Может ли сгореть глубинный насос при перекосе фаз?

Перекос фаз в трехфазной сети — чем опасен и когда возникает?

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Перекос фаз. Причины возникновения и устранение. Защита

В трехфазной электрической сети на каждой фазе должно быть одно и то же напряжение, с допустимым отклонением. Если напряжение распределено по фазам неравномерно, то возникает перекос фаз. В результате такого явления в промышленном оборудовании (электродвигатели, трансформаторы) происходит значительное уменьшение мощности. В бытовых условиях такой перекос между фазами может привести к неисправностям электрических устройств и других потребителей энергии.

Читайте также:  Зануление в частном доме своими руками 220в

Когда электрические устройства подключены на одну фазу, то есть риск возникновения перекоса между фазами. Чтобы не допускать нарушения снабжения электрической энергией, необходимо разобраться в том, от чего возникает такое отрицательное явление.

Причины возникновения

Существуют разные причины перекоса по напряжению между фазами. Основной популярной причиной стало неравномерное и неграмотное распределение нагрузки по фазам сети. При появлении перекоса на участке с трехфазным питанием, можно говорить о том, что некоторые фазы эксплуатируются с чрезмерной нагрузкой, а третья фаза нагружена незначительно.

Чаще всего однофазные нагрузки в виде бытовых электрических устройств подключают на одну фазу. Поэтому перекос фаз появляется при одновременном запуске нескольких мощных устройств. Начальными признаками перекоса являются работающие бытовые приборы, у которых заметно снизилась мощность, либо они совсем отключились. При этом приборы освещения стали выдавать тусклый свет, а лампы дневного света при этом мерцают.

Для более точного определения того, есть ли перекос фаз, нужно вызвать специалиста, и на месте провести тщательную проверку. Только путем проведения измерений можно выявить разницу в напряжении на разных фазах.

Последствия и опасность

Главная опасность этого явления состоит в некорректной работе бытовых устройств, и возникновения возможности выхода их из строя. Максимальная часть отрицательных последствий приходится на разные виды электрических двигателей, установленных в различной бытовой технике.

Отрицательные факторы влияния перекоса фаз делятся на три вида:
  1. Возникновение неисправностей подключенных электрических устройств, оборудования и приборов, снижение их срока эксплуатации.
  2. Неисправности источников электроэнергии: повреждения, повышение расхода энергии, снижение срока службы источника.
  3. Негативные факторы для потребителей энергии: повышение затрат на оплату электроэнергии, вероятность получения травм, необходимость проведения ремонта и обслуживания электрооборудования.

Если перекос фаз образовался на автономной отдельной электростанции, то потребление топлива и смазочных материалов в этом случае существенно повысится, а генератор может выйти из строя. Если на одной фазе напряжение выше, чем на двух других фазах, то нарушается электробезопасность, что может привести к возгоранию электропроводки и оборудования.

В результате видно, что последствия этого отрицательного явления существенные, их устранение и решение может привести к значительному материальному ущербу. Для предотвращения таких негативных ситуаций, необходимо заблаговременно принять соответствующие меры.

Способы защиты

Для нормальной эксплуатации трехфазной сети, а также чтобы напряжение на отдельной фазе соответствовала номинальному значению, необходимо применять специальные приборы и устройства. Обычно для этого подключают стабилизатор напряжения.

В быту применяются однофазные исполнения, способные защитить электрооборудование. В производственных условиях используется 3-фазный стабилизатор, включающий в себя три однофазных устройства. Однако полностью устранить фазные перекосы эти приборы не способны, так как они выравнивают напряжение в одной фазе.

Иногда такие устройства сами создают условия для неравномерного распределения электроэнергии. Эта проблема может решиться только с помощью специальных технологий, выравнивающих напряжение между всеми фазами.

Существует несколько способов защиты:
  • Использование устройств, выравнивающих нагрузку по фазам в автоматическом режиме.
  • Создание проекта снабжения электрической энергией объекта с учетом предполагаемых значений нагрузок.
  • Изменение электрической схемы цепи с учетом мощности потребителей.
  • Подключение специального реле, которое будет контролировать величину напряжения на фазах, и отключать питание при выявлении несимметрии.

Такими методами можно защитить электрические устройства от неисправностей, и исключить перекос напряжения.

Симметрирующий трансформатор

Чтобы предотвратить перекос напряжений между фазами и поддерживать определенное значение фазного напряжения, следует применять специальную технологию, позволяющую выравнивать значение напряжения не отдельно на некоторой фазе, а обеспечивать симметричность всех трех фаз, то есть всю трехфазную сеть. Такая альтернативная технология реализована в симметрирующем трансформаторе.

Диапазон измерений
Такой инновационный прибор может работать при 100-процентном перекосе напряжения и способен устранить фазный перекос напряжений в широком интервале их изменений, при любых причинах возникновения этого негативного явления:
  • Перекос во входной сети пинания, возникший вследствие повреждений распределительной сети.
  • Неравномерное разделение нагрузок между фазами.
  • Включение в работу мощного устройства.
  • Смешанные причины перекоса.
Практическое использование
Задачами, разрешаемыми путем включения в работу симметрирующего трансформатора, являются:
  • Равномерное распределение потребителей между фазами.
  • Устранение перекоса фазных напряжений (выравнивание всех фаз между собой в трехфазной сети).
  • Поддержание заданного значения напряжения на каждой фазе.
  • Преобразование трехфазной электрической сети питания в 1-фазную сеть:
    — с гальванической развязкой сети питания и потребителя электроэнергии;
    — без гальванической развязки;
    — с изменением (повышением или снижением) напряжения на его выходе.
  • Преобразование трехфазной сети, состоящей из трех проводов, в трехфазную сеть с четырьмя проводами (создание рабочего нулевого провода для возможности подсоединения нагрузки на фазу).
  • Возможность получения 50% 3-фазной мощности с одной фазы.
  • Применение генераторов с меньшей мощностью для такой же группы потребителей.
  • Включение в работу более мощных нагрузок при ограничениях на допустимую мощность из общей государственной сети, либо при работе от автономного источника.
  • Во время промерзания трубопроводов или обледенения проводов возможен отогрев этих коммуникаций, а также другого оборудования.
Допустимые нормы на перекос фаз

Основным рабочим документом, регламентирующим качество электрической энергии, и нормы несимметрии в трехфазной сети считается ГОСТ13109-97, а допускаемое отклонение нагрузок определяется по документу СП31-110, в котором для вводно-распределительных устройств допускаются разница величины нагрузок между фазами не более 15%, а для распределительных щитов – не более 30%.

Водокачка. Насос трёхфазный. Автоматика. Контроль фаз. ХЕЛП!

Здравствуйте.
В СТ пришлось чинить водокачку.
Большая такая башенка с сильным насосом.
Технические подробности.
Насос трёхфазный 63 А (Контроль сухого хода отключен.) Вроде как вибрационный (типа большой «Малыш»).
Автоматика управляется датчиком уровня — три штыря разной длины (два длинных один короткий), один из длинных — общий, второй — нижний уровень, третий (короткий) — верхний уровень.
Автоматика включает маленький пакетник напряжением 220в, а тот в свою очередь включает катушку огромадного пакетника, который уже и включает насос.

Некоторое время на башне стояла автоматика, которая контролировала кучу параметров (перекос фаз, изоляцию насоса и т.д) но в связи с тем, что после очередной профилактики местными гоблинами фазный провод отгорел (ну ещё бы — провод медный, клемма — аллюминиевая обжимная) и попал на провода датчика уровня — все мозги автоматики выгорели наглухо. Часть контролей до этого принудительно вырезали — контроль изоляции например. Однако дорогостоящий насос выжил.
Я поставил автоматику, используемую уже лет 30, поменяв на новую ей всю требуху. Однако она только включает-выключает насос по датчикам уровня.
В СТ регулярно отгорают фазы, и очень не хотелось бы, чтобы насос работал на двух или с перехлёстом. Поэтому хочется поставить реле контроля фаз, которое будет снимать напряжение исключительно как можно ближе к самому насосу. Как я понимаю, самое близкое место — это подающие (со стороны АВТОМАТА ПИТАНИЯ) клеммы силового пакетника. А какую цепь из перечисленных в первом абзаце размыкать управляющими контактами реле контроля фаз. Боюсь колебательного процесса (каждое включение- выключение насоса при подаче воды с глубины 120 метров сопровождается не кислым гидроударом по обратному клапану). Если можно, порекомендуйте конкретную модель реле контроля фаз. ток в цепи управления маленького пакетника — около 2-х ампер при 220 в, ток в цепи управления большого пакетника — около 3х А при 380 в.
И ещё. Реле контроля фаз планируется ставить только для контроля потери или перехлёста фаз. Дополнительные функции как-то снижение напряжения ниже порога или увеличение, ещё какой-нибудь сервис (кроме разве что временных задержек включения-выключения) у нас в СТ — вреден Просто водокачка будет работать тогда только ночью и то редко .
Спасибо тем, кто дочитал, перечитал и понял.

2Old major Вопрос интересный, и я начал бы с того, что восстановил бы всю автоматику.

avmal написал :
. я начал бы с того, что восстановил бы всю автоматику

Чуть истории и социологии. СТ — более 30лет. Водокачке — тоже. Изначально на ней стояла простая автоматика (которую я в результате и вернул на место), автором которой является один из до сих пор здравствующих членов СТ. Проста как мир и свои функции выполняет. Скважина такова, что сухой ход насоса исключен практически. За 30 лет было заменено 2 насоса. первый проработал с 1975 по 2003 год. Умер естественной смертью. Второй проработал 2003-2005. Умер из-за выгорания фазы на КТП. Фаза стала выгорать из-за смены состава электриков из-за естественной убыли. Нынешние электрики в качестве работы не заинтересованы, результат их работы — не грамотно обслуживаемое КТП и водокачка — а «есть свет » и «Есть вода». За каждое такое событие электрик получает 500 рублей. Гарантия работы — 3 дня. Как правило через неделю свет по крайней мере пропадает опять. Перегрузки большие.
Итак про автоматику. Когда старая автоматика поизносилась физически (ключевой элемент — оборонное хитрое реле) на станцию притащили штатную установку автоматики СУЗ-100, предназначенную именно для того насоса, что стоит в скважине. Работала в наших условиях отвратительно, её пускатель просто выгорал от насоса за месяц. При разбросе напряжения по фазам более 10 процентов — вставала намертво. В результате пускатель выгорел дотла, и фазный провод пережёг провода, идущие на датчик уровня. При наличии фазы там все низковольтные цепи СУЗ-100 умерли сразу. Восстановлению не подлежит.
Я просто утрахался сидеть без воды,решил разобраться на досуге, откуда вода из крана течёт. Зашел тут как-то на башню — а она открыта.Увидел что там всё в горелых соплях и ужаснулся. Выгнал оттуда гоблинов-электриков,повесил гаражный замок. После чего занялся самой башней. Перебрал всё что хоть как-то даже выглядело горелым, снял в общей сложности килограмм 30 горелых девайсов и проводов. Вернул схему управления насосом к той, что нарисована на шкафу 1975 года выпуска, с использованием более современных и главное НОВЫХ комплектующих. Даже счётчик заставил работать и местный энергосбыт у меня его принял и опломбировал, изрядно правда удивившись .
Нашел в углу старую автоматику уровня, нашел деда-автора, у него нашел схему на автоматику и пару НОВЫХ реле оборонных . Поставил, группы контактов запаралелил. Работает она как и 30 лет назад. Без сбоев. Неделю уже. Ничего не греется. А вот то, что фаза уже в КТП может выгореть (оттуда питается башня и часть участков, вот участки то фазу и сжигают) меня заморочило — один насос уже потеряли так.

Читайте также:  Нужно ли подключать посудомоечную машину отдельно через узо?

Кстати, я тута подумал и кажется решил проблему отсутствия фазы. Просто катушка, которую включает автоматика (первый слабый пускатель)будет питаться от одной фазы — если эта фаза пропадёт — всё вырубится, а питанте на катушку непосредственно силового пускателя насоса снимается с двух других фаз — если одна вырубится — тоже всё отрубится. Так что осталось питание автоматики переключить на другую фазу и все три будут подконтрольны.

Что происходит с электродвигателем при потере фазы и однофазном режиме работы

Под потерей фазы понимают однофазный режим работы электродвигателя в результате отключения питания по одному из проводов трехфазной системы.

Причинами потери фазы электродвигателем могут быть: обрыв одного из проводов, сгорание одного из предохранителей; нарушение контакта в одной из фаз.

В зависимости от обстоятельств, при которых произошла потеря фазы, могут быть разные режимы работы электродвигателя и последствия, сопутствующие этим режимам. При этом следует принимать во внимание следующие факторы: схему соединения обмоток электродвигателя («звезда» или «треугольник»), рабочее состояние двигателя в момент потери фазы (потеря фазы может произойти до или после включения двигателя, во время работы под нагрузкой), степень загрузки двигателя и механическую характеристику рабочей машины, число электродвигателей, работающих при потере фазы, и их взаимное влияние.

Здесь следует обратить внимание на особенность рассматриваемого режима. В трехфазном режиме каждая фаза обмотки обтекается током, сдвинутым во времени на одну треть периода. При потере фазы две обмотки обтекаются одним и тем же током, в третьей фазе ток отсутствует. Несмотря на то, что концы обмоток присоединены к двумя фазным проводам трехфазной системы, токи в обеих обмотках совпадают по времени. Такой режим работы называется однофазным.

Магнитное поле, образованное однофазным током, в отличие от вращающегося поля, образованного трехфазной системой токов, является пульсирующим. Оно изменяется во времени, но не перемещается по окружности статора. На рисунке 1, а показан вектор магнитного потока, создаваемого в двигателе при однофазном режиме. Этот вектор не вращается, а лишь изменяется по величине и знаку. Круговое поле сплющивается до прямой линии.

Рисунок 1. Характеристики асинхронного двигателя в однофазном режиме: а — графическое изображение пульсирующего магнитного поля; б — разложение пульсирующего поля на два вращающихся; в — механические характеристики асинхронного двигателя в трехфазном (1) и однофазном (2) режимах работы.

Пульсирующее магнитное поле можно рассматривать состоящим из двух вращающихся навстречу друг другу равных по величине полей (рис. 1, б). Каждое поле взаимодействует с обмоткой ротора и образует вращающий момент. Их суммарное действие создает вращающий момент на валу двигателя.

В том случае, когда потеря фазы произошла до включения двигателя в сеть , на неподвижный ротор действуют два магнитных поля, которые образуют два противоположных по знаку, но равных по величине момента. Их сумма будет равна нулю. Поэтому при пуске двигателя в однофазном режиме он не может развернуться даже при отсутствии нагрузки на валу.

Если п отеря фазы произошла в то время, когда ротор двигателя вращался , то на его валу образуется вращающий момент. Это можно объяснить следующим образом. Вращающийся ротор по разному взаимодействует с вращающимися навстречу друг другу полями. Одно из них, вращение которого совпадает с вращением ротора, образует положительный (совпадающий по направлению) момент, другое — отрицательный. В отличие от случая с неподвижным ротором эти моменты будут разными по величине. Их разность будет равна моменту на валу двигателя.

На рисунке 1, в показана механическая характеристика двигателя в однофазном и трехфазном режимах работы. При нулевой скорости момент равен нулю, при появлении вращения в любую сторону на валу двигателя возникает момент.

Если отключение одной из фаз произошло во время работы двигателя, когда его скорость была близка к номинальному значению, вращающий момент часто бывает достаточным для продолжения работы с небольшим снижением скорости. В отличие от трехфазного симметричного режима появляется характерное гудение. В остальном внешние проявления аварийного режима не наблюдаются. Человек, не имеющий опыта работы с асинхронными двигателями, может не заметить изменения характера работы электродвигателя.

Переход электродвигателя в однофазный режим сопровождается перераспределением токов и напряжений между фазами. Если обмотки двигателя соединены по схеме «звезда», то после потери фазы образуется схема, показанная на рисунке 2. Две последовательно соединенные обмотки двигателя оказываются включенными на линейное напряжение Uа b , двигатель при этом оказывается в однофазном режиме работы.

Сделаем небольшой расчет, определим токи, протекающие по обмоткам двигателя и сравним их с токами при трехфазном питании.

Рисунок 2. Соединение обмоток двигателя по схеме «звезда» после потерн фазы

Так как сопротивления Zа и Zв соединены последовательно, напряжения на фазах А и В будут равны половине линейного:

Приближенно величину тока можно определить исходя из следующих соображений.

Пусковой ток фазы А при потере фазы

Пусковой ток фазы А при трехфазном режиме

где U ao — фазовое напряжение сети.

Отношение пусковых токов:

Из соотношения следует, что при потере фазы пусковой ток составляет 86% от величины пускового тока при трехфазном питании. Если учесть, что пусковой ток короткозамкнутого асинхронного двигателя в 6 — 7 раз больше номинального, то получается, что по обмоткам двигателя протекает ток Ii ф = 0,86 х 6 = 5,16 I н, т. е. в пять с лишним раз превышающий номинальный. За короткий промежуток времени такой ток перегреет обмотку.

Из приведенного расчета видно, что рассматриваемый режим работы весьма опасен для двигателя и в случае его возникновения защита должна отключить с незначительной выдержкой времени.

Потеря фазы может произойти и после включения двигателя, когда его ротор будет иметь скорость вращения, соответствующую рабочему режиму. Рассмотрим токи и напряжения обмоток в случае перехода в однофазный режим при вращающемся роторе.

Величина Z a зависит от скорости вращения. При пуске, когда скорость вращения ротора равна нулю, она одинакова как для трехфазного, так и для однофазного режима. В рабочем режиме в зависимости от нагрузки и механической характеристики двигателя скорость вращения может быть разной. Поэтому для анализа токовых нагрузок необходим другой подход.

Будем считать, что как в трехфазном, так и в однофазном режиме двигатель развивает. одинаковую мощность. Независимо от схемы включения электродвигателя рабочая машина требует ту же самую мощность, которая необходима для выполнения технологического процесса.

Полагая мощности на валу двигателя равными для обоих режимов, будем иметь:

при трехфазном режиме

при однофазном режиме

где U a — фазовое напряжение сети; U a o — напряжение на фазе А в однофазном режиме , cos φ 3 и cos φ 1 — коэффициенты мощности при трехфазном и однофазном режимах соответственно .

Опыты с асинхронным двигателем показывают, что фактически ток возрастает почти вдвое. С некоторым запасом можно считать I1a / I2a = 2 .

Для того чтобы судить о степени опасности однофазного режима работы, нужно также знать загрузку двигателя.

В первом приближении будем считать ток электродвигателя в трехфазном режиме пропорциональным его нагрузке на валу. Такое допущение справедливо при нагрузках более 50% от номинального значения. Тогда можно написать I ф = K з х I н, где K з — коэффициент загрузки двигателя, I н — номинальный ток двигателя.

Ток при однофазном режиме I1 ф = 2 K з х I н, т. е. ток при однофазном режиме будет зависеть от загрузки двигателя. При номинальной нагрузке он равен двойному номинальному току. При нагрузке менее 50% потеря фазы при соединении обмоток двигателя в «звезду» не создает опасного для обмоток превышения тока. В большинстве случаев коэффициент загрузки двигателя меньше единицы. При его значениях порядка 0,6 — 0,75 следует ожидать небольшого превышения тока (на 20— 50%) по сравнению с номинальным. Это существенно для работы защиты, так как именно в этой области перегрузок она действует недостаточно четко.

Для анализа некоторых способов защиты необходимо знать напряжение на фазах двигателя. При заторможенном роторе напряжение на фазах А и В будет равно половине линейного напряжения U ab , а напряжение на фазе С будет равно нулю.

Читайте также:  Характеристики электросчетчика со-505

Иначе распределяется напряжение при вращающемся роторе. Дело в том, что его вращение сопровождается образованием вращающегося магнитного поля, которое, действуя на обмотки статора, наводит в них электродвижущую силу. Величина и фаза этой электродвижущей силы таковы, что при скорости вращения, близкой к синхронной, на обмотках восстанавливается симметричная система трехфазного напряжения, а напряжение нейтрали звезды (точка 0) становится равным нулю. Таким образом, при изменении скорости вращения ротора от нуля до синхронной в однофазном режиме работы напряжение на фазах А и В изменяется от значения, равного половине линейного, до значения, равного фазовому напряжению сети. Например, в системе напряжения 380/220 В напряжение на фазах А и В изменяется в пределах 190 — 220 В. Напряжение Uco изменяется от нуля при заторможенном роторе до фазового напряжения 220 В при синхронной скорости. Что же касается напряжения в точке 0, то оно изменяется от значения Uab/2 — до нуля при синхронной скорости.

Если обмотки двигателя соединены по схеме «треугольник», то после потери фазы мы будем иметь схему соединений, показанную на рисунке 3. В этом случае обмотка двигателя с сопротивлением Z ab оказывается включенной на линейное напряжение U ab , а обмотка с сопротивлениями Z fc и Z bc — соединенной последовательно и включенной на то же самое линейное напряжение.

В пусковом режиме по обмоткам АВ будет протекать такой же ток, как и при трехфазном варианте, а по обмоткам АС и ВС будет протекать ток в два раза меньший, так как эти обмотки соединены последовательно.

Токи в линейных проводах I’ a= I’ b будут равны сумме токов в параллельных ветвях: I ‘А = I ‘a b + I ‘ bc = 1 ,5 Iab

Таким образом, в рассматриваемом случае при потере фазы пусковой ток в одной из фаз будет равен пусковому току при трехфазном питании, а линейный ток возрастает менее интенсивно.

Для расчета токов в случае потери фазы после включения двигателя в работу применим тот же метод, что и для схемы «звезда». Будем считать, что как в трехфазном, так и в однофазном режимах двигатель развивает одинаковую мощность.

В этом режиме работы ток в наиболее нагруженной фазе при потере фазы увеличивается вдвое по сравнению с током при трехфазном питании. Ток в линейном проводе будет равен I’ А = 3 Iab , а при трехфазном питании Ia = 1 ,73 Iab .

Здесь важно отметить, что в то время как фазовый ток возрастает в 2 раза, линейный ток увеличивается только в 1,73 раза. Это существенно, так как токовая защита реагирует на линейные токи. Расчеты и выводы относительно влияния коэффициента загрузки на ток однофазного режима при соединении «звезда» остаются в силе и для случая схемы «треугольник».

Напряжения на фазах АС и ВС будут зависеть от скорости вращения ротора. При заторможенном роторе U a c’ = U b c ‘ = Uab/2

При скорости вращения, равной синхронной, восстанавливается симметричная система напряжений, т. е. U a c’ = U b c ‘ = Uab .

Таким образом, напряжения на фазах АС и ВС при изменениях скорости вращения от нуля до синхронной будут меняться от значения, равного половине линейного, до значения, равного линейному напряжению.

Токи и напряжения на фазах двигателя при однофазном режиме зависят также и от числа двигателей.

Часто обрыв фазы происходит из-за перегорания одного из предохранителей на питающем фидере подстанции или распределительного устройства. В результате в однофазном режиме оказывается группа потребителей, взаимно влияющих друг на друга. Распределение токов и напряжений зависит от мощности отдельных двигателей и их нагрузки. Здесь возможны различные варианты. Если мощности электродвигателей равны, а их нагрузка одинакова (например, группа вытяжных вентиляторов), то всю группу двигателей можно заменить одним эквивалентным.

Основные неисправности скважинного насоса

Скважинные насосы работают в очень сложных условиях — вода, высокое давление, вибрация, абразивные частицы, низкие температуры и т.д. По этой причине конструкция насосов и использованные в них материалы имеют большой запас прочности. Но даже в этом случае насосное оборудование необходимо регулярно проверять, чтобы небольшая неполадка не превратилась в серьезную аварию, требующую ремонта или даже замены насоса.

Из-за чего ломается насос?

Какие виды сбоев и поломок встречаются чаще всего? Сначала мы замечаем косвенные признаки неправильной работы насоса — снижается напор, повышенный уровень шума, вибрация, неровная подача воды, повысился расход электроэнергии и т.д. При наступлении подобной ситуации не доводите до серьезной аварии, а сразу поднимайте насос на поверхность для осмотра. Вероятные причины часто оказываются наиболее очевидными — механизм насоса дал сбой из-за постоянного воздействия воды и мелких взвешенных частиц.

  • В зависимости от конструкции насоса и типа скважины, абразивные частицы и природные волокна негативно воздействуют на рабочие колеса или клапана, забивают фильтр, скапливаются, снижая эффективность работы.
  • Возможно, нарушилась герметичность корпуса и влага попала внутрь насоса. Это ведет к постоянным сбоям в работе управляющей электроники, электродвигателя, нарушая работу насоса. В конечном счете может наступить короткое замыкание.


степень износа корпуса насоса

  • Динамический уровень приблизился к критическому значению и насос стал «хватать» воздух, работая в режиме «сухого хода». В этом режиме при отсутствии воды резко возрастает трение между деталями, вращающиеся узлы насоса перегреваются, повышается сопротивление, растет электропотребление насоса.
  • Частые скачки напряжения негативно сказываются на насосе, лишенном защиты.
  • Плохие контакты в питающих и сигнальных цепях.
  • Стальной страховочный трос зафиксирован на оголовке неправильно.
  • Высокая температура перекачиваемой воды (выше + 40 С)
  • Датчики насоса работают неправильно.

Как выяснить точную причину сбоя?

Существует способ, не поднимать насос из скважины, а, изучая косвенные признаки, методом исключения прийти к наиболее вероятной причине неполадок. Возможно, причина окажется простой и будет достаточно перенастроить диапазон давлений в гидроаккумуляторе, из-за чего насос работал в нестандартном режиме. Но лучше рассчитывать на самый плохой вариант, отключить все оборудование и достать насос из скважины. Возможно, именно этим Вы убережете себя от дорогого ремонта или замены.

Итак, выясняем причину сбоев в работе насоса:

  • выключаем систему водоснабжения, поднимаем насос на поверхность
  • с корпуса насоса удаляем верхнюю крышку
  • очень аккуратно разбираем насос, следуя инструкции


насос работал в песчаной скважине

  • осматриваем каждую деталь, ищем следы поломки или износа, определяем тип износа (сухое трение, мокрое абразивное трение, скопление грязи, трещины и т.д)
  • таким же образом проверяем электродвигатель
  • проверяем клапана и фильтры, которые первыми сталкиваются с негативными факторами, появляющимися в воде
  • проверяем состояние трубы ПНД
  • проверяем целостность питающего кабеля
  • проверяем датчики состояния, реле, блок автоматического управления насосом, блоки защиты (в зависимости от того, что установлено)

Неисправности насоса и их устранение

Снижение динамического уровня воды в скважине не относится к поломке насоса, но напрямую влияет на его состояние. Работа в режиме «сухого хода» способна очень быстро вывести насос из строя. Если причиной неполадок был упавший уровень воды, то первым делом опустите насос ниже на безопасную глубину. Чтобы проблема не повторилась в будущем, установите блок защиты от «сухого хода». В следующий раз электроника получит сигнал от датчика и сама отключит насос. Учитывая, что насосы работают в скважинах годами, все же основные причины неполадок связаны с той или иной формой износа оборудования.

При высоком содержании песка в воде частой замены может потребовать клапан, работающий в режиме повышенного износа. Фильтр на входе насоса быстро забивается, снижая объем поступающей воды, чем заставляет насос работать с увеличенной мощностью.

Перебои с электричеством нарушают настройку датчиков и реле. Получив неправильный сигнал от датчика, насос выходит из штатного режима работы, чем нарушает стабильную подачи воды. Изношенный насос можно заставить работать в требуемом режиме, просто перенастроив реле. Но это решение временное — насос необходимо чинить или менять.


состояние питающего кабеля

Причиной разгерметизации корпуса часто являются постоянная вибрация насоса небольшие зазоры между насосом и стенкой скважины. В зависимости от типа насоса и его модели вибрация может быть настолько сильная, что способна не только повредить корпус изделия, но даже нанести вред скважине и области водозабора. Но чаще разгерметизация ведет к замыканию, перегоранию обмотки и остановке насоса.

При неправильном размещении оплетка питающего кабеля может перетереться до оголенного проводника. В таких условиях нарушается стабильное электроснабжение двигателя и насос начинает работать со сбоями. Один из признаков такой ситуации — УЗО (устройство защитного отключения) начнет часто отключать питание насоса, фиксируя утечку тока. Проверьте сопротивление изоляции с помощью тестера.

Слишком мощный насос может стать причиной сразу нескольких сбоев. Если дебит скважины ниже производительности насоса, то в пиковые нагрузки насос осушит скважину и начнет работать в режиме «сухого хода». При низком расположении насоса относительно дна скважины мощный поток увлечет в работающий механизм осевший песок, ил и кусочки камня, усиливая его износ. В неплотных грунтах частое осушение скважины мощным насосом способно нарушить сложившуюся зону притока и вывести скважину из строя. В этом случае придется ремонтировать не только насос, но и скважину.

Скважинный насос охлаждается водой, которую перекачивает. Если температура воды будет превышать значение, указанное в техническом паспорте, то насос быстро перегреется и выйдет из строя.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector