Не работает энергосберегающая лампа, как найти конденсатор?

Содержание

Если у вас сгорела энергосберегающая лампа

Энергосберегающая или компактная люминесцентная лампа (КЛЛ),условно состоят из двух частей:
1) — малогабаритная люминесцентная колба
2) — электронный пуско-регулирующий аппарат (ЭПРА, электронный балласт), встроенный в цоколь лампы. Посмотрим поближе, что есть на этой плате.

Энергосберегающая или компактная люминесцентная лампа (КЛЛ),условно состоят из двух частей:
1) — малогабаритная люминесцентная колба
2) — электронный пуско-регулирующий аппарат (ЭПРА, электронный балласт), встроенный в цоколь лампы. Посмотрим поближе, что есть на этой плате:

— Диоды — 6 шт. Высоковольтные (220 Вольт) обычно маломощные (не больше 0,5 Ампер).

— Дроссель. (убирает помехи по сети).

— Транзисторы средней мощности (обычно MJE13003).

— Высоковольтный электролит. (как правило 4,7 мкФ на 400 вольт).

— Обычные конденсаторы на разной емкости, но все на 250 вольт.

— Два высокочастотных трансформатора.

Работа энергосберегающей лампы на примере наиболее распространённой схемы (лампа мощностью 11Вт).

Схема состоит из цепей питания, которые включают помехозащищающий дроссель L2, предохранитель F1, диодный мост, состоящий из диодов 1N4007 и фильтрующий конденсатор C4. Схема запуска состоит из элементов D1, C2, R6 и динистора. D2, D3, R1 и R3 выполняют защитные функции. Иногда эти диоды не устанавливают в целях экономии.

При включении лампы, R6, C2 и динистор формируют импульс, подающийся на базу транзистора Q2, приводящий к его открытию. После запуска эта часть схемы блокируется диодом D1. После каждого открытия транзистора Q2, конденсатор C2 разряжен. Это предотвращает повторное открытие динистора. Транзисторы возбуждают трансформатор Tr1, намотанный на ферритовое колечко тремя обмотками в несколько витков. На нити накала поступает напряжение через конденсатор C3 с повышающего резонансного контура L1, TR1, C3 и C6. Трубка загорается на резонансной частоте, определяемой конденсатором C3, потому что его ёмкость намного меньше, чем ёмкость C6. В этот момент напряжение на конденсаторе C3 достигает порядка 600V. Во время запуска пиковые значения токов превышают нормальные в 3-5 раз, поэтому если колба лампы повреждена, существует риск повреждения транзисторов.

Когда газ в трубке ионизирован, C3 практически шунтируется, благодаря чему частота понижается и генератор управляется только конденсатором C6, генерируя меньшее напряжение, но, тем не менее, достаточное для поддержания свечения лампы.
Когда лампа зажглась, первый транзистор открывается, что приводит к насыщению сердечника Tr1. Обратная связь на базу приводит к закрытию транзистора. Затем открывается второй транзистор, возбуждаемый противоположно подключенной обмоткой Tr1 и процесс повторяется.

Неисправности энергосберегающих ламп.

Наиболее частые причины поломки энергосберегающих ламп — обрыв нити накала или выход из строя ЭПРА. Как правило, причиной выхода из строя последнего бывает пробой резонансного конденсатора или транзисторов. Конденсатор C3, часто выходит из строя в лампах, в которых используются дешёвые компоненты, рассчитанные на низкое напряжение. Когда лампа перестаёт зажигаться, появляется риск выхода из строя транзисторов Q1 и Q2 и вследствие этого — R1, R2, R3 и R5. При запуске лампы генератор оказывается, перегружен и транзисторы не выдерживают перегрева. Если колба лампы выходит из строя, электроника обычно тоже ломается. Если колба уже старая, одна из спиралей может перегореть и лампа перестанет работать. Электроника в таких случаях, как правило, остаётся целой.

Чаще всего лампы перегорают в момент включения.

Для того, чтобы сделать режим работы лампы более мягким, энергосберегающую лампу можно модернизировать.

Как правило лампа собрана на защелках.

Необходимо её разобрать:

Прозваниваем нити накала колбы.

Ремонт.
Если перегорела хотя бы одна из спиралей, колбу выбрасываем, если нет, то она рабочая, и не работает схема.

В некоторых случаях, можно восстановить работоспособность лампы со сгоревшей спиралью, замкнув её. Как вариант — замкнуть резистором на 8-10 OM большой мощности и убрать шунтирующий данную спираль диод, если таковой имеется.

Если перегорает предохранитель (иногда он бывает в виде резистора), что обычно случается при пробое конденсатора C3, вероятно неисправными оказываются транзисторы Q1, Q2, как правило, используются транзисторы MJE13003 и резисторы R1, R2, R3, R5. Вместо перегоревшего предохранителя можно установить резистор на несколько Ом.

Чтобы энергосберегающая лампа работала долго, её можно несколько модернизировать:

1. Установка NTC-термисторапоследовательно с нитью накала. Введение данного элемента позволит ограничить пусковой ток лампы и уберечь нить накала от обрыва. Здесь достаточно даже небольшого сопротивления термистора. В отличие от PTC термистора, который должен быть установлен параллельно резонансному конденсатору и обеспечивать прогрев нитей перед поджигом, данная модернизация не приводит к заметной задержке включения лампы.

2. Проделывание вентиляционных отверстий в цоколе лампы.

Модернизированные таким образом лампы работают в течение многих лет.

Для того, чтобы разобрать лампу, необходимо отпаять внутренний проводник от нижней контактной площадки лампы, залитой припоем.

Необходимо отогнуть часть цоколя, которая представляет собой металлическую резьбу, чтобы освободить второй внутренний провод. Место, в котором прижат провод, можно определить по небольшой выпуклости или торчащему кусочку провода.

Внутри лампы находится печатная плата электронного балласта.

Для модернизации подойдёт любой NTC-термистор, предназначенный для ограничения пусковых токов, сопротивлением 20-50 Ом. В холодном состоянии термистор имеет указанное сопротивление, что ограничивает текущий через него ток. При нагреве сопротивление уменьшается и термистор не влияет на работу схемы.

Термистор необходимо установить в разрыв нитей накала лампы в любом удобном месте. При работе термистор нагревается, поэтому не стоит устанавливать его вплотную к другим компонентам.

Перед сборкой в цоколе лампы необходимо просверлить вентиляционные отверстия, чтобы сделать температурный режим работы более мягким. Ряд отверстий вокруг места крепления трубки лампы служит для отвода тепла от самой трубки. Ряд отверстий ближе к металлической части цоколя служит для отвода тепла от компонентов балласта. Также можно сделать ещё один ряд отверстий — посередине, большего диаметра.

Данная модернизация энергосберегающей лампы поможет существенно продлить срок её службы. Не стоит устанавливать модернизированную лампу в места повышенной влажности (например, ванную комнату).

Наиболее благоприятные условия для работы энергосберегающих лампочек — в открытом виде, либо — широком плафоне или плафоне с вентиляцией, цоколем вверх.

Ниже предоставлены некоторые схемы экономичных ламп дневного света.


Схема энергосберегающей лампы Osram


Схема энергосберегающей лампы Philips

LUXAR 11W

Bigluz 20W

Isotronic 11W

Luxtek 8W

Maway11W

Maxilux 15W

Polaris 11W

BrownieX 20W

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Читайте также:  Фаза ноль земля

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

С холодным запуском

С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Как отремонтировать энергосберегающую лампу своими руками

Срок эксплуатации энергосберегающих лампочек (ЭСЛ) большой. Но часто, из-за недобросовестности производителя или неправильного обращения, лампа перестает работать через месяц. Потребители интересуются: возможен ли ремонт энергосберегающих ламп своими руками. Все возможно. Но следует оценить, стоит ли его производить, изучить принцип действия и ремонта.

Стоит ли ремонтировать энергосберегающие лампы

К вопросу стоит ли ремонтировать энергосберегающую лампу своими руками подходят индивидуально. Кто-то не хочет заморачиваться, купит новую или обменяет по гарантии. Кто-то захочет разобраться в чем причина поломки и исключить ее. Но стоит понимать, что ремонт производится при наличии нескольких неисправных лампочек. Так как из трех вышедших из строя ламп соберется одна исправная.

Каждая лампочка рассчитана на конкретный срок, имеет ограниченные резервы. Такие данные указаны на индивидуальной упаковке.

Надо понимать, что на ремонт придется потратиться на запчасти, если невозможно их взять с ряда поломанных ламп. Также уйдет время на поездку в магазин, поиск причины, ремонт.

Часто после ремонта лампочки при включении загораются с опозданием.

Принцип действия и схема

При ремонте следует учесть что ЭСЛ состоит из нескольких элементов: электроды в колбе, цоколь (резьбовой, штырьковой), пусковое устройство. Благодаря встроенному последнему элементу, устройство малогабаритно.

Принцип работы: при включении подается напряжение, в результате чего происходит нагревание электродов. После чего высвободившиеся электроны вступают во взаимодействие со ртутными атомами, происходит ультрафиолетовое излучение. Оно незаметно для восприятия глазом. Для этого система включает вещество под названием люминофор, поглощающее данное излучение и вырабатывающее привычный нам свет.

Работа энергосберегающей лампочки разбирается при рассмотрении схемы. Для примера описывается работа по схеме 11 ваттной лампочки.

Из схемы видно, что она состоит из цепей питания, в которые включены дроссель L2, предохранитель F1, четыре диода 1N4007 составляют диодный мост, С4 – конденсатор, C2, D1, R6 – элементы схемы, динистор, D2, D3, R1, R3 – элементы защитной функции. Не все лампочки содержат защитные элементы, их убираю производители при экономии на деталях.

В момент включения лампочки подается импульс C2, R6, он подается на транзистор Q2, происходит его открытие. Диод D1 после запуска блокирует часть схемы. Трансформатор TR1 возбуждается транзисторами. Через конденсатор С3 передается напряжение с контура L1, TR1, С3, С6. Трубка загорается в период, когда на конденсаторе С3 достигается напряжение в 600В. При розжиге лампы открывается первый транзистор и сердечник TR1 насыщается.

Причины неисправности лампочки

Чтобы понять причину поломки, надо разобраться в устройстве энергосберегающей лампы.

Все действия проводятся последовательно:

  • Готовится рабочее место.
  • Собирается весь инструмент, который может понадобиться в процессе – отвертка, мультиметр, паяльник, паечный набор.
  • Разбирается ЭСЛ.
  • Определяется причина поломки – мультиметром в лампочке проверяются нити накаливания. При исправном состоянии нитей проверяется балласт. И наоборот.
  • Устраняется.
  • Производится сборка системы.

Как разобрать

При разборе лампочки колба отсоединяется от цоколя. При этом проявляется аккуратность, так как цоколь легко повреждается. Отверткой отсоединяются детали, зафиксированные защелками (отвертка проникает в щель, и поворотом раздвигает половинки) – продвигается по контуру до полного отсоединения цоколя и колбы.

Открепляются проводки, которые направлены на нити накаливания.

Все работы проводятся очень аккуратно, так как недопустимо оторвать проводку, которая отходит от цоколя.

После раскрытия будет видна плата самого электронного блока – своего рода пусковое устройство, которое есть во всех первоначальных лампах дневного света. Только современные электронные, а в старых – стартер, дроссель.

Поиск и ремонт неисправности

Поломка может заключаться в коротком замыкании либо пробое. Для этого первоначально осматривается электронная плата на элементы видимых повреждений. Осмотр проводится с двух сторон. Повреждения платы – деформирование, черные точки, пробои.

Если найдено повреждение невооруженным глазом, то все равно требуется проверка поверхности всей платы.

Предохранитель

Предохранитель найти легко. Эта система находится в объединении цоколя и платы. Он сверху покрыт изоляционным слоем и находится в состыковке с резистором. Для определения работоспособности предохранителя необходимо воспользоваться мультиметром. Для этого одно щупальце присоединяется к предохранителю, а другое к плате. Так проводится измерение сопротивления.

При исправности сопротивление покажет значение примерно в 10 Ом. При повреждениях – 1 Ом. При неисправности этого элемента он устраняется, новый припаивается.

Колба

Поломка может заключаться в перегорании нити электрода в колбе. Неисправная нить подлежит замене. Если нити нет, то возможна установка резистора с таким же сопротивлением. Для этого он припаивается параллельным способом со спиралью, которая сгорела. Далее требуется проверка работоспособности всей платы (полупроводников).

Читайте также:  8 способов крепления кабеля к стене

Транзисторы и резисторы

Чтобы проверить исправность транзистора, для начала он изымается из схемы. Это обязательный момент, поскольку переходы находятся в обмотке. Если выявлена поломка транзистора, то замена производится на идентичный. Не допустима замена на элемент с другими параметрами. При этом корпусная часть может быть различной, это не повлияет на ход ремонта.

При проверке резистора используется также мультиметр. Номинальное значение просматриваем на корпусе устройства. Все элементы должны быть проверены последовательно.

Конденсаторы

Конденсаторы проверяются аналогично прописанным способом. Ремонт предусматривает замену неисправного элемента. Вышедший из строя конденсатор принимает деформированную форму – протечка, вздутие корпуса.

Поломка конденсатора – самая распространенная причина выхода из строя энергосберегающих ламп. Особенно китайского производства.

Ремонт балласта

Если колба исправна, то поломку надо искать в балласте. Он осматривается на предмет сгоревших элементов. Если замечены прогоревшие следы, вздутия, деформация, то требуется замена вышедших из строя элементов. При не восстановлении работоспособности лампы после замены данных компонентов, требуется прозвон всей цепи.

Последовательность поиска неполадок балласта:

  • Замена резистора-предохранителя – частая проблема балласта.
  • Выпаиваются конденсаторы. (После пайки требуется проверка мультиметром – проверяются диоды моста без их предварительного выпаивания).
  • Если проверка предыдущих элементов не нашла неисправностей, то переходит работа на поиск неисправностей в транзисторе. Для этого требуется выпайка элемента.
  • При замене всех частей начинается этап сборки.

Ремонт при перегоревшей нити

При починке перегоревшей нити проводят работу в балласте во внештатном режиме. При подаче сильного напряжения пусковая деталь ломается. При одинаковой подаче напряжения лампа прослужит до 1,5 года. Также срок эксплуатации зависит о качества и вида встроенных схем. Если перегоранию подверглась одна нить, проводится ее шунтирование сопротивлением. Для этого необходима установка резистора с сопротивлением равным сопротивлению уцелевшей нити.

Советуем посмотреть видео-инструкцию:

Сборка энергосберегающей лампы

После восстановления всех деталей ЭСЛ, требуется ее протестировать до сборки. Для этого производится вкручивание в патрон и наблюдается ее загорание. Если мерцание отсутствует, следующее действие – сборка энергосберегающей лампочки.

Если пусковое устройство не подходит для ниши, то производится подгибание конденсаторов сопротивления. При этом необходимо наблюдение за отсутствием замыканий. Далее собирается лампа в обратном направлении. Производится подклейка частей, поврежденных при разборке.

Профилактика

Чтобы уменьшить процент выхода из строя энергосберегающих лампочек, необходимо применять методы профилактики:

  • Исправная вентиляционная система позволяет улучшить отток тепла. При этом сократятся случаи короткого замыкания, которые случаются из-за перегрева лампочек либо схем балласта.
  • Установка стабилизаторов. Они позволяют нормализировать подачу напряжения. Так как при резких перепадах случается пробой пускового устройства. Такое часто бывает и при установке производителями дешевого пускового устройства.
  • Установка между нитями накаливания NTC-термистора. Он поможет урегулировать подачу тока. При этом уменьшается вероятность перегорания нитей.
  • Не следует подвергать лампы механическому воздействию, это приедет к выходу из строя внутренних деталей либо поверхностным трещинам.

Термистор не устанавливается вблизи балласта, так как произойдет перегревание термистора, и он сломается.

В заключение

Отремонтировать энергосберегающую лампу своими руками возможно, но это требует времени, возможно, материалов. Не каждый человек сможет подойти к ремонту ответственно. Но починка дешевле, чем приобретение новой лампочки. Особенно, если из стоя вышло несколько лампочек.

Статья пригодилась? Оставьте комментарий, поделитесь с друзьями в соцсетях.

Ремонт энергосберегающих ламп своими руками.

25 Фев 2013г | Раздел: Ремонтируем сами

Здравствуйте уважаемые читатели сайта sesaga.ru. В этой статье хочу поделиться с Вами, как отремонтировать энергосберегающую лампу своими руками не зная принципиальной схемы устройства.
Идея с ремонтом возникла тогда, когда вышла из строя одна из ламп, проработавшая около месяца.

Хотя если верить производителю, то срок службы у энергосберегающих ламп просто огромен. Купил себе лампу, отдал деньги и радуйся. Она тебе и светит и электроэнергию экономит!

А так как энергосберегающие лампы стоят не дешево, и один раз в месяц покупать лампу за 5 – 8 зеленых, мне показалось расточительно. Какая тут может быть экономия? Даже получается дороже.

Как обычно полез в интернет, а там оказывается, что «наши» люди такие лампы уже ремонтируют давно. Причем успешно. Вот и сам решил попробовать.

1. Разбираем энергосберегающую лампу.

У лампы, которую начал разбирать, надломил нижнюю часть патрона, поэтому будьте осторожны, если будете половинить любую энергосберегающую лампу. Но это не беда – устраняется.

Когда лампа уже будет отремонтированна и собрана, прикладываем оторванную часть на место, и паяльником пропаиваем трещены. Можно приклеить — кому как удобно.

Половинить энергосберегающую лампу лучше всего рабочей частью отвертки. Внутри патрона есть специальные защелки, которые надо будет отщелкнуть. Если Вы когда-нибудь разбирали пульт дистанционного управления или сотовый телефон, то это похожая процедура.

Только здесь делаете так: вставляете рабочую часть отвертки между двух половинок, и крутите отвертку вправо или влево. Когда щель увеличится, в нее можно вставить еще одну отвертку, а первой немного отступаете, вставляете в щель и опять проворачиваете. Здесь самое главное, как в пульте дистанционного управления — отщелкнуть первую защелку.

Когда у Вас в руках окажутся две половинки, раздвигайте их осторожно. Здесь не надо торопиться, можно оторвать провода.

Перед Вами окажется плата электронного блока, которая одной частью связана с цоколем, а другой — с колбой лампы. Сама плата электронного блока – это обыкновенное пускорегулирующее устройство, которое обычно установлено в старых светильниках дневного света. Только здесь электроника, а там дроссель и стартер.

