Однофазный двигатель переменного тока

Однофазный асинхронный двигатель: как устроен и работает

Само название этого электротехнического устройства свидетельствует о том, что электрическая энергия, поступающая на него, преобразуется во вращательное движение ротора. Причем прилагательное «асинхронный» характеризует несовпадение, отставание скоростей вращения якоря от магнитного поля статора.

Слово «однофазный» вызывает неоднозначное определение. Связано это с тем, что термин «фаза» в электрике определяет несколько явлений:

сдвиг, разность углов между векторными величинами;

потенциальный проводник двух, трех или четырехпроводной электрической схемы переменного тока;

одну из обмоток статора или ротора трехфазного двигателя либо генератора.

Поэтому сразу уточним, что однофазным электродвигателем принято называть тот, который работает от двухпроводной сети переменного тока, представленной фазным и нулевым потенциалом. Количество обмоток, вмонтированных в различных конструкциях статоров, на это определение не влияют.

Конструкция электродвигателя

По своему техническому устройству асинхронный двигатель состоит из:

1. статора — статической, неподвижной части, выполненной корпусом с расположенными на нем различными электротехническими элементами;

2. ротора, вращаемого силами электромагнитного поля статора.

Механическое соединение этих двух деталей выполнено за счет подшипников вращения, внутренние кольца которых посажены на подогнанные гнезда вала ротора, а внешние вмонтированы в защитные боковые крышки, закрепляемые на статоре.

Ротор

Его устройство у этих моделей такое же, как у всех асинхронных двигателей: на стальном валу смонтирован магнитопровод из шихтованных пластин на основе мягких сплавов железа. На его внешней поверхности выполнены пазы, в которые вмонтированы стержни обмоток из алюминия или меди, закороченные по концам на замыкающие кольца.

В обмотке ротора протекает электрический ток, индуцируемый магнитным полем статора, а магнитопровод служит для хорошего прохождения создаваемого здесь же магнитного потока.

Отдельные конструкции ротора у однофазных двигателей могут быть выполнены из немагнитных или ферромагнитных материалов в форме цилиндра.

Статор

Конструкция статора также представлена:

Его основное назначение заключается в генерировании неподвижного или вращающегося электромагнитного поля.

Статорная обмотка обычно состоит из двух контуров:

У самых простых конструкций, предназначенных для ручной раскрутки якоря, может быть выполнена всего одна обмотка.

Принцип работы асинхронного однофазного электрического двигателя

С целью упрощения изложения материала представим, что обмотка статора выполнена всего одним витком петли. Ее провода внутри статора разносят по кругу на 180 угловых градусов. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Он создает не вращающееся, а пульсирующее магнитное поле.

Как возникают пульсации магнитного поля

Разберем этот процесс на примере протекания положительной полуволны тока в моменты времени t1, t2, t3.

Она проходит по верхней части токопровода по направлению к нам, а по нижней — от нас. В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф.

Изменяющиеся по амплитуде токи в рассматриваемые моменты времени создают разные по величине электромагнитные поля Ф1, Ф2, Ф3. Поскольку ток в верхней и нижней половине один и тот же, но виток изогнут, то магнитные потоки каждой части направлены встречно и уничтожают действие друг друга. Определить это можно по правилу буравчика или правой руки.

Как видим, при положительной полуволне вращения магнитного поля не наблюдается, а происходит только его пульсация в верхней и нижней части провода, которая еще и взаимно уравновешивается в магнитопроводе. Этот же процесс происходит при отрицательном участке синусоиды, когда токи изменяют направление на противоположное.

Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения.

Как создается вращение ротора в пульсирующем поле

Если придать ротору вращение, хотя бы рукой, то он будет продолжать это движение. Для объяснения этого явления покажем, что суммарный магнитный поток изменяется по частоте синусоиды тока от нуля до максимального значения в каждом полупериоде (с изменением направления на противоположное) и состоит из двух частей, образуемых в верхней и нижней ветвях, как показано на рисунке.

Магнитное пульсирующее поле статора состоит из двух круговых с амплитудой Фмакс/2 и двигающихся в противоположных направлениях с одной частотой.

В этой формуле обозначены:

nпр и nобр частоты вращения магнитного поля статора в прямом и обратном направлениях;

n1 — скорость вращающегося магнитного потока (об/мин);

p — число пар полюсов;

f — частота тока в обмотке статора.

Теперь рукой придадим вращение двигателю в одну сторону, и он сразу подхватит движение за счет возникновения вращающегося момента, вызванного скольжением ротора относительно разных магнитных потоков прямого и обратного направлений.

Примем, что магнитный поток прямого направления совпадает с вращением ротора, а обратный, соответственно, будет противоположен. Если обозначить через n2 частоту вращения якоря в об/мин, то можно записать выражение n2

Например, электродвигатель работает от сети 50 Гц с n1=1500, а n2=1440 оборотов в минуту. Его ротор имеет скольжение относительно магнитного потока прямого направления Sпр=0,04 и частоту тока f2пр=2 Гц. Обратное же скольжение Sобр=1,96, а частота тока f2обр=98 Гц.

На основании закона Ампера при взаимодействии тока I2пр и магнитного поля Фпр появится вращающий момент Мпр.

Здесь величина постоянного коэффициента сМ зависит от конструкции двигателя.

При этом также действует обратный магнитный поток Мобр, который вычисляется по выражению:

В итоге взаимодействия этих двух потоков появится результирующий:

Внимание! При вращении ротора в нем наводятся токи разной частоты, которые создают моменты сил с разными направлениями. Поэтому якорь двигателя будет совершать вращение под действием пульсирующего магнитного поля в ту сторону, с которой он начал вращение.

Во время преодоления однофазным двигателем номинальной нагрузки создается небольшое скольжение с основной долей прямого крутящего момента Мпр. Противодействие тормозного, обратного магнитного поля Мобр сказывается совсем незначительно из-за различия частот токов прямого и обратного направлений.

f2обр обратного тока значительно превышает f2пр, а создаваемое индуктивное сопротивление Х2обр сильно превышает активную составляющую и обеспечивает большое размагничивающее действие обратного магнитного потока Фобр, который в итоге этого уменьшается.

Поскольку коэффициент мощности у двигателя под нагрузкой небольшой, то обратный магнитный поток не может оказать сильное воздействие на вращающийся ротор.

Когда же одна фаза сети подана на двигатель с неподвижным ротором (n2=0), то скольжения, как прямое, так и обратное равны единице, а магнитные поля и силы прямого и обратного потоков уравновешены и вращения не возникает. Поэтому от подачи одной фазы невозможно раскрутить якорь электродвигателя.

Как быстро определить частоту вращения двигателя:

Как создается вращение ротора у однофазного асинхронного двигателя

За всю историю эксплуатации подобных устройств разработаны следующие конструкторские решения:

1. ручная раскрутка вала рукой или шнуром;

2. использование дополнительной обмотки, подключаемой на время запуска за счет омического, емкостного или индуктивного сопротивления;

3. расщепление короткозамкнутым магнитным витком магнитопровода статора.

Первый способ использовался в начальных разработках и не стал применяться в дальнейшем из-за возможных рисков получения травм при запуске, хотя он не требует подключения дополнительных цепочек.

Применение фазосдвигающей обмотки в статоре

Чтобы придать начальное вращение ротору к статорной обмотке дополнительно на момент запуска подключают еще одну вспомогательную, но только сдвинутую по углу на 90 градусов. Ее выполняют более толстым проводом для пропускания бо́льших токов, чем протекающие в рабочей.

Схема подключения такого двигателя показана на рисунке справа.

Здесь для включения применяется кнопка типа ПНВС, которая специально создана для таких двигателей и широко использовалась в работе стиральных машин, выпускаемых при СССР. У этой кнопки сразу включаются 3 контакта таким образом, что два крайних после нажатия и отпускания остаются зафиксированы во включенном состоянии, а средний — кратковременно замыкается, а потом под действием пружины возвращается в исходное положение.

Замкнутые же крайние контакты можно отключить нажатием на соседнюю кнопку «Стоп».

Кроме кнопочного выключателя для отключений дополнительной обмотки в автоматическом режиме используются:

1. центробежные переключатели;

2. дифференциальные или токовые реле;

Для улучшения запуска двигателя под нагрузкой применяются дополнительные элементы в фазосдвигающей обмотке.

Подключение однофазного двигателя с пусковым сопротивлением

В такой схеме к статорной дополнительной обмотке последовательно монтируется омическое сопротивление. При этом намотка витков выполняется биффилярным способом, обеспечивающим коэффициент самоиндукции катушки очень близким к нулю.

За счет выполнения этих двух приемов при прохождении токов по разным обмоткам между ними возникает сдвиг по фазе порядка 30 градусов, чего вполне достаточно. Разность углов создается за счет изменения комплексных сопротивлений в каждой цепи.

При этом методе еще может встречаться пусковая обмотка с заниженной индуктивностью и увеличенным сопротивлением. Для этого применяют намотку с маленьким числом витков провода заниженного поперечного сечения.

Подключение однофазного двигателя с конденсаторным запуском

Емкостной сдвиг токов по фазе позволяет создать кратковременное подключение обмотки с последовательно соединенным конденсатором. Эта цепочка работает только во время выхода двигателя на режим, а затем отключается.

У конденсаторного запуска создается наибольший крутящий момент и более высокий коэффициент мощности, чем при резистивном или индуктивном способе запуска. Он может достигать величины 45÷50% от номинального значения.

В отдельных схемах к цепочке рабочей обмотки, которая постоянно включена, тоже добавляют емкость. За счет этого добиваются отклонения токов в обмотках на угол порядка π/2. При этом в статоре сильно заметен сдвиг максимумов амплитуд, который обеспечивает хороший крутящий момент на валу.

За счет этого технического приема двигатель при пуске способен выработать больше мощности. Однако, такой метод используют только с приводами тяжелого запуска, например, для раскрутки барабана стиральной машины, заполненного бельем с водой.

Конденсаторный запуск позволяет изменять направление вращения якоря. Для этого достаточно сменить полярность подключения пусковой или рабочей обмотки.

Подключение однофазного двигателя с расщепленными полюсами

У асинхронных двигателей с небольшой мощностью порядка 100 Вт используют расщепление магнитного потока статора за счет включения в полюс магнитопровода короткозамкнутого медного витка.

Разрезанный на две части такой полюс создает дополнительное магнитное поле, которое сдвинуто от основного по углу и ослабляет его в месте охваченного витком. За счет этого создается эллиптическое вращающееся поле, образующее момент вращения постоянного направления.

В подобных конструкциях можно встретить магнитные шунты, выполненные стальными пластинками, которые замыкают края наконечников статорных полюсов.

Двигатели подобных конструкций можно встретить в вентиляторных устройствах обдува воздуха. Они не обладают возможностью реверса.

Принцип работы и подключение однофазного электродвигателя 220в

Однофазный двигатель работает за счет переменного электрического тока и подключается к сетям с одной фазой. Сеть должна иметь напряжение 220 Вольт и частоту, равную 50 Герц.

Электромоторы этого типа находят применение в основном в маломощных устройствах:

  1. Бытовой технике.
  2. Вентиляторах низкой мощности.
  3. Насосах.
  4. Станках для обработки сырья и т. п.
Читайте также:  Ремонт люминесцентных светильников с электронным балластом

Выпускаются модели с мощностью от 5 Вт до 10 кВт.

Значения КПД, мощности и пускового момента, у однофазных моторов существенно ниже, чем у трехфазных устройств тех же размеров. Перегрузочная способность также выше у двигателей с 3 фазами. Так, мощность однофазного механизма не превышает 70% мощности трехфазного того же размера.

устройство

Устройство:

  1. Фактически имеет 2 фазы, но работу выполняет лишь одна из них, поэтому мотор называют однофазным.
  2. Как и все электромашины, однофазный двигатель состоит из 2 частей: неподвижной (статор) и подвижной (ротор).
  3. Представляет собой асинхронный электромотор, на неподвижной составляющей которого имеется одна рабочая обмотка, подключаемая к источнику однофазного переменного тока.

К сильным сторонам двигателя данного типа можно отнести простоту конструкции, представляющую собой ротор с короткозамкнутой обмоткой. К недостаткам – низкие значения пускового момента и КПД.

Главный минус однофазного тока – невозможность генерирования им магнитного поля, выполняющего вращение. Поэтому однофазный электромотор не запустится сам по себе при подключении к сети.

В теории электрических машин, действует правило: чтобы возникло магнитное поле, вращающее ротор, на статоре должно быть по крайней мере 2 обмотки (фазы). Требуется также смещение одной обмотки на некоторый угол относительно другой.

Во время работы, происходит обтекание обмоток переменными электрическими полями:

  1. В соответствии с этим, на неподвижном участке однофазного мотора расположена так называемая пусковая обмотка. Она смещена на 90 градусов по отношению к рабочей обмотке.
  2. Сдвиг токов можно получить, включив в цепь фазосдвигающее звено. Для этого могут использоваться активные резисторы, катушки индуктивности и конденсаторы.
  3. В качестве основы для статора и ротора используется электротехническая сталь 2212.

Принцип действия и схема запуска

Принцип работы:

  1. Электрическим током порождается пульсирующее магнитное поле на статоре мотора. Это поле можно рассматривать как 2 разных поля, которые вращаются разнонаправлено и имеют равные амплитуды и частоты.
  2. Когда ротор находится в неподвижном состоянии, эти поля приводят к появлению равных по модулю, но разнонаправленных моментов.
  3. Если у двигателя отсутствуют специальные пусковые механизмы, то при старте результирующий момент будет равен нулю, а значит – двигатель не будет вращаться.
  4. Если же ротор приведен во вращение в какую-то сторону, то соответствующий момент начинает преобладать, а значит, вал двигателя продолжит вращаться в заданном направлении.

Схема запуска:

  1. Запуск производится магнитным полем, которое вращает подвижную часть мотора. Оно создается 2 обмотками: главной и дополнительной. Последняя имеет меньший размер и является пусковой. Она подключается к основной электрической сети через ёмкость или индуктивность. Подключение осуществляется только на время пуска. В моторах с низкой мощностью, пусковая фаза замкнута накоротко.
  2. Пуск двигателя осуществляют удержанием пусковой кнопки на несколько секунд, вследствие чего происходит разгон ротора.
  3. Во время отпускания пусковой кнопки, электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.
  4. Пусковая фаза рассчитана на кратковременную работу– как правило, до 3 с. Более длительное время нахождения под нагрузкой, может привести к перегреву, возгоранию изоляции и поломке механизма. Поэтому, важно своевременно отпустить пусковую кнопку.
  5. С целью повышения надежности в корпус однофазных двигателей встраивают центробежный выключатель и тепловое реле.
  6. Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Это происходит автоматически – без вмешательства пользователя.
  7. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого.

Подключение

Для работы устройства требуется 1 фаза с напряжением 220 Вольт. Это означает, что подключить его можно в бытовую розетку. Именно в этом причина популярности двигателя среди населения. На всех бытовых приборах, от соковыжималки до шлифовальной машины, установлены механизмы этого типа.

аподключение с пусковым и рабочим кондсенсаторами

Существует 2 типа электромоторов: с пусковой обмоткой и с рабочим конденсатором:

  1. В первом типе устройств, пусковая обмотка работает посредством конденсатора только во время старта. После достижения машиной нормальной скорости, она отключается, и работа продолжается с одной обмоткой.
  2. Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

Электродвигатель может быть взят от одного прибора и подключен к другому. Например, исправный однофазный мотор от стиральной машины или пылесоса может использоваться для работы газонокосилки, обрабатывающего станка и т.п.

Существует 3 схемы включения однофазного двигателя:

  1. В 1 схеме, работа пусковой обмотки выполняется посредством конденсатора и только на период запуска.
  2. 2 схема также предусматривает кратковременное подключение, однако оно происходит через сопротивление, а не через конденсатор.
  3. 3 схема является самой распространенной. В рамках этой схемы конденсатор постоянно подключен к источнику электричества, а не только во время старта.

Подключение электромотора с пусковым сопротивлением:

  1. Вспомогательная обмотка таких устройств имеет повышенное активное сопротивление.
  2. Для запуска электромашины этого типа, может быть использован пусковой резистор. Его следует последовательно подключить к пусковой обмотке. Таким образом, можно получить сдвиг фаз 30° между токами обмоток, чего будет вполне достаточно для старта механизма.
  3. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью. У такой обмотки меньшее количество витков и тоньше провод.

Подключение мотора с конденсаторным пуском:

  1. У данных электромашин пусковая цепь содержит конденсатор и включается только на период старта.
  2. Для достижения максимального значения пускового момента, требуется круговое магнитное поле, которое выполняет вращение. Чтобы оно возникло, токи обмоток должны быть повернуты на 90° относительно друг друга. Такие фазосдвигающие элементы, как резистор и дроссель не обеспечивают необходимый сдвиг фаз. Только включение в цепь конденсатора позволяет получить сдвиг фаз 90°, если правильно подобрать емкость.
  3. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. У рабочей обмотки его значение всегда меньше (около 12 Ом), чем у пусковой (обычно около 30 Ом). Соответственно, сечение провода рабочей обмотки больше, чем у пусковой.
  4. Конденсатор подбирается по потребляемому двигателем току. Например, если ток равен 1.4 А, то необходим конденсатор емкостью 6 мкФ.

Проверка работоспособности

Как проверить работоспособность двигателя путем визуального осмотра?

Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка:

  1. Сломанная опора или монтажные щели.
  2. В середине мотора потемнела краска (указывает на перегревание).
  3. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут.

Если после этого двигатель окажется горячим, то:

  1. Возможно, подшипники загрязнились, зажались или просто износились.
  2. Причина может быть в слишком высокой емкости конденсатора.

Отключите конденсатор, и запустите мотор вручную: если он перестанет нагреваться – необходимо уменьшить конденсаторную емкость.

Обзор моделей

Одними из наиболее популярных являются электродвигатели серии АИР. Существуют модели, исполненные на лапах 1081, и модели комбинированного исполнения – лапы + фланец 2081.

Электродвигатели в исполнении лапы+фланец обойдутся примерно на 5% дороже, чем аналогичные на лапах.

Как правило, производители предоставляют гарантию от 12 месяцев.

Для электродвигателей, имеющих высоту вращения 56-80 мм, исполнение станины алюминиевое. Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении.

Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.

Чем мощнее двигатель, тем выше его стоимость:

  1. Двигатель с мощностью 0.18 кВт можно приобрести за 3 тыс. рублей (электродвигатель АИРЕ 56 B2).
  2. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. рублей (АИРЕ 90 LB2).

Высота оси вращения для моторов с 1 фазой варьируется от 56 мм до 90 мм и напрямую зависит от мощности: чем мощнее двигатель, тем больше высота оси вращения, а значит и цена.

Различные модели имеют разный КПД, обычно от 67% до 75%. Больший КПД соответствует большей стоимости модели.

Следует обратить внимание также на двигатели, выпускаемые итальянской компанией ААСО, основанной в 1982 году:

  1. Так, электромотор ААСО серии 53, рассчитан специально для применения в газовых горелках. Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.
  2. Электромоторы серий 60, 63, 71 разработаны для использования в установках водоснабжения. Также, фирма предлагает универсальные двигатели серий 110 и 110 компакт, которые отличаются разнообразной сферой применения: горелки, вентиляторы, насосы, подъемные устройства и другое оборудование.

Купить моторы производства компании ААСО можно по цене от 4600 рублей.

Однофазные асинхронные двигатели на службе человечества

Никто глубоко не задумывался о том, как бы жили люди без такого изобретения, как электродвигатель асинхронный однофазный. Казалось бы, что такое умное слово никого не касается и витает где-то в заоблачной дали. Но этот большой помощник в быту встречается на каждом шагу.

Скажите, как можно обходиться без холодильника или пылесоса. А ведь не будь двигателя, всего этого не было бы сейчас. Предлагаем в статье узнать все подробности об этом устройстве, а дочитавшим до конца будет бонус в виде полезного справочника по асинхронным двигателям

История возникновения

Более 60 лет понадобилось многим ученым, пока однофазный асинхронный двигатель начал покорять просторы земного шара. Началось все с 1820-х годов, когда Джозеф Генри и Майкл Фарадей – открыли явления индукции и начали первые эксперименты.

В 1889-1891годах русский электротехник, поляк по происхождению, Михаил Осипович Доливо-Добровольский придумал ротор в виде “беличьей клетки”. К этому изобретению его подтолкнул доклад Феррариса «О вращающемся магнитном поле». С началом ХХ века пришло широкое внедрение электромеханических устройств.

Применение однофазных асинхронных двигателей

Известно, что однофазные двигатели уступают трехфазным по некоторым характеристикам. Однофазные моторы имеют в основном бытовое назначение:

  • пылесосы;
  • вентиляторы;
  • электронасосы;
  • холодильники;
  • машины для переработки сырья.

Для того, чтобы выполнить подключение асинхронного двигателя нужна однофазная сеть переменного тока. Такие двигатели работают при напряжении 220 Вольт и частоте 50 Гц. Прилагательное «асинхронный» указывает на то, что скорость вращения якоря отстает от магнитного поля статора.
Однофазные двигатели имеют две независимых цепи, но работают они в основном на одной, отсюда и название. Основные части двигателя:

  1. Статор (неподвижный элемент).
  2. Ротор (вращающаяся часть).
  3. Механическое соединение этих двух частей.
  4. Поворотные подшипники.

Соединение состоит из внутренних колец, установленных на закрепленных втулках вала ротора, наружных колец в защитных боковых крышках, прикрепленных к статору.

Для запуска однофазного асинхронного двигателя с пусковой обмоткой установлена ​​другая катушка. Обмотка стартера установлена ​​со смещением от рабочей катушки на 900 С. Для создания сдвига тока, в цепи однофазного двигателя имеется схема сдвига фаз. Сдвиг можно получить при помощи различных элементов. Это могут быть:

  1. Активное сопротивление.
  2. Емкостное.
  3. Индуктивное.

В видео, представленном ниже, показан принцип работы однофазных асинхронных двигателей.

Принцип действия

Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.

Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.

Читайте также:  Актуальные рекомендации по выбору бра

Момент запуска

Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.

Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.

Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.

Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.

Возможно, вам будет интересно также почитать все, что нужно знать о шаговых электродвигателях в другой нашей статье.

Варианты подключения

Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.

Известны два типа однофазных двигателей в зависимости от способа подключения:

  1. Однофазный асинхронный двигатель с пусковой обмоткой.
  2. Однофазный двигатель с конденсатором.

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.

Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.

Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.

Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.

Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.

Различные варианты подключения:

  • временное включение электрического тока на стартовую обмотку через конденсатор;
  • подача на пусковое устройство через резистор, без конденсатора;
  • запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

Расчет проводной принадлежности

Для расчета проводов, соединяющих рабочую и пусковую обмотки, понадобится омметр. Измеряется сопротивление обмоток. R рабочей обмотки должно быть ниже, чем у стартера. Например, если измерения составили 12 Ом для одной обмотки и 30 Ом для другой, то сработают обе. У рабочей обмотки поперечное сечение больше, чем у выходной.

Выбор емкости конденсатора

Чтобы определить емкость конденсатора, необходимо знать ток потребления электродвигателя. Если ток 1,4 А, то понадобится конденсатор емкостью 6 микрофарад. Также можно ориентироваться на таблицу расчета емкости конденсатора, приведенную ниже.

Проверка работоспособности

Тестирование начинается с визуального осмотра. Возможные неисправности:

  1. Если опорная часть на устройстве была сломана, это может привести к неисправностям.
  2. При потемнении корпуса в средней части идет перегрев. Бывает попадание в корпус различных посторонних предметов, это способствует перегреванию. При износе и загрязнении подшипников возможен перегрев.
  3. Когда однофазный электродвигатель на 220 вольт имеет в схеме подключения конденсатор увеличенного размера, он начинает перегреваться.

Запустить двигатель минут на пятнадцать, а затем проверить, не прогрелся ли он. Если двигатель не греется, причиной являлась увеличенная емкость конденсатора. Необходимо установить конденсатор, имеющий меньшую емкость.

Для лучшего понимания механизма работы двигателей, рекомендуем также подробнее прочитать, что такое трехфазный двигатель и как он работает.

Достоинства и недостатки

Основными плюсами являются:

  • простота конструкции;
  • повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).

К минусам можно отнести следующие обстоятельства:

  • невысокий пусковой момент двигателя;
  • низкая эффективность.

Заключение

Маломощные однофазные электродвигатели выпускаются в разной модификации и для разного назначения. Перед приобретением необходимо точно знать некоторые характеристики. Подробно с устройством данного типа двигателей можно ознакомиться, скачав книгу Алиева И. И. Асинхронные двигатели в трехфазном и однофазном режимах.

Российские производители предлагают некоторые серии устройств, имеющие мощность от 18 до 600 Вт, частоту вращения 3000 и 1500 об/мин. Все они предназначены для подключения в сеть с напряжением 127, 220 или 380 Вольт и частотой 50 Гц.

Характеристики однофазных асинхронных электродвигателей

Однофазные асинхронные двигатели находят широкое применение в технике и быту. Производство однофазных асинхронных электродвигателей мощностью от долей ватта до сотен ватт составляет более половины производства всех машин малой мощности, и их выпуск непрерывно возрастает.

Однофазные двигатели принято делить на две категории:

двигатели общего назначения» к которым относят электродвигатели промышленного и битового назначения;

двигатели автоматических устройств — управляемые и неуправляемые двигатели переменного тока и специализированные электрические машины малой мощности (тахогенераторы, вращающиеся трансформаторы, сельсины и т.п.).

Значительная часть асинхронных электродвигателей — это двигатели общего назначения, которые предназначены для работы от однофазной сети переменного тока. Однако существует довольно обширная группа универсальных асинхронных электродвигателей, предназначенных для работы как в однофазных, так и в трехфазных сетях.

Конструкция универсальных двигателей практически не отличается от традиционной конструкции трехфазных асинхронных машин. При работе от трехфазной сети эти двигатели имеют характеристики подобные характеристикам трехфазных двигателей.

Однофазные двигатели имеют короткозамкнутый ротор, а обмотка статора может выпускаться в различных вариантах. Наиболее часто на статоре укладывается рабочая обмотка, заполняющая две трети пазов, и пусковая обмотка, заполняющая оставшуюся треть пазов. Рабочая обмотка рассчитывается для продолжительного режима, а пусковая — лишь на период пуска. Поэтому она выполняется проводом малого сечения и содержит значительное число витков. Для создания пускового момента а пусковую обмотку включают фазосдвигающие элементы — резисторы или конденсаторы.

Асинхронные двигатели малой мощности могут выполняться двухфазными, когда рабочая обмотка, укладываемая на статоре, имеет две фазы, смешённые в пространстве на 90°. В одну до фаз постоянно включен фазосмещающий элемент — конденсатор или резис т ор, обеспечивающие определенный фазовый сдвиг между токами обмоток.

Двигатель с постоянно включённым в одну из фаз конденсатором обычно называется конденсаторным. Емкость фазосмещающего конденсатора может иметь постоянную величину, но в ряде случаев величина ёмкости может быть различной для пуска и для рабочего режима.

Особенностью однофазных асинхронных двигателей является возможность вращения ротора в различных направлениях. Направление вращения определяется направлением пускового момента.

При малых сопротивлениях ротора (S кр при более высокой частоте вращения имеет место режим генератора.

Особенностью однофазных двигателей является и то, что его максимальный момент зависит от сопротивления ротора. С ростом активного сопротивления ротора максимальный момент уменьшается, а при больших величинах сопротивления S кр > 1 становится отрицательным.

При выборе типа электродвигателя для привода прибора или механизма необходимо знать его характеристики. Основными являются моментные характеристики (начальный пусковой момент, максимальный вращающий момент, минимальный вращающий момент), частота вращения, виброакустические характеристики. В отдельных случаях необходимыми также являются энергетические и весовые характеристики.

В качестве примера рассчитаны характеристики однофазного двигателя имеющего следующие параметры:

частота сети — 50 Гц;

напряжение сети — 220 В;

активное сопротивление обмотки статора — 5 Ом;

индуктивное сопротивление обмотки статора — 9,42 Ом;

индуктивное сопротивление обмотки ротора — 5,6 Ом;

осевая длина машины — 0,1 м;

число витков в обмотке статора -320;

радиус расточки статора — 0,0382 м;

число пазов — 48;

воздушный зазор — 1,0 х 10 3 м.

коэффициент индуктивности ротора 1,036.

Однофазная обмотка заполняет две трети пазов статора.

На рис. 1 показаны зависимости тока однофазного электродвигателя и электромагнитного момента от скольжения. В режиме идеального холостого хода ток двигателя потребляемый из сети а основном для создания магнитного поля, имеет относительно большую величину.

Для моделируемого двигателя величина намагничивающего тока составляет около 30 % пускового тока, для трехфазных двигателей такой же мощности — 10-15%. Электромагнитный момент в режиме идеального холостого хода имеет отрицательную величину, которая растёт с увеличением сопротивления роторной цепи. При скольжении S = 1 электромагнитный момент равен нулю, что подтверждает правильность работы модели.

Рис.1. Огибающие векторного потенциала и магнитной индукции в зазоре двигателя при скольжении s=1

Рис. 2. Зависимость тока и электромагнитного момента однофазного асинхронного двигателя от скольжения

Зависимости полезной и потребляемой мощностей от скольжения (рис. 3) имеют традиционный характер. КПД двигателя в режиме идеального холостого хода имеет отрицательный знак в соответствии с отрицательным моментом, а коэффициент мощности в этом режиме имеет весьма малую величину (0,125 для моделируемого двигателя).

Заниженное, по сравнению с трёхфазными двигателями, значение коэффициента мощности объясняется большой величиной намагничивающего тока. По мере увеличения нагрузки величина коэффициента мощности возрастает и становится соизмеримой с аналогичным показателем трехфазных двигателей (рис. 4).

Рис. 3. Зависимость полезной и потребляемой мощности однофазного асинхронного двигателя от скольжения

Рис. 4. Зависимость коэффициента полезного действия и коэффициента мощности однофазного асинхронного двигателя от скольжения

С ростом активного сопротивления ротора величина электромагнитного момента уменьшается, а при критических скольжениях, превышающих единицу, становится отрицательным.

На рис. 5 показаны зависимости электромагнитного момента однофазного двигателя от скольжения для различных величин электропроводности вторичной среды двигателя.

Рис. 5. Зависимость электромагнитного момента однофазного двигателя от скольжения при различных сопротивлениях ротора (1 — 17 х 10 6 См/м, 2 — 1,7 х 10 6 См/м)

Конденсаторные электродвигатели имеют две постоянно включенные в сеть обмотки. Одна из них включается в сеть непосредственно, вторая — последовательно с конденсатором, обеспечивающим необходимый фазовый сдвиг.

Обе обмотки занимают одинаковое число пазов статора, а число их витков и ёмкость конденсатора рассчитывается таким образом, чтобы при определенном скольжении обеспечивалось круговое вращающееся магнитное поле. Наиболее часто в качестве такого скольжения принимается номинальное. Однако в таком случае пусковой момент оказывается значительно меньше номинального.

Магнитное поле в режиме пуска является эллиптическим, в значительной мере сказывается влияние обратно бегущих составляющих магнитного поля. Если емкость конденсатора увеличить, выбрав ей из условия получения кругового поля при пуске, то происходит уменьшение момента и снижение энергетических показателей при номинальном скольжении.

Возможен и третий вариант, когда круговое поле соответствует скольжению большей величины, чем при номинальном режиме. Но и этот путь не является оптимальным, так как увеличение момента сопровождается значительным увеличением потерь. Увеличение пускового момента конденсаторного двигателя может быть достигнуто за счёт увеличения активного сопротивления ротора. Этот способ приводит к увеличению потерь при любых скольжениях, вследствие чего снижается КПД двигателя.

Рис. 6. Зависимость токов конденсаторного двигателя от скольжения ( I р.о — ток рабочей обмотки, I к.о — ток конденсаторной обмотки, Is — ток двигателя)

Рис. 7. Зависимость потребляемой P 1 и полезной P2 мощности конденсаторного двигателя от скольжения

Рис. 8. Зависимость коэффициента полезного действия и коэффициента мощности и электромагнитного момента конденсаторного двигателя от скольжения

Читайте также:  Кабель на 15 квт 3 фазы

Конденсаторный двигатель обладает вполне удовлетворительными энергетическими показателям, высоким коэффициентом мощности, величина которого превосходит коэффициент мощности трехфазного двигателя, а при повышенном сопротивлении ротора и значительной ёмкости — высоким пусковым моментом. При этом, как было указано выше, двигатель имеет пониженное значение КПД.

Рис. 9. Векторная диаграмма конденсаторного двигателя при скольжении s = 0 ,1

Векторная диаграмма (рис. 9) показывает, что при выбранном значении емкости конденсатора ток конденсаторной обмотки является опережающим по отношению к напряжению сети, а ток рабочей обмотки — отстающим. На диаграмме также видно, что при скольжении, близком к номинальному, магнитное поле двигателя имеет эллиптический характер. Для получения кругового поля величина емкости конденсатора должна быть уменьшена с таким расчетом, чтобы токи обеих обмоток были равны по модулю.

Однофазный асинхронный двигатель: как устроен и работает

Само название этого электротехнического устройства свидетельствует о том, что электрическая энергия, поступающая на него, преобразуется во вращательное движение ротора. Причем прилагательное «асинхронный» характеризует несовпадение, отставание скоростей вращения якоря от магнитного поля статора.

Слово «однофазный» вызывает неоднозначное определение. Связано это с тем, что термин «фаза» в электрике определяет несколько явлений:

сдвиг, разность углов между векторными величинами;

потенциальный проводник двух, трех или четырехпроводной электрической схемы переменного тока;

одну из обмоток статора или ротора трехфазного двигателя либо генератора.

Поэтому сразу уточним, что однофазным электродвигателем принято называть тот, который работает от двухпроводной сети переменного тока, представленной фазным и нулевым потенциалом. Количество обмоток, вмонтированных в различных конструкциях статоров, на это определение не влияют.

Конструкция электродвигателя

По своему техническому устройству асинхронный двигатель состоит из:

1. статора — статической, неподвижной части, выполненной корпусом с расположенными на нем различными электротехническими элементами;

2. ротора, вращаемого силами электромагнитного поля статора.

Механическое соединение этих двух деталей выполнено за счет подшипников вращения, внутренние кольца которых посажены на подогнанные гнезда вала ротора, а внешние вмонтированы в защитные боковые крышки, закрепляемые на статоре.

Ротор

Его устройство у этих моделей такое же, как у всех асинхронных двигателей: на стальном валу смонтирован магнитопровод из шихтованных пластин на основе мягких сплавов железа. На его внешней поверхности выполнены пазы, в которые вмонтированы стержни обмоток из алюминия или меди, закороченные по концам на замыкающие кольца.

В обмотке ротора протекает электрический ток, индуцируемый магнитным полем статора, а магнитопровод служит для хорошего прохождения создаваемого здесь же магнитного потока.

Отдельные конструкции ротора у однофазных двигателей могут быть выполнены из немагнитных или ферромагнитных материалов в форме цилиндра.

Статор

Конструкция статора также представлена:

Его основное назначение заключается в генерировании неподвижного или вращающегося электромагнитного поля.

Статорная обмотка обычно состоит из двух контуров:

У самых простых конструкций, предназначенных для ручной раскрутки якоря, может быть выполнена всего одна обмотка.

Принцип работы асинхронного однофазного электрического двигателя

С целью упрощения изложения материала представим, что обмотка статора выполнена всего одним витком петли. Ее провода внутри статора разносят по кругу на 180 угловых градусов. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Он создает не вращающееся, а пульсирующее магнитное поле.

Как возникают пульсации магнитного поля

Разберем этот процесс на примере протекания положительной полуволны тока в моменты времени t1, t2, t3.

Она проходит по верхней части токопровода по направлению к нам, а по нижней — от нас. В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф.

Изменяющиеся по амплитуде токи в рассматриваемые моменты времени создают разные по величине электромагнитные поля Ф1, Ф2, Ф3. Поскольку ток в верхней и нижней половине один и тот же, но виток изогнут, то магнитные потоки каждой части направлены встречно и уничтожают действие друг друга. Определить это можно по правилу буравчика или правой руки.

Как видим, при положительной полуволне вращения магнитного поля не наблюдается, а происходит только его пульсация в верхней и нижней части провода, которая еще и взаимно уравновешивается в магнитопроводе. Этот же процесс происходит при отрицательном участке синусоиды, когда токи изменяют направление на противоположное.

Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения.

Как создается вращение ротора в пульсирующем поле

Если придать ротору вращение, хотя бы рукой, то он будет продолжать это движение. Для объяснения этого явления покажем, что суммарный магнитный поток изменяется по частоте синусоиды тока от нуля до максимального значения в каждом полупериоде (с изменением направления на противоположное) и состоит из двух частей, образуемых в верхней и нижней ветвях, как показано на рисунке.

Магнитное пульсирующее поле статора состоит из двух круговых с амплитудой Фмакс/2 и двигающихся в противоположных направлениях с одной частотой.

В этой формуле обозначены:

nпр и nобр частоты вращения магнитного поля статора в прямом и обратном направлениях;

n1 — скорость вращающегося магнитного потока (об/мин);

p — число пар полюсов;

f — частота тока в обмотке статора.

Теперь рукой придадим вращение двигателю в одну сторону, и он сразу подхватит движение за счет возникновения вращающегося момента, вызванного скольжением ротора относительно разных магнитных потоков прямого и обратного направлений.

Примем, что магнитный поток прямого направления совпадает с вращением ротора, а обратный, соответственно, будет противоположен. Если обозначить через n2 частоту вращения якоря в об/мин, то можно записать выражение n2

Например, электродвигатель работает от сети 50 Гц с n1=1500, а n2=1440 оборотов в минуту. Его ротор имеет скольжение относительно магнитного потока прямого направления Sпр=0,04 и частоту тока f2пр=2 Гц. Обратное же скольжение Sобр=1,96, а частота тока f2обр=98 Гц.

На основании закона Ампера при взаимодействии тока I2пр и магнитного поля Фпр появится вращающий момент Мпр.

Здесь величина постоянного коэффициента сМ зависит от конструкции двигателя.

При этом также действует обратный магнитный поток Мобр, который вычисляется по выражению:

В итоге взаимодействия этих двух потоков появится результирующий:

Внимание! При вращении ротора в нем наводятся токи разной частоты, которые создают моменты сил с разными направлениями. Поэтому якорь двигателя будет совершать вращение под действием пульсирующего магнитного поля в ту сторону, с которой он начал вращение.

Во время преодоления однофазным двигателем номинальной нагрузки создается небольшое скольжение с основной долей прямого крутящего момента Мпр. Противодействие тормозного, обратного магнитного поля Мобр сказывается совсем незначительно из-за различия частот токов прямого и обратного направлений.

f2обр обратного тока значительно превышает f2пр, а создаваемое индуктивное сопротивление Х2обр сильно превышает активную составляющую и обеспечивает большое размагничивающее действие обратного магнитного потока Фобр, который в итоге этого уменьшается.

Поскольку коэффициент мощности у двигателя под нагрузкой небольшой, то обратный магнитный поток не может оказать сильное воздействие на вращающийся ротор.

Когда же одна фаза сети подана на двигатель с неподвижным ротором (n2=0), то скольжения, как прямое, так и обратное равны единице, а магнитные поля и силы прямого и обратного потоков уравновешены и вращения не возникает. Поэтому от подачи одной фазы невозможно раскрутить якорь электродвигателя.

Как быстро определить частоту вращения двигателя:

Как создается вращение ротора у однофазного асинхронного двигателя

За всю историю эксплуатации подобных устройств разработаны следующие конструкторские решения:

1. ручная раскрутка вала рукой или шнуром;

2. использование дополнительной обмотки, подключаемой на время запуска за счет омического, емкостного или индуктивного сопротивления;

3. расщепление короткозамкнутым магнитным витком магнитопровода статора.

Первый способ использовался в начальных разработках и не стал применяться в дальнейшем из-за возможных рисков получения травм при запуске, хотя он не требует подключения дополнительных цепочек.

Применение фазосдвигающей обмотки в статоре

Чтобы придать начальное вращение ротору к статорной обмотке дополнительно на момент запуска подключают еще одну вспомогательную, но только сдвинутую по углу на 90 градусов. Ее выполняют более толстым проводом для пропускания бо́льших токов, чем протекающие в рабочей.

Схема подключения такого двигателя показана на рисунке справа.

Здесь для включения применяется кнопка типа ПНВС, которая специально создана для таких двигателей и широко использовалась в работе стиральных машин, выпускаемых при СССР. У этой кнопки сразу включаются 3 контакта таким образом, что два крайних после нажатия и отпускания остаются зафиксированы во включенном состоянии, а средний — кратковременно замыкается, а потом под действием пружины возвращается в исходное положение.

Замкнутые же крайние контакты можно отключить нажатием на соседнюю кнопку «Стоп».

Кроме кнопочного выключателя для отключений дополнительной обмотки в автоматическом режиме используются:

1. центробежные переключатели;

2. дифференциальные или токовые реле;

Для улучшения запуска двигателя под нагрузкой применяются дополнительные элементы в фазосдвигающей обмотке.

Подключение однофазного двигателя с пусковым сопротивлением

В такой схеме к статорной дополнительной обмотке последовательно монтируется омическое сопротивление. При этом намотка витков выполняется биффилярным способом, обеспечивающим коэффициент самоиндукции катушки очень близким к нулю.

За счет выполнения этих двух приемов при прохождении токов по разным обмоткам между ними возникает сдвиг по фазе порядка 30 градусов, чего вполне достаточно. Разность углов создается за счет изменения комплексных сопротивлений в каждой цепи.

При этом методе еще может встречаться пусковая обмотка с заниженной индуктивностью и увеличенным сопротивлением. Для этого применяют намотку с маленьким числом витков провода заниженного поперечного сечения.

Подключение однофазного двигателя с конденсаторным запуском

Емкостной сдвиг токов по фазе позволяет создать кратковременное подключение обмотки с последовательно соединенным конденсатором. Эта цепочка работает только во время выхода двигателя на режим, а затем отключается.

У конденсаторного запуска создается наибольший крутящий момент и более высокий коэффициент мощности, чем при резистивном или индуктивном способе запуска. Он может достигать величины 45÷50% от номинального значения.

В отдельных схемах к цепочке рабочей обмотки, которая постоянно включена, тоже добавляют емкость. За счет этого добиваются отклонения токов в обмотках на угол порядка π/2. При этом в статоре сильно заметен сдвиг максимумов амплитуд, который обеспечивает хороший крутящий момент на валу.

За счет этого технического приема двигатель при пуске способен выработать больше мощности. Однако, такой метод используют только с приводами тяжелого запуска, например, для раскрутки барабана стиральной машины, заполненного бельем с водой.

Конденсаторный запуск позволяет изменять направление вращения якоря. Для этого достаточно сменить полярность подключения пусковой или рабочей обмотки.

Подключение однофазного двигателя с расщепленными полюсами

У асинхронных двигателей с небольшой мощностью порядка 100 Вт используют расщепление магнитного потока статора за счет включения в полюс магнитопровода короткозамкнутого медного витка.

Разрезанный на две части такой полюс создает дополнительное магнитное поле, которое сдвинуто от основного по углу и ослабляет его в месте охваченного витком. За счет этого создается эллиптическое вращающееся поле, образующее момент вращения постоянного направления.

В подобных конструкциях можно встретить магнитные шунты, выполненные стальными пластинками, которые замыкают края наконечников статорных полюсов.

Двигатели подобных конструкций можно встретить в вентиляторных устройствах обдува воздуха. Они не обладают возможностью реверса.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector