Почему у потребителя в щитах разное напряжение на фазах?

Содержание

Перекос фаз в трехфазной сети — чем опасен и когда возникает?

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.
Читайте также:  Замена узо на дифавтомат при сборке электрощита

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Перекос фаз. Причины возникновения и устранение. Защита

В трехфазной электрической сети на каждой фазе должно быть одно и то же напряжение, с допустимым отклонением. Если напряжение распределено по фазам неравномерно, то возникает перекос фаз. В результате такого явления в промышленном оборудовании (электродвигатели, трансформаторы) происходит значительное уменьшение мощности. В бытовых условиях такой перекос между фазами может привести к неисправностям электрических устройств и других потребителей энергии.

Когда электрические устройства подключены на одну фазу, то есть риск возникновения перекоса между фазами. Чтобы не допускать нарушения снабжения электрической энергией, необходимо разобраться в том, от чего возникает такое отрицательное явление.

Причины возникновения

Существуют разные причины перекоса по напряжению между фазами. Основной популярной причиной стало неравномерное и неграмотное распределение нагрузки по фазам сети. При появлении перекоса на участке с трехфазным питанием, можно говорить о том, что некоторые фазы эксплуатируются с чрезмерной нагрузкой, а третья фаза нагружена незначительно.

Чаще всего однофазные нагрузки в виде бытовых электрических устройств подключают на одну фазу. Поэтому перекос фаз появляется при одновременном запуске нескольких мощных устройств. Начальными признаками перекоса являются работающие бытовые приборы, у которых заметно снизилась мощность, либо они совсем отключились. При этом приборы освещения стали выдавать тусклый свет, а лампы дневного света при этом мерцают.

Для более точного определения того, есть ли перекос фаз, нужно вызвать специалиста, и на месте провести тщательную проверку. Только путем проведения измерений можно выявить разницу в напряжении на разных фазах.

Последствия и опасность

Главная опасность этого явления состоит в некорректной работе бытовых устройств, и возникновения возможности выхода их из строя. Максимальная часть отрицательных последствий приходится на разные виды электрических двигателей, установленных в различной бытовой технике.

Отрицательные факторы влияния перекоса фаз делятся на три вида:
  1. Возникновение неисправностей подключенных электрических устройств, оборудования и приборов, снижение их срока эксплуатации.
  2. Неисправности источников электроэнергии: повреждения, повышение расхода энергии, снижение срока службы источника.
  3. Негативные факторы для потребителей энергии: повышение затрат на оплату электроэнергии, вероятность получения травм, необходимость проведения ремонта и обслуживания электрооборудования.

Если перекос фаз образовался на автономной отдельной электростанции, то потребление топлива и смазочных материалов в этом случае существенно повысится, а генератор может выйти из строя. Если на одной фазе напряжение выше, чем на двух других фазах, то нарушается электробезопасность, что может привести к возгоранию электропроводки и оборудования.

В результате видно, что последствия этого отрицательного явления существенные, их устранение и решение может привести к значительному материальному ущербу. Для предотвращения таких негативных ситуаций, необходимо заблаговременно принять соответствующие меры.

Способы защиты

Для нормальной эксплуатации трехфазной сети, а также чтобы напряжение на отдельной фазе соответствовала номинальному значению, необходимо применять специальные приборы и устройства. Обычно для этого подключают стабилизатор напряжения.

В быту применяются однофазные исполнения, способные защитить электрооборудование. В производственных условиях используется 3-фазный стабилизатор, включающий в себя три однофазных устройства. Однако полностью устранить фазные перекосы эти приборы не способны, так как они выравнивают напряжение в одной фазе.

Иногда такие устройства сами создают условия для неравномерного распределения электроэнергии. Эта проблема может решиться только с помощью специальных технологий, выравнивающих напряжение между всеми фазами.

Существует несколько способов защиты:
  • Использование устройств, выравнивающих нагрузку по фазам в автоматическом режиме.
  • Создание проекта снабжения электрической энергией объекта с учетом предполагаемых значений нагрузок.
  • Изменение электрической схемы цепи с учетом мощности потребителей.
  • Подключение специального реле, которое будет контролировать величину напряжения на фазах, и отключать питание при выявлении несимметрии.

Такими методами можно защитить электрические устройства от неисправностей, и исключить перекос напряжения.

Симметрирующий трансформатор

Чтобы предотвратить перекос напряжений между фазами и поддерживать определенное значение фазного напряжения, следует применять специальную технологию, позволяющую выравнивать значение напряжения не отдельно на некоторой фазе, а обеспечивать симметричность всех трех фаз, то есть всю трехфазную сеть. Такая альтернативная технология реализована в симметрирующем трансформаторе.

Диапазон измерений
Такой инновационный прибор может работать при 100-процентном перекосе напряжения и способен устранить фазный перекос напряжений в широком интервале их изменений, при любых причинах возникновения этого негативного явления:
  • Перекос во входной сети пинания, возникший вследствие повреждений распределительной сети.
  • Неравномерное разделение нагрузок между фазами.
  • Включение в работу мощного устройства.
  • Смешанные причины перекоса.
Практическое использование
Задачами, разрешаемыми путем включения в работу симметрирующего трансформатора, являются:
  • Равномерное распределение потребителей между фазами.
  • Устранение перекоса фазных напряжений (выравнивание всех фаз между собой в трехфазной сети).
  • Поддержание заданного значения напряжения на каждой фазе.
  • Преобразование трехфазной электрической сети питания в 1-фазную сеть:
    — с гальванической развязкой сети питания и потребителя электроэнергии;
    — без гальванической развязки;
    — с изменением (повышением или снижением) напряжения на его выходе.
  • Преобразование трехфазной сети, состоящей из трех проводов, в трехфазную сеть с четырьмя проводами (создание рабочего нулевого провода для возможности подсоединения нагрузки на фазу).
  • Возможность получения 50% 3-фазной мощности с одной фазы.
  • Применение генераторов с меньшей мощностью для такой же группы потребителей.
  • Включение в работу более мощных нагрузок при ограничениях на допустимую мощность из общей государственной сети, либо при работе от автономного источника.
  • Во время промерзания трубопроводов или обледенения проводов возможен отогрев этих коммуникаций, а также другого оборудования.
Допустимые нормы на перекос фаз

Основным рабочим документом, регламентирующим качество электрической энергии, и нормы несимметрии в трехфазной сети считается ГОСТ13109-97, а допускаемое отклонение нагрузок определяется по документу СП31-110, в котором для вводно-распределительных устройств допускаются разница величины нагрузок между фазами не более 15%, а для распределительных щитов – не более 30%.

Электрофорум для электриков и домашних мастеров

Меню навигации

Пользовательские ссылки

Объявление

Информация о пользователе

Вы здесь » Электрофорум для электриков и домашних мастеров » Архив » разное напряжение на фазах в этажной щитовой

разное напряжение на фазах в этажной щитовой

Сообщений 1 страница 7 из 7

Поделиться1Пн, 13 Окт 2008 23:46

  • Автор: kip
  • контакт
  • Зарегистрирован: Пн, 13 Окт 2008
  • Сообщений: 3
  • Уважение: [+0/-0]
  • Позитив: [+0/-0]
  • Провел на форуме:
    49 минут
  • Последний визит:
    Вт, 24 Ноя 2009 00:44
Читайте также:  Основные причины возникновения короткого замыкания

помогите разобраться.
у меня квартира в 9-ти этажке (7 этаж), с не давних пор стали плохо работать бытовые электроприборы я проверил напряжение оказалось 185-200в.
в электронадзоре сказали что это на нашем вводе много приборов потребления и они нечего не могут с этим сделать.
ладно я проверил второй ввод там оказалось 255, третий не доступен.
вызвал электрика из жека чтобы он разобрался, он просто перекинул меня и соседей на 255в.
Все приборы максимум 240в, не опасно ли это
ладно лампочки, технику жалко (мягко говоря). я её что мог оключил, до выходных пока не схожу в жек за объяснением.

Поделиться2Вт, 14 Окт 2008 00:06

  • Автор: ponchik
  • подключение
  • Зарегистрирован: Пн, 9 Июн 2008
  • Сообщений: 1
  • Уважение: [+0/-0]
  • Позитив: [+0/-0]
  • Провел на форуме:
    5 часов 23 минуты
  • Последний визит:
    Пт, 9 Июл 2010 16:34

Причин может быть много — неисправен питающий трансформатор, плохой (плохие) контакты в ноле и/или в фазах, несимметричное распределение потребителей по фазам. Короче, надо смотреть по месту!

Поделиться3Вт, 14 Окт 2008 02:17

  • Автор: sergey_sav
  • главный энергетик
  • Откуда: Санкт-Петербург
  • Зарегистрирован: Ср, 23 Май 2007
  • Сообщений: 2743
  • Уважение: [+172/-11]
  • Позитив: [+8/-48]
  • Возраст: 60 [1959-05-23]
  • Провел на форуме:
    1 месяц 3 дня
  • Последний визит:
    Вт, 30 Май 2017 23:36

Вполне возможна ситуация, что не выдержат испытания перенапрягом.
Возможные причины указали выше. А то, что Энергонадзор/Энергосбыт отмахнулся от Вас, это точно. И меры они принять просто обязаны, ибо налицо неприемлемое качество электроэнергии.

Поделиться4Вт, 14 Окт 2008 02:33

  • Автор: DEMEHTbEB
  • сила тока
  • Откуда: г. Ульяновск
  • Зарегистрирован: Вт, 14 Окт 2008
  • Сообщений: 29
  • Уважение: [+1/-1]
  • Позитив: [+0/-0]
  • Возраст: 57 [1962-08-02]
  • Провел на форуме:
    19 часов 59 минут
  • Последний визит:
    Чт, 29 Апр 2010 14:45

Кошмарный перекос фаз из-за неравномерной нагрузки, или ноль готовится отгореть (в каком месте — вопрос?). Лампочки накаливания при этом напряжении быстро перегорают, холодильники терпят в несколько раз дольше.

Поделиться5Вт, 14 Окт 2008 06:22

  • Автор: drug
  • энергетик
  • Откуда: Астана
  • Зарегистрирован: Ср, 15 Авг 2007
  • Сообщений: 2478
  • Уважение: [+216/-13]
  • Позитив: [+38/-9]
  • ICQ: 393422521
  • Провел на форуме:
    1 месяц 13 дней
  • Последний визит:
    Пт, 4 Апр 2014 09:50

kip пишет:

с не давних пор стали плохо работать бытовые электроприборы я проверил напряжение оказалось 185-200в.

Эта фраза подтверждает версию о кончающемся нуле, который скоро отгорит окончательно.
Если есть возможность измерять напряжение, можно посмотреть, насколько оно постоянно, нет ли микроколебаний, которые появляются при плохом контакте.
А меры принимать нужно обязательно, т.к. если это действительно признаки отгорающего нуля, то на фазе, которая теперь Ваша (с 255 В.) в момент полного отгорания нуля напряжение может подняться до большого максимума, тогда постоянно включенные потребители (холодильник) могут не выдержать испытания.

Перекос фаз — ликбез для *электрочайников*

Если вы попытаетесь отыскать термин «расфазовка» в интернете, то, к своему удивлению, не найдете, потому что это типичный сленг. На самом деле это явление называется перекосом фаз.
Чтобы объяснить суть явления, необходимо разобраться, откуда в домах появляется 220 вольт. Наверное, всем известно, что существует однофазное (220 вольт) и трехфазное (380 вольт) питание. Зачем это нужно? Дело в том, что в населенные пункты электроэнергия подается по высоковольтным линиям высокого напряжения, чтобы снизить потери энергии.
Далее она идет на понижающие трансформаторы, в которых преобразуется в 380 вольт. Уже от них — потребителям по четырем проводам, один из которых нулевой, а остальные фазные. Напряжение между фазами составляет 380 вольт и называется линейным, а между каждой фазой и нулем — 220 вольт (фазное).
Если не вдаваться в подробности, то ноль подают во все дома без исключения, а остальные фазы (по одной) распределяют таким образом, чтобы нагрузка на них была примерно одинаковой. Такая схема характерна для хрущевок и домов 70 — 80 гг. постройки, поскольку в те времена самыми мощными пожирателями энергии были электроутюги. Иногда все три фазы заводятся на электрощит дома, а далее распределяются по подъездам.
А теперь представьте себе, что в доме из-за холода в квартирах жители включили мощные электронагреватели. Нагрузка на одну из фаз резко возрастет, в результате чего и произойдет пресловутая расфазовка. Вследствие этого в одном подъезде напряжение может снизиться, скажем, до 120 вольт, а в другом подскочить до 280 вольт, а то и до всех 380. Тут все зависит от степени перекоса фаз. К чему это может привести, догадаться несложно, ведь в подавляющем большинстве жилых домов защита от расфазовки не установлена.
Существует и еще одна опасность, о которой следует знать жителям многоквартирных домов. Приведу такой пример. Лет пять назад в одном из подъездов соседней пятиэтажки средь бела дня погорели блоки питания (БП) подключенной в этот момент электроники: телевизоров, телефонов (не путать с теми, которые имеют подключения только к телефонной розетке), компьютеров, принтеров и т. п.
Когда жэк завалили жалобами, выяснилось, что владелец одной из квартир пригласил знакомого электрика, и тот так намудрил с проводкой, что весь подъезд вместо 220 вольт получил 380. Разумеется, БП не смогли выдержать такого удара «по голове» и вышли из строя. Самое удивительное, что из двух компьютеров ни один серьезным образом не пострадал — после ремонта БП оба заработали. Хотя могли «умереть» и материнская плата, и жесткие диски, и различные карты (видео, звук, DVB и т. п.). К слову, очень чувствительны к этому и бытовые электродвигатели, которыми оснащены, к примеру, холодильники.
Суть этого явления заключается в том, что при обрыве, прогорании или принудительном отсоединении нулевого провода (последним грешат безрукие электрики) включенные в сеть электроприборы получают разное напряжение — на самых маломощных, например на компьютерах или телевизорах, оно приближается к 380 вольтам.
Разумеется, возникает вопрос, почему обычные пробки или автоматические выключатели бездействуют и при обрыве нуля, и при расфазовке. Дело в том, что они защищают исключительно от короткого замыкания (фаза соединяется с нулем), когда ток мгновенно увеличивается. Именно для этого они и поставлены. В противном случае либо срабатывает защита на трансформаторной подстанции, либо начинает дымиться электропроводка в квартире, что грозит неминуемым пожаром.
Именно поэтому, уходя из дома, нужно всегда выключать от сети все приборы, которые не требуют постоянного питания. Ведь тот же неработающий телевизор, но оставленный под напряжением, может не только выйти из строя, но и загореться. Таких примеров не счесть.
Но этого мало. Учитывая, что нынешней зимой вероятность расфазовки достаточно велика, необходимо установить защитные устройства. Для маломощных устройств (компьютеров, телевизоров) годится сетевой фильтр, который сгорает сам, «грудью» защищая подзащитных. Его минус в том, что предохраняет только один аппарат. Точно так же действует и источник бесперебойного питания (UPS), предназначенный исключительно для компьютеров (у него при резком скачке напряжения сгорает предохранитель).
А вот реле контроля напряжения (РКН) полностью защищает квартиру как от пониженного, так и от повышенного вольтажа. Причем подачу тока оно возобновляет самостоятельно, когда напряжение в сети приходит в норму. Цены на такие устройства достаточно невысоки. Нужно только иметь в виду, что РКН защищает лишь от скачков напряжения. Если в доме оно стабильно низкое (ниже 180V), то поможет стабилизатор.

Причины возникновения несимметричных режимов в электрических сетях

Симметричная трехфазная система напряжений характеризуется одинаковыми по модулю и фазе напряжениями во всех трех фазах. При несимметричных режимах напряжения в разных фазах не равны.

Несимметричные режимы в электрических сетях возникают по следующим причинам:

Читайте также:  Как узнать возможную мощность лампочек в подвесном потолке?

1) неодинаковые нагрузки в различных фазах,

2) неполнофазная работа линий или других элементов в сети,

3) различные параметры линий в разных фазах.

Наиболее часто несимметрия напряжений возникает из-за неравенства нагрузок фаз. Поскольку основной причиной несимметрии напряжения является различие по фазам (несимметричная нагрузка), то это явление наиболее характерно для низковольтных электрических сетей 0,4 кВ.

В городских и сельских сетях 0,4 кВ несимметрия напряжений вызывается в основном подключением однофазных осветительных и бытовых электроприемников малой мощности. Количество таких однофазных электроприемников велико, и их нужно равномерно распределять по фазам для уменьшения несимметрии.

В сетях высокого напряжения несимметрия вызывается, как правило, наличием мощных однофазных электроприемников, а в ряде случаев и трехфазных электроприемников с неодинаковым потреблением в фазах. К последним относятся дуговые сталеплавильные печи. Основные источники несимметрии в промышленных сетях 0,38—10 кВ — это однофазные термические установки, руднотермические печи, индукционные плавильные печи, печи сопротивления и различные нагревательные установки. Кроме того, несимметричные электроприемники — это сварочные аппараты различной мощности. Тяговые подстанции электрифицированного на переменном токе железнодорожного транспорта являются мощным источником несимметрии, так как электровозы — однофазные электроприемники. Мощность отдельных однофазных электроприемников в настоящее время достигает нескольких мегаватт.

Различают два вида несимметрии: систематическую и вероятностную, или случайную. Систематическая несимметрия обусловлена неравномерной постоянной перегруз- кой одной из фаз, вероятностная несимметрия соответствует непостоянным нагрузкам, при которых в разное время пе- регружаются разные фазы в зависимости от случайных факторов (перемежающаяся несимметрия).

Неполнофазная работа элементов сети вызывается кратковременным отключением одной или двух фаз при коротких замыканиях либо более длительным отключением при пофазных ремонтах. Одиночную линию можно оборудовать устройствами пофазного управления, которые отключают поврежденную фазу линии в тех случаях, когда действие АПВ оказывается неуспешным из-за устойчивого короткого замыкания.

В подавляющем большинстве устойчивые короткие замыкания однофазные. При этом отключение поврежденной фазы приводит к сохранению двух других фаз линии в работе.

В сети с заземленной нейтралью электроснабжение по неполнофазной линии может оказаться допустимым и позволяет отказаться от строительства второй цепи линии. Неполнофазные режимы могут возникать и при отключении трансформаторов.

В некоторых случаях для группы, составленной из однофазных трансформаторов, при аварийном отключении одной фазы может оказаться допустимым электроснабжение по двум фазам. В этом случае не требуется установка резервной фазы, особенно при наличии двух групп однофазных трансформаторов на подстанции.

Неравенство параметров линий по фазам имеет место, например, при отсутствии транспозиции на линиях или удлиненных ее циклах. Транспозиционные опоры ненадежны и являются источниками аварий. Уменьшение числа транспозиционных опор на линии уменьшает ее повреждаемость и повышает надежность. В этом случае ухудшается выравнивание параметров фаз линии, для которого обычно и применяется транспозиция.

Влияние несимметрии напряжений и токов

Появление напряжений и токов обратной и нулевой последовательности U2, U0, I2, I0 приводит к дополнительным потерям мощности и энергии, а также потерям напряжения в сети, что ухудшает режимы и технико-экономические показатели ее работы. Токи обратной и нулевой последовательностей I2, I0 увеличивают потери в продольных ветвях сети, а напряжения и токи этих же последовательностей — в поперечных ветвях.

Наложение U2 и U0 приводит к разным дополнительным отклонениям напряжения в различных фазах. В результате напряжения могут выйти за допустимые пределы. Наложение I2 и I0 приводит к увеличению суммарных токов в отдельных фазах элементов сети. При этом ухудшаются ус- ловия их нагрева и уменьшается пропускная способность.

Несимметрия отрицательно сказывается на рабочих и технико-экономических характеристик вращающихся электрических машин. Ток прямой последовательности в статоре создает магнитное поле, вращающееся с синхронной частотой в направлении вращения ротора. Токи обратной последовательности в статоре создают магнитное поле, вращающееся относительно ротора с двойной синхронной частотой в направлении, противоположном вращению. Из- за этих токов двойной частоты в электрической машине возникают тормозной электромагнитный момент и дополнительный нагрев, главным образом ротора, приводящие к сокращению срока службы изоляции.

В асинхронных двигателях возникают дополнительные потери в статоре. В ряде случаев приходится при проектировании увеличивать номинальную мощность электродвигателей, если не принимать специальные меры по симметрированию напряжения.

В синхронных машинах кроме дополнительных потерь и нагрева статора и ротора могут начаться опасные вибрации. Из-за несимметрии сокращается срок службы изоляции трансформаторов, синхронные двигатели и батарей конденсаторов уменьшают выработку реактивной мощности.