2. Определяем степень повреждения лампы.

Первым делом осматриваем плату с обеих сторон и визуально определяем, какие из деталей явно повреждены и подлежат замене.

Со стороны радиокомпонентов видимых нарушений не было, а вот со стороны дорожек, где расположены SMD компоненты, видны два резистора R1 и R4, которые однозначно надо менять.

Здесь еще с правой стороны резистора R1 отгорел кусочек дорожки. Это может говорить о том, что в момент включения лампы или во время ее работы, вышел из строя элемент схемы, от чего произошло замыкание в схеме.

Первый осмотр не очень обнадежил. Если горят резисторы и дорожки, то это говорит о том, что схема работала в тяжелом режиме, и заменой только этих резисторов мы не отделаемся.

3. Определяем неисправные элементы на плате пускорегулирующего устройства.

Предохранитель.

В первую очередь проверяем предохранитель. Найти его легко. Одним концом он припаян к центральному контакту цоколя лампы, а вторым к плате. На него надета трубка из изоляционного материала. Обычно при такой неисправности предохранители не выживают.

Но как оказалось, это не предохранитель, а пол ваттный резистор сопротивлением около 10 Ом, причем был сгоревшим (в обрыве).

Определяется исправность резистора легко.
Мультиметр переводите в режим измерения сопротивления на предел «прозвонка» или «200» и производите замер. Если резистор-предохранитель целый, то прибор покажет сопротивление около 10 Ом, ну а если покажет бесконечность (единицу), значит, он в обрыве. Как измерить сопротивление можно прочитать здесь.

Здесь один щуп мультиметра ставите к центральному контакту цоколя, а второй к месту на плате, куда припаян вывод резистора-предохранителя.

Еще один момент. Если резистор-предохранитель окажется сгоревшим, то когда будете его выкусывать, старайтесь откусить ближе к корпусу резистора, как показано на правой части верхнего рисунка. Потом к выводу, оставшемуся в цоколе, будем припаивать новый резистор.

Колба (лампа).

Далее проверяем сопротивление нитей накала колбы. Желательно выпаять по одному выводу с каждой стороны. Сопротивление нитей должно быть одинаковым, а если разное, значит, одна из них сгорела. Что не очень хорошо.

В таких случаях специалисты советуют параллельно сгоревшей спирали припаять резистор таким же сопротивлением, как у второй спирали. Но в моем случае обе спирали оказались целыми, а их сопротивление составило 11 Ом.

Следующим этапом проверяем на исправность все полупроводники – это транзисторы, диоды и стабилитрон. Если Вы не знаете, как проверить транзистор или диод, то прочитайте статью, как проверить транзистор мультиметром.

Как правило, полупроводники не любят работу с перегрузкой и коротких замыканий, поэтому их проверяем тщательно.

Диоды и стабилитрон.

Диоды и стабилитрон выпаивать не надо, они и так прекрасно прозваниваются прямо на плате.
Прямое сопротивление p-n перехода диодов будет находиться в пределах 750 Ом, а обратное должно составлять бесконечность. У меня все диоды оказались целыми, что немного обрадовало.

Стабилитрон двуханодный, поэтому в обоих направлениях должен показать сопротивление равное бесконечности (единица).

Если у Вас некоторые диоды оказались неисправные, то их надо приобрести в магазине радиокомпонентов. Здесь используются 1N4007. А вот номинал стабилитрона определить не смог, но думаю, что можно ставить любой с подходящим напряжением стабилизации.

Транзисторы.

Транзисторы, а их два — придется выпаять, так как их p-n переходы база-эмиттер зашунтированы низкоомной обмоткой трансформатора.

Один транзистор звонился и вправо и влево, а вот второй был якобы целым, но вот между коллектором и эмиттером, в одном направлении, показал сопротивление около 745 Ом. Но я значение этому не придал, и посчитал его неисправным, так как с транзисторами типа 13003 дело имел в первый раз.

Транзисторы такого типа, в корпусе ТО-92, найти не смог, пришлось купить размером больше, в корпусе ТО-126.

Резисторы и конденсаторы.

Их тоже надо все проверить на исправность. А вдруг.

У меня еще оставался один SMD резистор, номинал которого небыло видно, тем более, что принципиальную схему этого пускорегулирующего устройства я не знал. Но была еще одна такая же рабочая энергосберегающая лампа, и она пришла мне на выручку. На ней видно, что номинал резистора R6 составляет 1,5 Ома.

Чтобы окончательно убедиться в том, что все возможные неисправности были найдены, я прозвонил все элементы на рабочей плате и сравнил их сопротивления на неисправной. Причем выпаивать ничего не стал.

В итоге, по цене вышло совсем не дорого:

1. Транзисторы 13003 – 2 шт. по 10 рублей каждый (в корпусе ТО-126 — взял 10 штук);
2. SMD резисторы — 1,5 Ома и 510 кОм по 1 рублю каждый (взял по 10 штук);
3. Резистор 10 Ом – 3 рубля за штуку (взял 10 штук);
4. Диоды 1N4007 – 5 рублей за штуку (взял 10 штук на всякий случай);
5. Термоусадка – 15 рублей.

4. Сборка.

Здесь меня ожидал сюрприз. Но об этом по порядку.

В первую очередь выпаиваем сгоревшие, а затем впаиваем новые SMD резисторы. Здесь, что-либо советовать трудно, потому что сам толком не научился их выпаивать.

Делаю так: паяльником прогреваю обе стороны одновременно, при этом пытаюсь сдвинуть резистор с места отверткой или жалом паяльника. Если есть возможность, то грею с боковой части резистора и выдавливаю жалом, а если нет, тогда грею верхнюю часть и двигаю отверткой. Только делать это надо аккуратно и быстро, чтобы не отклеились проводники от платы.

На фотографии видно, что резистор прогревается с боку.

Впаивать SMD резисторы намного легче!
Если на контактных площадках остался припой, и он мешает установке резистора, значит, его убираем.

Делается это просто: держите плату под наклоном дорожками вниз, и к контактной площадке подносите угол кончика жала. С жала предварительно тоже снимаете лишний припой.

Когда площадка прогреется, будет видно, как припой перетекает на паяльник. Опять же, делать это надо быстро и аккуратно.

На место ставите резистор, выравниваете его и прижимаете отверткой, и теперь по очереди припаиваете каждую сторону.

Читайте также:  Полезные советы по освещению кухни

Теперь выпаиваем неисправные и впаиваем новые транзисторы. В нужном корпусе транзисторов не нашел, а эти немного великоваты, но цоколевка выводов соответствует. Что уже не плохо.
Здесь откусываем выводы, приблизительно, как на картинке ниже.

Выпаиваете неисправный, и так же впаиваете новый. Один транзистор будет стоять к Вам «передом», а второй «задом». На картинке ниже транзистор стоит «задом».

И последним этапом припаиваем предохранитель-резистор.
Откусываете вывод длиной, как на неисправном. Подпаиваетесь к выводу торчащему из цоколя, одеваете термоусадку, и только после этого, свободный вывод резистора припаиваем к плате на место.

Все готово. Но пока полностью лампу не собираем. Надо убедиться в ее работоспособности.

Еще раз внимательно осматриваем места, где производилась пайка и правильно ли установлены элементы схемы. Здесь нельзя ошибаться. Иначе весь процесс ремонта придется начать сначала.

Подаем питание на лампу. И вот тут у меня произошел хлопок. Рванул транзистор, причем с той же стороны, где неисправный прозванивался и вправо и влево. Ошибок в монтаже не могло быть – проверил несколько раз.

После хлопка потерял транзистор и резистор R6 номиналом 15 Ом. Все остальное было целое.

Опять разбираю рабочую лампу, и сравниваю сопротивление всех элементов. Все в норме. И тут вспомнил про транзистор, который был на половину исправный.

Когда такой транзистор выпаял с рабочей лампы и прозвонил, то оказалось, что между коллектором и эмиттером он так же показывает наличие сопротивления около 745 Ом в одну сторону. Тут стало ясно, что это не простой транзистор. Полез гуглить в интернет.

И тут на одном китайском сайте (ссылка удалена, так как сайт больше не работает) нахожу интересный материал про транзисторы серии 13003. Оказывается, они бывают простые, составные, с диодом внутри, и различаются только по последним 2 – 3 буквам, нанесенным на корпусе. В данном пускорегулирующем устройстве стояли составные транзисторы с диодом внутри.

Как оказалось, «неисправный» транзистор, у которого прозванивались коллектор и эмиттер в одну сторону, был «живой». И когда Вам придется менять транзисторы, вначале определите по последним буквам какой он – простой или составной.

Впаиваю новый транзистор, и между коллектором и эмиттером ставлю диод согласно приведенной схеме выше: катодом к коллектору, а анодом к эмиттеру.
Вместо резистора SMD ставлю обыкновенный на 15 Ом, так как с таким номиналом эсэмдэшного у меня небыло.

Опять подаю питание. Как видите — лампа горыть.

Вот и все.
Теперь, когда будете ремонтировать энергосберегающие лампы, надеюсь, Вам пригодится мой опыт.
Удачи!

Ремонт энергосберегающей лампы своими руками.

Первым делом необходимо проверить целостность нитей лампы. Сопротивление нитей должно быть в пределах 10-15 Ом. Если одина из нитей оборвана, то одним из признаков является потемнение стекла возле оборваной нити. Если лампа не сильно старая, то ее можно восстановить путем включения резистора 10 Ом 0,25 Вт паралельно нити накала и если имеется шунтирующий данную спираль диод, его нужно удалить. Правда при этом запуск лампы может происходить с небольшим мерцанием продолжительность 10-15 секунд.

После этого осуществляем прозвонку остальных элементов схемы. Типчиной неисправностью является выход из строя транзисторов генератора из-за нарушения теплового режима. Для прозвонки транзисторов их необходимо выпаять, в связи с тем что в цепи транзисторов между переходами могут быть включены диоды. В качестве транзисторов используются транзисторы различных производителей серии 13003.

Правильный выбор транзисторов определяет надежность и срок службы генератора. Так например для энергосберегающих ламп мощности 1-9Вт рекомендуется использовать транзисторы серии 13001 ТО-92, для 11Вт – серии 13002 ТО-92, для 15-20Вт – серии 13003 ТО-126, для 25-40Вт – серии 13005 ТО-220, для 40-65Вт – серии 13007 ТО-200, для 85ВТ – серии 13009 ТО-220.

В случае мерцания лампы одной из причины может быть пробой высоковольного конденсатора, включенного между нитями накала лампы из-за воздействия повышенного напряжения. Конденсатор можно заменить на более высоковольтный с номиналом 3,3 нФ на 2 кВ.

Если перегорает предохранитель (иногда он бывает в виде резистора), вероятно неисправными оказываются транзисторы Q1, Q2 и резисторы R1, R2, R3, R5. Вместо перегоревшего предохранителя можно установить резистор на несколько Ом. Неисправностей может быть сразу несколько. Например, при пробое конденсатора C3, могут перегреться и сгореть транзисторы. (Рис.1)

Разберём работу энергосберегающей лампы на примере наиболее распространённой схемы (лампа мощностью 11Вт).

Схема состоит из цепей питания, которые включают помехозащищающий дроссель L2, предохранитель F1, диодный мост, состоящий из четырёх диодов 1N4007 и фильтрующий конденсатор C4. Схема запуска состоит из элементов D1, C2, R6 и динистора. D2, D3, R1 и R3 выполняют защитные функции. Иногда эти диоды не устанавливают в целях экономии.

При включении лампы, R6, C2 и динистор формируют импульс, подающийся на базу транзистора Q2, приводящий к его открытию. После запуска эта часть схемы блокируется диодом D1. После каждого открытия транзистора Q2, конденсатор C2 разряжен. Это предотвращает повторное открытие динистора. Транзисторы возбуждают трансформатор TR1, который состоит из ферритового колечка с тремя обмотками в несколько витков. На нити поступает напряжение через конденсатор C3 с повышающего резонансного контура L1, TR1, C3 и C6. Трубка загорается на резонансной частоте, определяемой конденсатором C3, потому что его ёмкость намного меньше, чем ёмкость C6. В этот момент напряжение на конденсаторе C3 достигает порядка 600В. Во время запуска пиковые значения токов превышают нормальные в 3-5 раз, поэтому если колба лампы повреждена, существует риск повреждения транзисторов.

Когда газ в трубке ионизирован, C3 практически шунтируется, благодаря чему частота понижается и генератор управляется только конденсатором C6 и генерирует меньшее напряжение, но, тем не менее, достаточное для поддержания свечения лампы.

Когда лампа зажглась, первый транзистор открывается, что приводит к насыщению сердечника TR1. Обратная связь на базу приводит к закрытию транзистора. Затем открывается второй транзистор, возбуждаемый противоположно подключенной обмоткой TR1 и процесс повторяется.

У меня Maxsus, светили чуть больше 8 месяцев и потухли обе, с интервалом в неделю. Электроника (силовая) оказалась не при чем. Пробой конденсатора позиционное обозначение С6 и С7, хотя стоит он один, 562J. Поставил наш, советский КСО на 500в, место позволяет. Это уже не первый случай с лампами этой фирмы. Ставили конденсатор К73-17 0,01х400в. Так что не выкидывайте эти лампы, некоторые можно востановить. Если неисправна колба, то можно электронику использовать для ламп ЛБ-20, не мигает, как со своим дросселем.

У моей турецкой Vitoone VO11025 (25W) перегорели транзисторы EKA X1 13003D ( в переходе Б-К ).

Заменил на JB8 13003. Они оказались без диода между К-Э, и цоколевка была зеркальной. Хорошо, что проверил и правильно впаял. В итоге все заработало.

Модернизация энергосберегающих ламп

Для того, чтобы сделать режим работы лампы более мягким, энергосберегающую лампу можно модернизировать:

Для модернизации подойдёт любой NTC-термистор, предназначенный для ограничения пусковых токов, сопротивлением 20-50 Ом. В холодном состоянии термистор имеет указанное сопротивление, что ограничивает текущий через него ток. При нагреве сопротивление уменьшается и термистор не влияет на работу схемы.

Термистор необходимо установить в разрыв нитей накала лампы в любом удобном месте. При работе термистор нагревается, поэтому не стоит устанавливать его вплотную к другим компонентам.

Установка NTC-термистора последовательно с нитью накала. Введение данного элемента позволит ограничить пусковой ток лампы и уберечь нить накала от обрыва. Здесь достаточно даже небольшого сопротивления термистора. В отличие от PTC термистора, который должен быть установлен параллельно резонансному конденсатору и обеспечивать прогрев нитей перед поджигом, данная модернизация не приводит к заметной задержке включения лампы.

Перед сборкой в цоколе лампы необходимо просверлить вентиляционные отверстия, чтобы сделать температурный режим работы более мягким. Ряд отверстий вокруг места крепления трубки лапмы служит для отвода тепла от самой трубки. Ряд отверстий ближе к металлической части цоколя служит для отвода тепла от компонентов балласта. Тажке можно сделать ещё один ряд отверстий — посередине, большего диаметра.

NTC термистора более 50 Ом найти не удалось — собрал из нескольких последовательную цепь сопротивлением около 80 Ом, подключение последовательно с конденсатором на работу также не влияет.

Не влияет из-за маломощности лампочки. Тут, чем мощнее, тем при меньшем сопротивлении терморезистора проявится эффект.

Но эффекта от 50 Ом я даже на мощных лампах, практически, не наблюдал. Глазами. Только осциллографом — по нему видно, что ток нарастает постепенно.

Во вторых, терморезистор не уменьшает величину сопротивления до нуля, и при нескольких резисторах, соединённых последовательно, эффект будет всегда хуже, чем с одним, на такое же сопротивление в холодном состоянии.

Из личного опыта.

Для ламп мощностью 20-25Вт терморезистор на 700 Ом уже даёт задержку до 5 секунд. Для мощности 10-15Вт можно взять и 1-1,5 КОм, лишь бы инвертор смог запуститься. А это бывает не всегда. По этому, для малых мощностей приходится ставить, так же, не более 1 Ком. Эффект хотя и заметен, но уже меньше.

Однако, думаю, есть смысл ставить даже маленькие терморезисторы. Лишь бы приборы показывали меньший ток запуска и плавное его нарастание после поджига.

W348 — маленькая деталь, на плате обозначена как диод (буквой D), полярность не указана ни на плате ни на самой детальке. Внешне похожа на мелкий стеклянный диод синего цвета.

Информацию о W348 найти не могу. Что это? Двуполярный стабилитрон, динистр ?

Кто сталкивался — подскажите, что это такое ?

Динистор DB3 нужен для запуска. Он кстати так и обзывается.

Вот по этой ссылке http://www.qrz.ru/schemes/contribute/constr/fluorescent-lamp. я собрал — «Схема 4. Дважды два — итого четыре детали и трансформатор.» Там в энергосберегающих от Космоса присутствует дроссель (ну, я может и путаю, в общем присутствует хрень такая, очень похожая на трансформатор с ферритовым сердечником.). Я один размотал, там содержится 267 витков. Если не разбирать, то можно аккуратно намотать 9 и 10 витков дополнительно. Место в нем есть. И аккуратно сделать тоже получиться. Вторичная обмотка попадает в параметры схемы (не буква в букву, конечно). Конденсатор я уменьшил до 10 nF (еще раз — 10 nF), резистор на 51 ом — заменил резистором на 21 ом (он был безжалостно выпаян из схемы Космоса). 1,5 КОм не нашел. Пробовал 1,3КОм и 1,6КОм. Работает. По моему и 10КОм будет в этой схеме работать. Транзистор оставил как в схеме. Единственно — радиатор прикручивать необходимо. Иначе через 3 секунды транзистор перегревается насмерть. Один из выводов высоковольтной обмотки бросил на минус/землю, устойчивость поджига уверичилась. Вывод нашел эмпирически (величайший из изобретенных — «метод научного тыка»). Запитывал от китайского блока питания 0-15 В. Начинает работать на 10В. Если с землей на высоковольтной, то потребление падает до 0,4 А. Если без — 0,7. 0,9 А. Если во время работы прикоснуться пальцем ко второму высоковольтному выводу — можно получить очень неприятный ожег. Ощущение раскаленной иголки. И паленой кожей попахивает.

Ремонт энергосберегающих ламп — можно почитать на этом форуме — http://pro-radio.ru/it-works

ЗЫ: Взял где взял, обобщил и добавил немного.

ЗЫ2: Кому не нужно — проходим мимо.

ЗЫ3: LF! ,kzl rjgbgfcnf!

Простите за качество некоторых картинок (чем богаты).

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector