Меры защиты при косвенном прикосновении

Содержание

Защита при косвенном прикосновении

Стандарты и нормативные правила выделяют два вида опасных прикосновений: прямое и косвенное. В данной статье речь пойдет о мерах защиты от поражения электрическим током при косвенном прикосновении.

Косвенное прикосновение обозначает контакт человека с открытой проводящей частью оборудования, которая в нормальном режиме работы электроустановки не находится под напряжением, но по какой-то причине оказалась под напряжением, например из-за повреждения изоляции. В этом случае случайный контакт человека с этой частью может оказаться крайне опасным, поскольку через тело человека потечет ток.

Для защиты при косвенном прикосновении, чтобы предупредить поражение людей или животных электрическим током в случае повреждения изоляции, применяют специальные меры, отдельно или сразу несколько из них:

автоматическое отключение питания;

двойная или усиленная изоляция;

сверхнизкое (малое) напряжение;

защитное электрическое разделение цепей;

изолирующие (непроводящие) помещения, зоны, площадки.

Для обеспечения электробезопасности выполняют защитное заземление оборудования. Это заземление отличается от функционального заземления, и подразумевает соединение проводящей, потенциально опасной части оборудования с заземляющим устройством.

Функция защитного заземления — устранить опасность для человека стоящего на земле, и прикоснувшегося к части оборудования, которое оказалось под напряжением из-за замыкания. Все потенциально опасные проводящие части оборудования соединяются с землей посредством заземляющих проводников, соединенных с заземлителем. Благодаря защитному заземлению, напряжение заземленных частей уменьшается до безопасного относительно земли значения.

Защитное заземление применяется к оборудованию, работающему под напряжением до 1000 вольт:

к однофазному, изолированному от земли и к трехфазному с изолированной нейтралью;

к оборудованию, работающему в сетях с напряжением выше 1000 вольт с заземленной нейтралью и с изолированной нейтралью.

Заземлителем для защитного заземления может служить специально для этой цели искусственно заземленный проводник (искусственный заземлитель), либо какой-нибудь проводящий объект, находящийся в земле, например железобетонный фундамент (естественный заземлитель). Коммуникационные трубопроводы, например канализационные, газовые или трубопровод системы отопления, для этой цели использовать запрещено.

Автоматическое отключение питания

В целях защиты от поражения электрическим током при косвенном прикосновении, реализуют автоматическое отключение питания путем размыкания сразу нескольких фазных проводников, а в некоторых случаях еще и нулевого проводника. Данный способ защиты сочетается с системами защитного заземления и зануления. Применим он и в тех случаях, когда защитное заземление реализовать невозможно.

Этот способ защиты относится к быстродействующим системам, способным за время менее 0,2 секунд отключить оборудование от сети в случае наступления опасной ситуации. Целесообразно применять защитное отключение ручных электроинструментов, мобильных электроустановок, бытовых электроприборов.

Когда фаза замыкается на корпус, либо сопротивление изоляции относительно земли сильно падает, или при соприкосновении токоведущей части с телом человека, электрические параметры цепи изменяются, и это изменение выступает сигналом для срабатывания УЗО, состоящего из прибора защитного отключения и выключателя. Прибор защитного отключения регистрирует изменение параметров цепи и подает сигнал на выключатель, который в свою очередь отключает опасный прибор от сети.

УЗО для защиты при косвенном прикосновении могут реагировать на различные параметры: на токи КЗ в системе зануления или на дифференциальный ток, на напряжение корпуса относительно земли или на напряжение нулевой последовательности. По типу входного сигнала данный УЗО различаются. На оборудовании с автоматическими УЗО, после регистрации аварийной ситуации реализуется уравнивание потенциалов, затем происходит отключение питания.

Если в одной и той же электросети имеется несколько электроустановок, часть корпусов которых заземлена через отдельный заземлитель без соединения с PE-проводником, а часть оборудования имеет соединение с PE-проводником, такое положение дел опасно, и так заземлять электроустановки запрещается. Почему? Потому что если произойдет замыкание фазы на корпус, скажем, двигателя, заземленного отдельным заземлителем, то корпуса зануленных электроустановок окажутся под напряжением относительно земли. Напомним, что зануление — это соединение металлических нетоковедущих частей электроустановки с нулевым проводником сети.

Опасно здесь то, что оборудование с правильно организованной защитой окажется под напряжением. Печальный опыт из животноводческого хозяйства свидетельствует о том, что такое неправильное заземление оборудования имело следствием массовую гибель животных.

Чтобы избежать подобных опасностей, реализуют уравнивание потенциалов. Проводящие части защищаемого оборудования соединяют, чтобы потенциалы их были одинаковыми, и таким образом обеспечивается электробезопасность электросети при косвенном прикосновении.

Согласно ПУЭ, у электроустановок на напряжение до 1000 вольт между собой соединяют нулевой защитный PEN- или PE-проводник питающей линии системы TN с заземляющим проводником заземляющего устройства систем IT и TT и с заземляющим устройством заземлителя повторного заземления на вводе в здание.

Сюда же присоединяют металлические коммуникационные трубы сооружения, проводящие части каркаса здания, проводящие части централизованных систем кондиционирования и вентиляции, заземляющие устройства системы молниезащиты 3 и 2 кат., проводящие оболочки телекоммуникационных кабелей, а также функциональное заземление, если нет ограничений по ПУЭ. Проводники системы уравнивания потенциалов от всех этих частей присоединяют затем к главной заземляющей шине.

Выравнивание потенциалов позволяет значительно снизить шаговое напряжение на поверхности земли или пола при помощи защитных проводников, которые прокладываются в земле, в полу, либо на их поверхности, и присоединяются к заземляющему устройству. В некоторых случаях применяют специальные покрытия земли. Можно рассматривать выравнивание потенциалов как частный случай уравнивания, если считать проводящий пол сторонней проводящей частью в электроустановке наряду с металлоконструкциями, трубопроводами.

Двойная или усиленная изоляция

Для защиты при косвенном прикосновении, в электроустановках напряжением до 1000 вольт, применяют двойную изоляцию. Основная изоляция защищена независимой дополнительной изоляцией. В случае повреждения дополнительной изоляции, основная изоляция оказывается защищена.

Усиленная изоляция по своей защитной функции аналогична двойной изоляции, ее степень защиты соответствует двойной изоляции.

Проводящие части электроустановок в двойной защитной и усиленной изоляции не присоединяют ни к защитному проводнику, ни к системе уравнивания потенциалов.

Здесь уместным будет отметить, что электроинструмент и ручные электрические машины по классу защиты от поражения электрическим током подразделяются на четыре класса: 0,I,II,III. Далее рассмотрим некоторые детали реализуемых в них защит.

Класс 0. Основная изоляция обеспечивает защиту от поражения током. При повреждении изоляции, от косвенного прикосновения человека защищают изолирующие помещения, изолирующие зоны, площадки, изолирующие полы. Примером может служить дрель, металлический корпус которой не имеет заземляющего контакта, при этом вилка двухполюсная. Между кабелем и корпусом, в месте входа кабеля в корпус, обязательно установлена резиновая втулка, обеспечивающая изоляцию.

Класс I. Основная изоляция обеспечивает защиту от поражения током, при этом открытые проводящие части соединены с PE-проводником сети, например стиральные машины с трехполюсной евровилкой защищены именно таким образом.

Класс II. Двойная или усиленная изоляция корпуса. Пример — пластмассовый корпус перфоратора с двухполюсной вилкой и без заземления.

Класс III. Напряжение источника питания не опасно для человека. Это так называемое сверхнизкое (малое) напряжение. Примером может служить бытовой шуруповерт.

Малое (сверхнизкое) напряжение

Малое, или по-другому сверхнизкое напряжение само по себе является защитой при косвенном прикосновении. В сочетании с защитным электрическим разделением цепей, например с применением разделительного трансформатора, безопасность оказывается столь же высокой. Цепи малого напряжения отделяются от цепей высокого напряжения, а в случаях, когда сверхнизкое напряжение выше 60 вольт по постоянному току или выше 25 вольт по переменному току, применяются дополнительные меры: изоляция, оболочка.

Применение сверхнизкого напряжения в электроприборах позволяет отказаться от защитного заземления их проводящих корпусов, кроме ситуаций вынужденного соединения с проводящими частями приборов опасного напряжения. Если малое напряжение используется совместно с автоматическим отключением питания, то один из выводов источника присоединяют к защитному проводнику сети, которая этот источник питает.

Защитное электрическое разделение цепей

В электроустановках напряжением до 1000 вольт реализуется защитное электрическое разделение цепей. При помощи усиленной либо двойной изоляции или основной изоляции и защитного проводящего экрана, одни токоведущие части или цепи отделяются от других. Наибольшее напряжение цепи, которая отделяется, не должно быть выше 500 вольт. Защитное электрическое разделение цепей реализовано например в разделительном трансформаторе. Токоведущие части питаемой цепи прокладываются отдельно от других цепей.

Электрическое разделение цепей значительно повышает безопасность протяженных сетей, благодаря именно разделительным трансформаторам. Участки сетей, изолированные от земли, и имеющие малую протяженность, отличаются незначительной электроемкостью и высоким сопротивлением изоляции, если сравнивать со всей разветвленной сетью. При косвенном прикосновении через тело человека от фазы к земле протечет небольшой ток. Отдельный участок цепи оказывается более безопасным при таком разделении.

Читайте также:  Что лучше поставить: дифавтомат или узо?

Изолирующие (непроводящие) помещения, зоны, площадки

Значительное электрическое сопротивление стен и полов некоторых помещений, зон, площадок, обеспечивает достаточную защиту при косвенном прикосновении даже в отсутствие заземления проводящих частей электроустановок напряжением до 1000 вольт. Изолирующие помещения применяют для защиты людей при косвенном прикосновении в случаях, когда иные методы защиты неприменимы или нецелесообразны.

Однако есть важное условие: при напряжении электроустановки более 500 вольт, сопротивление изолирующих стен и пола относительно локальной земли не должно быть ниже 100 кОм в любой точке помещения, а при напряжении до 500 вольт — не менее 50 кОм. Изолированные помещения не предполагают наличия защитного проводника, поэтому в них всеми путями исключен занос потенциала извне на проводящие части зоны.

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.7. Заземление и защитные меры электробезопасности

Меры защиты при косвенном прикосновении

1.7.76. Требования защиты при косвенном прикосновении распространяются на: ¶

1) корпуса электрических машин, трансформаторов, аппаратов, светильников и т.п.; ¶

2) приводы электрических аппаратов; ¶

3) каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съемных или открывающихся частей, если на последних установлено электрооборудование напряжением выше 50 В переменного или 120 В постоянного тока (в случаях, предусмотренных соответствующими главами ПУЭ — выше 25 В переменного или 60 В постоянного тока); ¶

4) металлические конструкции распределительных устройств, кабельные конструкции, кабельные муфты, оболочки и броню контрольных и силовых кабелей, оболочки проводов, рукава и трубы электропроводки, оболочки и опорные конструкции шинопроводов (токопроводов), лотки, короба, струны, тросы и полосы, на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым проложены кабели с зануленной или заземленной металлической оболочкой или броней), а также другие металлические конструкции, на которых устанавливается электрооборудование; ¶

5) металлические оболочки и броню контрольных и силовых кабелей и проводов на напряжения, не превышающие указанные в 1.7.53, проложенные на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т.п., с кабелями и проводами на более высокие напряжения; ¶

6) металлические корпуса передвижных и переносных электроприемников; ¶

7) электрооборудование, установленное на движущихся частях станков, машин и механизмов. ¶

При применении в качестве защитной меры автоматического отключения питания указанные открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания в системе TN и заземлены в системах IT и TT. ¶

1.7.77. Не требуется преднамеренно присоединять к нейтрали источника в системе TN и заземлять в системах IT и TT; ¶

1) корпуса электрооборудования и аппаратов, установленных на металлических основаниях: конструкциях, распределительных устройствах, щитах, шкафах, станинах станков, машин и механизмов, присоединенных к нейтрали источника питания или заземленных, при обеспечении надежного электрического контакта этих корпусов с основаниями; ¶

2) конструкции, перечисленные в 1.7.76, при обеспечении надежного электрического контакта между этими конструкциями и установленным на них электрооборудованием, присоединенным к защитному проводнику; ¶

3) съемные или открывающиеся части металлических каркасов камер распределительных устройств, шкафов, ограждений и т.п., если на съемных (открывающихся) частях не установлено электрооборудование или если напряжение установленного электрооборудования не превышает значений, указанных в 1.7.53; ¶

4) арматуру изоляторов воздушных линий электропередачи и присоединяемые к ней крепежные детали; ¶

5) открытые проводящие части электрооборудования с двойной изоляцией; ¶

6) металлические скобы, закрепы, отрезки труб механической защиты кабелей в местах их прохода через стены и перекрытия и другие подобные детали электропроводок площадью до 100 см 2 , в том числе протяжные и ответвительные коробки скрытых электропроводок. ¶

1.7.78. При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ все открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания, если применена система TN, и заземлены, если применены системы IT или TT. При этом характеристики защитных аппаратов и параметры защитных проводников должны быть согласованы, чтобы обеспечивалось нормированное время отключения поврежденной цепи защитно-коммутационным аппаратом в соответствии с номинальным фазным напряжением питающей сети. ¶

В электроустановках, в которых в качестве защитной меры применено автоматическое отключение питания, должно быть выполнено уравнивание потенциалов. ¶

Для автоматического отключения питания могут быть применены защитно-коммутационные аппараты, реагирующие на сверхтоки или на дифференциальный ток. ¶

1.7.79. В системе TN время автоматического отключения питания не должно превышать значений, указанных в табл.1.7.1. ¶

Таблица 1.7.1. Наибольшее допустимое время защитного автоматического отключения для системы TN.