Несимметрия напряжения в цепи питания осветительной нагрузки приводит к тому, что световой поток светильников одной фазы (фаз) уменьшается, а другой фазы — увеличивается, снижается срок службы ламп. На одно- и двухфазные электроприемники несимметрия воздействует как отклонение напряжения.

Суммарный ущерб, обусловленный несимметрией в промышленных сетях, включает стоимость дополнительных потерь электроэнергии, увеличение отчислений на реновацию от капитальных затрат, технологический ущерб, ущерб, обусловленный снижением светового потока ламп, установленных в фазах с пониженным напряжением, и сокращением срока службы ламп, установленных в фазах с повышенным напряжением, ущерб из-за уменьшения реактивной мощности, генерируемой конденсаторными батареями и синхронными двигателями.

Несимметрия напряжений характеризуется коэффициентом обратной последовательности напряжений и коэффициентом нулевой последовательности напряжений, нормальное и максимальное допустимые значения которых составляют 2 и 4 %.

Симметрирование напряжений в сети сводится к компенсации тока и напряжения обратной последовательности.

При стабильном графике нагрузок снижение систематической несимметрии напряжений в сети может быть достигнуто выравниванием нагрузок фаз путем переключения части нагрузок с перегруженной фазы на ненагруженную.

Рациональное перераспределение нагрузок не всегда позволяет снизить коэффициент несимметрии напряжений до допустимого значения (например когда часть мощных однофазных электроприемников работает по условиям технологии не все время, а также при профилактических и капитальных ремонтах). В этих случаях необходимо применять специальные симметрирующие устройства.

Известно большое число схем симметрирующих устройств, часть из них выполняется управляемыми в зависимости от характера графика нагрузки.

Для симметрирования однофазных нагрузок применяется схема, состоящая из индуктивности и емкости. Нагрузка и включенная параллельно ей емкость включаются на линейное напряжение. На два других линейных напряжения включаются индуктивность и еще одна емкость.

Для симметрирования двух- и трехфазных несимметричных нагрузок применяется схема с неодинаковыми мощностями батарей конденсаторов, включенными в треугольник. Иногда применяют симметрирующие устройства со специальными трансформаторами и автотрансформаторами.

Поскольку симметрирующие устройства содержат батареи конденсаторов, целесообразно применять такие схемы, в которых одновременно симметрируется режим и генерируется Q с целью ее компенсации. Устройства для одновременного симметрирования режима и компенсации Q находятся в стадии разработки.

Снижение несимметрии в четырехпроводных городских сетях 0,38 кВ можно осуществлять путем уменьшения тока нулевой последовательности I0 и снижения сопротивления нулевой последовательности Z0 в элементах сети.

Уменьшение тока нулевой последовательности I0 в первую очередь достигается перераспределением нагрузок. Выравнивание нагрузок достигается использованием сетей, в которых все или часть трансформаторов работают параллельно на стороне низкого напряжения. Снижение сопротивления нулевой последовательности Z 0 можно легко осуществить для воздушных линий 0,38 кВ, которые обычно сооружаются в районах с малой плотностью нагрузки. Целесообразность уменьшения Z0 для кабельных линий, т. е. увеличения сечения нулевого провода, должна быть специально обоснована соответствующими технико-экономическими расчетами.

Существенное влияние на несимметрию напряжений в сети оказывает схема соединения обмоток распределительного трансформатора 6—10/0,4 кВ. Большинство распределительных трансформаторов, установленных в сетях, имеют схему звезда — звезда с нулем (У/Уо). Такие распределительные трансформаторы дешевле, но у них велико сопротивление нулевой последовательности Z0.

Для снижения несимметрии напряжений, вызываемой распределительными трансформаторами, целесообразно применять схемы соединения треугольник— звезда с нулем (Д/Уо) или звезда—зигзаг (У/Z). Наиболее благоприятно для снижения несимметрии применение схемы У/Z. Распределительные трансформаторы с таким соединением более дорогие, и изготовление их очень трудоемко. Поэтому их надо применять при большой несимметрии, обусловленной несимметрией нагрузок и сопротивление нулевой последовательности Z0 линий.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector