит от количества проложенных кабелей (у нас 3) и расстояния между ними (у нас 100 мм) и в нашем случае равен 0.85. Зная соответствующие данные, подставляем их в форму и производим расчет:

Так как условия с учетом дополнительных условий не выполняются, то выбираем следующий номинал по сечению (25 мм²) и производим расчёт для него:

Далее необходимо произвести расчет и сравнить допустимую потерю напряжения ∆U для электродвигателя и для кабеля. Стоит отметить, что расчетное падение напряжения для кабеля должно быть меньше, чем у двигателя, в противном случае необходимо использовать кабель с большим сечением. Падение напряжения для двигателя составляет 5% (0,05) от номинального напряжения, при котором он работает, то есть:

∆U = 380*0,05 = 19 В

Рассчитаем ∆U для кабеля сечением 25 мм²:

где Iрасч – расчетный ток,

L – длина кабеля в км,

r0 и x0 – соответственно активное и индуктивное сопротивление (таблица),

cosф – коэффициент мощности двигателя,

sinф вычисляется исходя из значения cosф, исходя из условия, что сумма квадратов косинуса и синуса равна единице.

Поскольку ранее выбранное сечение не удовлетворяет нашим условиям, берём кабель сечением 35 мм² и рассчитываем ∆U для него:

Вычисляем потерю напряжения при пуске двигателя для данного кабеля:

Значения cosф = 0.3 и sinф = 0.95 – средние значения, наблюдаемые при пуске двигателя. Коэффициент kпуск = 0.75 определяется характеристиками двигателя.

Минимальное напряжение, при котором возможен пуск двигателя, составляет 70% (0.7) напряжения сети при лёгких условиях пуска (длительность 0.5-2 секунд) и 80% (0.8) при тяжёлых (5-10 секунд).

В нашем случае длительность пуска 10 секунд, потому пуск возможен при:

Uост >= 0.8 * 380 = 304 В.

Для нашего кабеля (сечение 35 мм²) Uост = 380 — 44.71 ≈ 335 В > 304 В, то есть условие выполняется.

Таким образом, получаем, что кабель для подключения электродвигателя в нашем случае должен иметь сечение 35 мм² – АВБШв 4×35.

Кабель для электродвигателя

От точного подбора марки кабеля для подключения электродвигателя зависит длительность и бесперебойность работы как самого оборудования, так и всей сети.

Специалисты рекомендуют осуществлять выбор кабеля для электродвигателя, руководствуясь следующими правилами:

  • учитывать силу тока и мощность подключаемого оборудования,
  • принимать во внимание длину подводимых кабельных сетей,
  • вводить поправочные коэффициенты, зависящие от условий эксплуатации, включая параметры окружающей среды,
  • согласовывать сечение кабеля для подключения электродвигателя с наибольшей фактической нагрузкой на электросеть, а также с токами защитных предохранителей и выключателей.
Читайте также:  Подключение 3х фазного счетчика

Наиболее простым и достаточно достоверным способом является выбор кабеля по мощности электродвигателя. Для этого следует знать справочные характеристики оборудования и степень его использования в условиях максимальной нагрузки, добавив к полученному результату определённую величину, которая позволит подключить дополнительные устройства и обезопасит систему от сложно прогнозируемых факторов.

Отечественные и зарубежные производители предлагают довольно широкий ассортимент кабелей для подключения электродвигателей, но среди наиболее часто используемых марок следует назвать ВВГЭ, ПВВГЭ, ВВГнг, КГ.

Кабель для электродвигателя — обзор марок

ВВГЭ – это кабель с высокой степенью механической защиты, оснащённый экраном из медной проволоки, скреплённой плетёной медной спиральной лентой. Такая конструкция обуславливает преимущественное использование кабеля ВВГЭ для подключения электродвигателей, чувствительных к электромагнитным помехам, источником которых обычно служит преобразователь частоты.

ВВГЭ является аналогом известных немецких марок NYY, NYCY и NYCWY, полностью отвечая стандарту VDE 0276-603-2000. Выпускается с голубой (нулевой), жёлто-зелёной (заземляющей) жилами или без них и рассчитан на максимальное напряжение 1 кВ при частоте 50 Гц. Подробнее о марке

Изоляционная оболочка ПвВГЭ изготовлена из сшитого полиэтилена, обладающего отличной термической и механической стойкостью. Поэтому данная марка, независимо от сечения кабеля, успешно применяется для присоединения различных модификаций электродвигателей, устанавливаемых как на мобильных, так и на стационарных силовых установках, в т.ч. получающих питание через частотные преобразователи.

Одиночная прокладка ПВВГЭ осуществляется в специализированных кабельных сооружениях, групповая же разрешена только в наружных электрических установках с применением пассивной защиты от огня. Зарубежными аналогами кабеля ПВВГЭ являются марки N2XCY и N2XCWY.Подробнее о марке

ВВГнг представляет собой изделие с оболочкой и изоляцией из негорючего материала, самозатухающего светотермостойкого ПВХ пластиката, который не поддерживает процесс распространения горения, как при одиночной, так и при совместной прокладке кабеля.

Будучи отечественным заменителем марок кабелей NYY-J и CYKY, ВВГнг приспособлен для монтажа любым подходящим способом, включая скрытое подведение к электрическим двигателям и силовым установкам, например, в стенах, кабельных коллекторах и прочих специальных сооружениях. Подробнее о марке

КГ применяется при необходимости использования кабеля с повышенной пластичностью и прочностью «на изгиб», например, для подключения к питающей сети электродвигателей, размещённых на подвижных силовых установках. Это могут быть сварочные аппараты, мобильные станки, насосы и даже краны.

Как и зарубежная марка-аналог H07RN-F, кабель КГ практически не используется для запитывания стационарных объектов или подземной прокладки, что связано с особенностями конструкции внешней оболочки изделия, не выдерживающей значительных механических нагрузок. Подробнее о марке

Выбор кабеля для электропитания двигателя

Содержание

2. Выбор кабеля для электропитания двигателя……………………………………4

3. Выбор аппаратуры управления и защиты электродвигателя от перегрузки…. 5

4. Выбор защиты от короткого замыкания………………………………………….5

5. Построение принципиальной электрической схемы…………………………….6

Введение

Правильность подбора электродвигателя, учитывающая специфику приводного механизма, условия работы и окружающей среды определяет длительность безаварийной работы и надежность системы двигатель-нагрузка.

Широкое применение асинхронных двигателей обусловлено простотой их конструкции, обслуживания и эксплуатации, высокой надежностью и относительно низкой стоимостью. Недостатками таких двигателей являются большой пусковой ток, малый пусковой момент, чувствительность к изменениям параметров сети, а для плавного регулирования скорости необходим преобразователь частоты. Также асинхронные двигатели потребляют реактивную мощность из сети. Предел применения асинхронных двигателей с короткозамкнутым ротором определяется мощностью системы электроснабжения конкретного предприятия, так как большие пусковые токи при малой мощности системы создают большие понижения напряжения.

Использование асинхронных двигателей с фазным ротором помогает снизить пусковой ток и существенно увеличить пусковой момент благодаря введению в цепь ротора пусковых реостатов. Однако, ввиду усложнения их конструкции, и как следствие, увеличения стоимости, их применение ограничено.

После того, как определен тип электродвигателя, полностью учитывающий специфику рабочего механизма и условия работы, необходимо определиться с рабочими параметрами двигателя: мощностью, номинальным и пусковым моментами, номинальными напряжением и током, режимом работы, коэффициентом мощности, классом энергоэффективности.

В данной работе обосновывается выбор электродвигателя из условий функционирования и выбор аппаратуры управления и защиты.

Исходные данные для выполнения работы приведены в таблице 1.

Вар.Активная мощность нагрузки, кВтИнтервалы времени в цикле, сДлина кабеля L, м, условия прокладки
P1P1P1P1P1t1t1t1t1t1
2,21,62,43,51,8200; зем.

Выбор электродвигателя

1.1 Построение графика нагрузочной характеристики (рис. 1)

Рис. 1. Диаграмма изменения мощности нагрузки

1.2 Расчет эквивалентной мощности. Определяем режим работы электродвигателя. Так как за цикл работы двигателя мощность нагрузки не снижается до 0, то режим работы продолжительный, то есть двигатель работает непрерывно.

Находим длительность цикла

Это означает, что каждые 57 секунд изменения мощности нагрузки Р повторяются. Находим эквивалентную мощность

Это означает, что за цикл работы ТЦ потери энергии и температура нагрева изоляции электродвигателя, работающего с неизменной мощностью Р=2,39 кВт, будут такими же, как и при переменной мощности нагрузки.

Используем список литературы для получения справочных данных и выбора двигателя. Выбираем асинхронный электродвигатель из условия, что :

Выбираем типоразмер 4A100S.

1.3 Проверка на перегрузочную способность. Определяем максимальную мощность:

Определяем максимальную мощность нагрузки из нагрузочной характеристики (рис. 1):

Двигатель может работать с перегрузкой при условии, что

Окончательно выбираем асинхронный двигатель 4A100S со следующими характеристиками:

Выбор кабеля для электропитания двигателя

1. Расчет сечения и выбор марки кабеля. Сечение провода трехжильного кабеля выберем из условия нагрева при протекании по нему электрического тока. Рассчитаем номинальный ток провода при работе электродвигателя в номинальных условиях:

где РН –номинальная мощность электродвигателя, кВт;

UНЛ – номинальное линейное напряжение электрической сети, В;

ηН – номинальное значение КПД, относительные единицы.

Из справочных материалов для кабеля, проложенного в воздушной среде, выбираем ближайшее большее значение допустимого тока Iдоп=19 А и соответствующее ему сечение S=2,5 мм 2 .

2. Проверка выбранного сечения на допустимую величину потери напряжения. Проверяем условие

где ΔUП – фактическая потеря напряжения в проводе от источника до электродвигателя;

ΔUПД – допустимое отклонение напряжения на зажимах электродвигателя.

Здесь допустимое отклонение

Найдем фактическую потерю напряжения в кабеле:

где IH – номинальный ток электродвигателя, А;

L – длина кабеля, м;

— удельное сопротивление алюминия, Ом мм 2 /м;

S – сечение фазного провода кабеля, мм 2 .

Итак, кабель удовлетворяет этому условию

Выбираем кабель АВВГ 3×2,5 с поливинилхлоридной изоляцией, с тремя алюминиевыми жилами.

Дата добавления: 2016-11-12 ; просмотров: 5009 | Нарушение авторских прав

220В или 380В? — подключение электродвигателя к сети

Сложно представить гараж или собственный дом, в котором имеется мастерская без установленных в них электроприборов. Учитывая довольно высокую стоимость, которых владельцы мастерской стараются изготовить их самостоятельно.

Читайте также:  Кз в проводке трехкомнатной квартиры

Это могут быть заточные станки или более сложные механизмы, использующие электродвигатели. В каждом гараже всегда можно найти двигатель от неисправной бытовой техники.

Электроснабжение гаражей осуществляется от сети напряжением 220 вольт. Двигатели от бытовой техники однофазные, а при изготовлении станка появляется необходимость в схеме подключения двигателя.

Подключение однофазного коллекторного и асинхронного моторов к сети 220 вольт

В бытовой технике используются коллекторные или асинхронные двигатели. Схема подключения однофазного двигателя при использовании таких электродвигателей будет разная. Для того чтобы выбрать правильную схему необходимо знать тип двигателя.

Это сделать очень просто, если сохранился шильдик. При его отсутствии следует посмотреть, имеются ли щетки. При их наличии электродвигатель коллекторный, если они отсутствуют — двигатель асинхронный.

Схема подсоединения коллекторного двигателя очень проста. Достаточно имеющиеся провода подключить к сети 220 вольт и мотор должен заработать.

Основным недостатком таких моторов большой шум в процессе работы. К достоинствам можно отнести легкость регулировки оборотов. Существует более сложная схема для подключения однофазного асинхронного двигателя.

Они бывают однофазные и трехфазные. Однофазные электродвигатели выпускают с пусковой обмоткой (бифилярные) и конденсаторные.

В момент пуска таких моторов пусковая обмотка замыкается, а после достижения необходимых оборотов отключается специальными устройствами. На практике такие электродвигатели включаются специальными кнопками, у которых средние контакты при нажатии замыкаются, а после отпускания кнопки размыкаются. Это так называемые кнопки ПНВС они специально сконструированы для работы с такими электродвигателями.

В конденсаторных имеется две обмотки, которые работают постоянно. Они смещены относительно друг друга на 90º , благодаря чему можно осуществить реверс.

Схема подключения асинхронного двигателя на 220в ненамного сложнее включения коллекторного. Отличие состоит в том, что к вспомогательной обмотке подсоединяется конденсатор. Его номинал рассчитывается по сложной формуле.

Но опираясь на эмпирические данные его, подбирают из расчета 70 Мкф на 1 Квт мощности, а рабочий конденсатор в 2–3 раза меньше, и соответственно имеет параметры 25–30 Мкф на 1 Квт.

Для того чтобы осуществить подключение однофазного двигателя необходимо подключить конденсатор к вспомогательной обмотке, схема несложная и ее может собрать любой человек.

Достаточно иметь необходимые комплектующие и не перепутать обмотки. Определить назначение обмоток можно с помощью тестера, измерив, сопротивление. Пусковая обмотка имеет в два раза большее сопротивление, чем рабочая.

Схемы включения однофазного электродвигателя

Для включения двигателя применяются три схемы подключения электродвигателей на напряжение 220 в. Для тяжелого пуска устройств, таких как бетономешалка, применяют схему с подсоединением пускового конденсатора с последующим его отключением. Существует более простая схема подключения однофазного двигателя с постоянным подключением конденсатора малой емкости к пусковой обмотке, она применяется наиболее часто.

При этом параллельно рабочему конденсатору во время пуска подключается дополнительный конденсатор.

Для того чтобы наиболее полно раскрыть возможности двигателя применяется схема с постоянно подсоединенным конденсатором к вспомогательной обмотке.

Это самая распространенная схема подключения, с помощью которой подключают любой однофазный асинхронный двигатель при изготовлении заточного станка. При использовании таких схем подсоединения следует знать, что двигатель не сможет развивать полную мощность.

Подключение трехфазных электродвигателей

Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

Подключение к однофазной сети 220 вольт

Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

Номинал конденсатора можно рассчитать по упрощенной формуле:

Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

Подключение к трехфазной сети

Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

Техника безопасности

При самостоятельном подключении электродвигателей следует соблюдать несложные правила. Не работать при подключенном напряжении.

Строго соблюдать правила техники безопасности. Во время работы применять средства индивидуальной защиты.

Нельзя допускать к работе с электричеством необученных людей и детей возрастом менее восемнадцать лет.

Следует помнить, что электричество не имеет запаха и нельзя определить на глаз его наличие на контактах. Обязательно, для определения напряжения использовать только разрешенные средства измерения.

Рейтинг
( Пока оценок нет )
Загрузка ...