Номинальное фазное напряжение U, В

Меры защиты при косвенном прикосновении

Для того чтобы защититься от такого явления существуют определенные меры безопасности. И если необходима защита, то используют эти меры либо индивидуально и отдельно, либо сразу несколько:

  • уравнивание потенциалов;
  • защитное заземление;
  • защита разделением электрических цепей;
  • небольшое (очень низкое) напряжение;
  • двойная изоляция;
  • выключение питания автоматом;
  • отделяющие площадки и зоны.

Уравнивание потенциалов. Если электроустановки в количестве от двух и выше, подключаются к одной электрической сети, то их нужно правильно заземлить. Например, неправильным считается соединение, когда определенное количество корпусов установок заземляется без объединения заземлителя с РЕ-проводником, а остальные корпуса электроустановок с РЕ-проводником. Это считается серьезным нарушением, так как в результате замыкания фазы на корпус, который заземлен индивидуальным заземлителем, зануленные корпуса попадут под напряжение относительно земли.

Такая защита будет под напряжением, а это весьма опасно. Для того чтобы этого избежать и существует уравнивание потенциалов. Для его реализации необходимо объединить проводящие части электрооборудования. Так происходит защита, и потенциалы будут одинаковые и косвенное прикосновение будет не опасным.

В электроустановках до 1000 В, в соответствии с ПУЭ, объединение нулевого PEN-проводника с заземляющим проводником происходит с устройством заземлителя вторичного заземления на входе в помещение. К этому механизму подсоединяют и коммуникационные трубы из металла, которые проводят части каркаса здания, системы вентиляции и кондиционеров, а также оболочки кабелей телекоммуникации. Проводники от всего этого соединяются с основной заземляющей шиной. О том, как сделать систему уравнивания потенциалов, мы рассказали в отдельной статье!

Защититься от такого явления позволяет и выравнивание потенциалов. Благодаря защитным проводникам понижается шаговое напряжение на поверхности. Такие проводники прокладываются по поверхности и соединяются с заземляющим устройством.

Еще одна из мер защиты при косвенном прикосновении — защитное заземление. Это соединение проводящей части установки либо оборудования с заземляющим устройством. Из-за таких действий в заземленных частях напряжение уменьшится до безопасного уровня. Такие меры предосторожности позволяют избежать человеку такого явления, как косвенное прикосновение.

Следующий способ — защита разделением электрических цепей. Такое действие принято применять на электроустановках до 1000 В (например, в разделительном трансформаторе). В данном случае части оборудования, что проводят ток, протягиваются индивидуально от остальных цепей. Если все же произошло случайное прикосновение, то пострадавший способен защититься, так как сквозь его тело к земле пройдет ток незначительной величины.

Защита от косвенного прикосновения возможна и при помощи малого напряжения. Меры применения этого метода разрешают отказаться от защитного заземления, помимо принужденного объединения приборов высокого напряжения. Защита происходит следующим образом: цепи с маленьким напряжением отсоединяются от цепей с большим напряжением.

Косвенного прикосновения в передвижных электроустановках до 1000 В можно избежать при помощи двойной изоляции. Защита происходит следующим образом: основная изоляция предохраняется дополнительной независимой изоляцией и если эта дополнительная изоляция повреждается, то основная остается защищенной.

Еще один вариант защиты — при помощи выключения питания устройством защитного отключения. Меры предосторожности при таком отключении позволят обесточить оборудование. Такое действие можно применять в жилых зданиях. УЗО срабатывает, когда изменяются электрические параметры в цепи при касании человека к токоведущей части.

Ну и последнее, что нужно использовать — отделяющие площадки и зоны. Косвенного прикосновения можно избежать и при помощи изолирующих площадок и барьеров, поверхностей в помещении. Такой вариант используется, когда в электроустановках до 1000 В отсутствует заземление.

Вот мы и рассмотрели основные меры защиты при косвенном прикосновении. Для более детального изучения вопроса рекомендуем ознакомиться с главой 1.7 ПУЭ (п.1.7.76 — 1.7.87 .).

Меры защиты от прямого и косвенного прикосновения к токоведущим частям электроустановок

Токоведущие части электроустановки не должны быть доступными для случайного прикосновения, а доступные прикосновению открытые проводящие части не должны находиться под напряжением, представляющим опасность поражения электротоком как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

Читайте также:  Какой точечный светильник можно монтировать под крышей?

Прямое прикосновение – это электрический контакт людей или животных с токоведущими частями, находящимися под напряжением. В целях защиты от поражения электротоком в нормальном режиме следует применять по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

  • основная изоляция токоведущих частей;
  • ограждения и оболочки;
  • установка барьеров;
  • размещение вне зоны досягаемости;
  • применение сверхнизкого (малого) напряжения.

Косвенное прикосновение – это электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под на­пряжением при повреждении изоляции. Защита от поражения электро­током в случае повреждения изоляции осуществляется применением по отдельности или в сочетании следующих мер защиты при косвенном прикосновении:

  • защитное заземление;
  • автоматическое отключение питания;
  • уравнивание потенциалов;
  • выравнивание потенциалов;
  • двойная или усиленная изоляция;
  • сверхнизкое (малое) напряжение;
  • защитное электрическое разделение цепей;
  • изолирующие (непроводящие) помещения, зоны, площадки.

Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.

Защиту при косвенном прикосновении выполняют во всех случа­ях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока. В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких на­пряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.

Защита от прямого прикосновения не требуется, если электро­оборудование находится в зоне системы уравнивания потенциалов и наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока – во всех случаях.

Для заземления электроустановок применяют естественные и искусственные заземлители.

В качестве естественных заземлителей используют:

  • металлические и железобетонные конструкции зданий и со­оружений, находящихся в соприкосновении с землей;
  • металлические трубы водопровода, проложенные в земле;
  • обсадные трубы буровых скважин;
  • металлические шпунты гидротехнических сооружений, водо­воды, закладные части затворов и т.п.;
  • рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;
  • другие находящиеся в земле металлические конструкции и со­оружения;
  • металлические оболочки бронированных кабелей, проложенных в земле.

Не допускается использовать в качестве заземлителей трубопро­воды горючих жидкостей, горючих и взрывоопасных газов и смесей, трубопроводов канализации и центрального отопления.

Искусственные заземлители могут быть из черной или оцинко­ванной стали или медными и не иметь окраски.

Траншеи для горизон­тальных заземлителей должны заполняться однородным грунтом, не содержащим щебня а строительного мусора.

Не следует располагать заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.

На каждое находящееся в эксплуатации заземляющее устройство следует заводить паспорт, который должен содержать:

  • исполнительную схему устройства с привязками к капитальным сооружениям;
  • данные о связи с надземными и подземными коммуникациями и с другими заземляющими устройствами;
  • дату ввода в эксплуатацию;
  • основные параметры заземлителей (материал, профиль, линейные размеры);
  • величину сопротивления растеканию тока заземляющего устройства;
  • удельное сопротивление грунта;
  • данные по напряжению прикосновения (при необходимости);
  • данные по степени коррозии искусственных заземли гелей;
  • данные по сопротивлению металлосвязи оборудования с за­земляющим устройством;
  • ведомость осмотров и выявленных дефектов;
  • информацию по устранению замечаний и дефектов.

К паспорту необходимо прилагать результаты визуальных осмотров, осмотров со вскрытием грунта, протоколы измерения параметров заземляющего устройства, данные о характере ремонтов и изменениях, внесенных в конструкцию устройства.

Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе эксплуатации. Когда основная изоляция обеспечивается воздушным промежут­ком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние осуществляется посредством оболочек, ограждений, барьеров или размещением вне зоны досягае­мости.

Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность. Вход за ограждение или вскры­тие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей.

Барьеры предназначены для защиты от случайного прикоснове­ния к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключает преднамеренного прикосно­вения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть из изолирующего материала.

Размещение вне зоны досягаемости для защиты от прямого при­косновения к токоведущим частям в электроустановках до 1 кВ или приближения к ним на опасное расстояние в электроустановках напря­жением выше 1 кВ может применяться при невозможности выполнения вышеуказанных мер или их недостаточности. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не допускается размещение частей, имеющих разные потенциалы и доступных одновременному прикосновению.

Установка барьеров и размещение вне зоны досягаемости допуска­ется только в помещениях, доступ в которые имеет только квалифици­рованный обслуживающий персонал.

Сверхнизкое (малое) напряжение (далее СНН) – это напряжение, не превышающее 50 В переменного и 120 В постоянного тока, которое применяется в электроустановках до 1 кВ для защиты от поражения электротоком при прямом и косвенном прикосновениях в сочетании с защитным электрическим разделением цепей или в сочетании с автоматическим отключением питания. В качестве источника питания цепей СНН в обоих случаях необходимо использовать безопасный раздели­тельный трансформатор или другой источник СНН, обеспечивающий равноценную степень безопасности.

Токоведущие части цепей СНН отделяются от других цепей с целью обеспечения электрического разделения, которое равноценно разделению между первичной и вторичной обмотками разделительного трансформатора. К тому же проводники цепей СНН прокладываются отдельно от проводников более высоких напряжений и защитных проводников, либо должны быть отделены от них заземленным металличе­ским экраном (оболочкой) или заключены в неметаллическую оболочку дополнительно к основной изоляции. Вилки и розетки штепсельных соединений в цепях СНН не должны допускать подключение к розеткам и вилкам других напряжений, а штепсельные розетки должны быть без защитного контакта.

При применении СНН в сочетании с электрическим разделением цепей открытые проводящие части нельзя преднамеренно присоединять к заземлителю, защитным проводникам или открытым проводящим частям других цепей и к сторонним проводящим частям. СНН и соче­тании с электрическим разделением цепей применяют тогда, когда при помощи СНН нужно обеспечить защиту от поражения электротоком при повреждении изоляции не только в цени СНН, но и при повреждении изоляции в других цепях, к примеру в цепи, питающей источник.

Защитное электрическое разделение цепей – отделение одной электрической цепи от других цепей в электроустановках напряжением до 1 кВ осуществляется с помощью двойной изоляции, основной изоляции и защитного отключения, усиленной изоляции. Защитное электрическое разделение цепей применяют, как правило, для одной цепи.

При выполнении автоматического отключения питания электроустановок напряжением до 1 кВ все открытые проводящие части присоединяются к глухозаземленной нейтрали источника питания системы TN и заземляются в системах IT или ТТ. В электроустановках, где используются автоматическое отключение питания, необходимо выполнять уравнивание потенциалов. Для автоматического отключения питания применяют защитно-коммутационные аппараты, реагирующие на сверхтоки или на дифференциальный ток.

Под уравниванием потенциалов понимается электрическое соеди­нение проводящих частей для достижения равенства их потенциалов, а под защитным уравниванием потенциалов – уравнивание потенциалов, выполняемое в целях электробезопасности. В свою очередь выравнивание потенциалов предусматривает снижение разности потенциалов (шагового напряжения), на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.

Защита при помощи двойной или усиленной изоляции обеспечива­ется применением электрооборудования класса II или заключением электрооборудования, имеющего только основную изоляцию токоведущих частей, в изолирующую оболочку. Проводящие части оборудова­ния с двойной изоляцией не должны быть присоединены к защитному проводнику и к системе уравнивания потенциалов.

Изолирующие (непроводящие) помещения, зоны, площадки при­менимы в электроустановках напряжением до 1 кВ, если требования к автоматическому отключению питания невозможно выполнить, а применение других защитных мер нецелесообразно либо невыполнимо. В изолирующих помещениях (зонах) не должен предусматриваться защитный проводник, а также принимаются меры против заноса потен­циала на сторонние проводящие части помещения извне. Пол и стены данных помещений не должны подвергаться воздействию влаги.

Что такое косвенное прикосновение и как защититься от него?

АгоВ одной из предыдущих статей мы уже рассказывали об опасности прямого прикосновения к токоведущим элементам и технических мерах защиты, используемых для предотвращения случайного прикосновения. В данной статье пойдет речь об опасности, которую представляет собой косвенное прикосновение. Собранные материалы позволят понять, чем оно отличается от прямого контакта и каким образом можно исключить нежелательные последствия.

Читайте также:  Схема подключения выключателя с регулятором яркости

Что такое косвенное прикосновение?

Под этим термином подразумевается поражение электротоком в результате прикосновения к открытым проводящим конструктивным элементам, на которых находится высокий потенциал в результате непредвиденной аварии. То есть, в штатной ситуации, эти элементы конструкции не представляли бы опасности для человеческой жизни, поскольку не находились бы под воздействием электрического тока.

Тем, кто предпочитает, чтобы определения технических терминов приводились дословно из нормативных документов, приведем цитату из ПУЭ (см. п. 1.7.12).

Определение косвенного прикосновения по ПУЭ, пункт 1.7.12

То есть в данном случае речь идет не о двойном замыкании, когда прикосновение происходит к двум фазам.

Примеры косвенных прикосновений

Приведем несколько примеров рассматриваемого прикосновения, встречающихся в быту и на производстве. Допустим, у электрочайника с металлическим корпусом произошло повреждение изоляции нагревательного элемента. В результате на корпусе образуется опасное напряжение прикосновения. Если взять такой чайник в руку, ничего не произойдет, поскольку в данном случае мы будем иметь дело с однополюсным прикосновением.

Ситуация резко изменится, если второй рукой коснуться смесителя, в этом случае образуется электрическая цепь, проходящая через тело человека (двухполюсное прикосновение). Это будет равносильно прямому контакту с нулем и фазой. Описанная угроза может исходить от многих бытовых приборов, например, пылесоса, накопительного водонагревателя (бойлера), стиральной машины и т.д.

Примеры косвенного прикосновения в быту

Характерный пример на производстве – пробой изоляции фазного провода и его контакт с корпусом электроустановки. При одновременном прикосновении к металлической оболочке оборудования (где произошел пробой) и открытой, проводящей ток замыкания, конструкции с нулевым потенциалом, человек будет поражен электротоком. При нарушении изоляции нуля или защитного провода, максимум, что может произойти – однофазное замыкание, что приводит к отключению АВ.

Чем отличается прямое прикосновение от косвенного?

Определение обоих видов касаний приводится как в ПУЭ (см. п.1.7.11-12). Наглядные примеры обоих прикосновений приведены ниже.

Примеры прикосновений: 1) прямое; 2) косвенное

Как видно из рисунка, прямым типом называется прикосновение к неизолированным тоководам. В большинстве случаев это происходит по причине случайного прикосновения по не внимательности, ошибке или из-за опасного приближения к электроустановкам здания. В данном случае безопасность обеспечивается путем предотвращения случайного касания опасных токоведущих проводников. Для этого предусматриваются специальные технические меры защиты, такие как: установка ограждений, предупреждающих знаков и т.д.

Если рассматривать косвенное прикосновение, то оно происходит только при нештатной ситуации, когда нарушается изоляция токоведущих проводников. Это приводит к образованию фазного потенциала на корпусе установки и образованию опасных зон с током утечки. Для предотвращения прикосновения предусмотрены спецмеры, о которых пойдет речь далее.

Меры защиты

Учитывая, что угроза касания носит случайный характер, необходимы спецмеры для минимизации опасности, исходящей от электрического контакта с сторонними токопроводящими элементами, на которых находиться опасный потенциал. Список спецмер указан в ГОСТах 50571.1-93 и 30331.1-95, перечислим, что предлагают нормативные документы:

  • Организация на объекте заземления.
  • Установка на вводе УЗО, реагирующиго на ток утечки.
  • Произвести уровень потенциалов близкий по значению.
  • В критических местах, доступных к прикосновению, на токоведущие элементы устанавливают дополнительную (двойную) изоляцию.
  • Использование установок с малым напряжением.
  • Использование трансформаторов для гальванической развязки.
  • Создание изолирующих зон.

Рассмотрим более подробно, каждую из перечисленных мер защиты.

Заземление

В данном случае речь идет не о функциональном, а защитном заземлении. То есть, к ЗУ подключают токопроводящие поверхности оборудования, представляющие потенциальную опасность. Если сопротивление изоляции станет ниже допустимого, и в результате на корпусе образуется фазное напряжение. Прикоснувшись к такому корпусу установки, стоящий на земле человек подвергнется воздействию опасного напряжения равного потенциалу однофазного тока.

При подключении к ЗУ всех открытых токопроводящих поверхностей, представляющих возможную угрозу, описанная выше ситуация не произойдет, поскольку место касания будет с нулевым потенциалом.

Косвенное касание незаземленного и заземленного корпуса

Как видим, характер воздействия электрического прикосновения определяется сопротивлением цепи. В первом случае прикосновение с проводящим элементом приводит к прохождению электротока через тело человека. Во втором, сопротивление заземлителя значительно ниже, чем у человеческого тела, поэтому утечка идет через ЗУ.

Не следует рассматривать использование заземлителей в качестве панацеи, в некоторых случаях дополнительные требования могут исключать использование ЗУ.

Автоматическое отключение питания

При таком способе производится размыкание фазы (фаз) и нуля на вводе питания, то есть, осуществляется их одновременное отключение. Термин «автоматическое» подразумевает, что срабатывание происходит без участия человека. Система автоматического отключения (АО) может применяться совместно с заземлением или независимо от него. Скорость срабатывания защиты исчисляется десятыми долями секунды, что соответствует требованиям норм электробезопасности.

Данный способ широко применяется на производстве, например на линиях, от которых запитаны ручные электроинструменты, мобильные установки и т.д. В быту через устройства защитного отключения подается питание на накопительные водяные электронагреватели, посудомоечные и стиральные машины, а также другое оборудование.

С принципом работы и описанием основных характеристик УЗО Вы можете ознакомиться в более ранних публикациях на нашем сайте.

Уравнивание потенциалов

Под данным термином понимается подключение всех открытых токопроводящих элементов конструкции и оборудования к шине защитного заземления с нулевым потенциалом для обеспечения электробезопасности. С дословным описанием термина можно ознакомиться в ПУЭ (см. п. 1.7.32).

Приведем пример, допустим, в производственном цехе корпуса нескольких станков подключено к собственным ЗУ, в то время как остальное оборудование заземлено на шину PE. В результате такого неграмотного заземления при КЗ на корпус образуется разность потенциалов между открытыми токоведущими элементами заземленного и зануленного оборудования, что создаст серьезную угрозу для жизни.

Именно поэтому выдвигается требование уравнивания потенциалов, которое выполняется путем подключения открытых токопроводящих поверхностей к шине PE. Это исключает опасность при прикосновении к проводящим элементам.

Выравнивание потенциалов

Согласно определению в ПУЭ (см. п. 1.7.33) под выравниванием следует понимать уменьшение разности потенциалов на токопроводящем покрытии. То есть, фактически речь идет о снижении фактора воздействия, производимого шаговым напряжением. В качестве спецмеры закладываются проводники, подключенные к общему ЗУ через шину PE. Вместо них может применяться заземленное проводящее напольное покрытие.

Двойная или усиленная изоляция

Практически на любое оборудование, запитанное от сети до 1,0 кВ, может устанавливаться двойное или усиленное изоляционное покрытие (помимо основного, используемого для покрытия тоководов). При такой конструкции, если происходит снижение сопротивления в результате повреждения основной изоляции, дополнительный диэлектрик исключит касание токопроводящей поверхности. Соответственно, при проблемах с дополнительной изоляции, будет действовать основной изолирующий слой. Вероятность одновременного разрушения двух слоев крайне мала.

Допускается использовать двойную и усиленную изоляцию в качестве основной защиты от косвенного прикосновения. То есть, не задействуя другие меры защиты.

Малое (сверхнизкое) напряжение

Данный способ можно назвать универсальной мерой электробезопасности, соответственно, он работает и при косвенном прикосновении. Трансформатор, используемый для понижения напряжения, также играет роль гальванической развязки. Для сетей постоянного тока установлено значение сверхнизкого напряжения величиной 60,0 В, переменных источников питания – 25,0 В.

Данный вид защиты допускается использовать в качестве единственной меры электробезопасности для исключения угрозы прикосновения.

Электрическое разделение цепей

В данном случае речь идет о гальванической развязке, благодаря которой можно осуществлять передачу электроэнергии из одной цепи в другую при отсутствии прямого электрического соединения. Примеры разделения электроцепей приведены ниже.

Пример гальванической развязки при помощи трансформатора (1) и диодной оптопары (2)

Как видим, в первом случае гальваническая развязка осуществляется при помощи трансформатора, во втором – диодной оптопары.

Если отказаться от электрического разделения, то величина тока, протекающего из одной цепи в другую, будет ограничена их внутренним сопротивлением. Причем величина сопротивления будет незначительной. Образованные внутренними процессами выравнивающие токи, особенно в цепях большой протяженности, представляют серьезную угрозу при прикосновении.

Изолирующие помещения, зоны

Данный метод эффективен даже без наличия защитного заземления. Надежная изоляция стен и пола обеспечивает защиту при прямом и косвенном однополюсным прикосновении. Нижняя граница сопротивление изоляции помещения, для электроустановок с напряжением до 1,0 кВ, не должна опускаться ниже 100,0 кОм. Для оборудования, запитанного от электрической сети с напряжением не более 0,5 кВ обеспечивающая защиту сопротивление устанавливается в пределах 50,0 кОм.

Совмещение методов и дополнительные меры.

В большинстве своем перечисленные выше методы защиты могут быть использованы совместно. Но иногда это недопустимо, например, установка в зоне изоляции защитных проводников подключенных к ЗУ, приведет к нарушению равной величине потенциалов. Приведенный пример является скорее исключением, но он лишний раз указывает, что при выборе из доступных к одновременному использованию дополнительных мер защиты необходимо проявлять осторожность.

Похожие материалы на сайте:

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector