Помогите определить что это за электроприбор

Содержание

Как определить потребляемую мощность электроприбора?

Электричество в массовом масштабе используется во всех сферах современной жизни. Необходимая эксплуатационная гибкость электросети обеспечивается использованием розеток к которым подключаются те или иные приборы. Мощность подключаемого устройства не должна превышать определенного максимального значения.

Что такое потребляемая мощность?

Потребляемая мощность — это численная мера количества электрической энергии, необходимой для функционирования электроприбора или преобразуемой им в процессе функционирования. Для статических устройств (плита, утюг, телевизор, осветительные приборы) энергия тока при работе переходит в тепло). При преобразовании (электродвигатели) – энергия электрического тока преобразуется в механическую энергию.

Основная единица электрической мощности – Ватт, ее численное значение

где U – напряжение, Вольты, I – ток, амперы.

Иногда этот параметр указывают в В×А (V×А у импортной техники), что более правильно для переменного тока. Разница между Ваттами и В×А для бытовых сетей мала и ее можно не учитывать.

Потребляемая электрическая мощность важна при планировании проводки (от нее зависит сечение проводов, а также выбор номиналов и количество защитных автоматов). При эксплуатации она определяет затраты на содержание жилища.

Проблема правильной эксплуатации бытовой электрической сети

С конструктивной точки зрения бытовая электрическая сеть отработана до высокой степени совершенства: ее нормальная эксплуатация не требует специальных знаний.

Сеть рассчитана на определенные условия эксплуатации, нарушение которых приводит к полному или частичному отказу, а в тяжелых случаях – к возникновению пожара.

Условие правильной эксплуатации – отсутствие перегрузки.

При этом нагрузочная способность розеток и потребление подключаемой к ним техники измеряется различными единицами:

  • для розеток это максимально допустимый переменный ток (6 А у традиционных советских розеток старого жилого фонда, 10 или даже 16 А у розеток европейского стиля);
  • подключаемое оборудование характеризуются мощностью, которая измеряется в Ваттах (для мощных устройств вместо Ватт указываются более крупные единицы: киловатты (1 кВт = 1000 Вт), что позволяет не путаться в многочисленных нулях).

Отсюда возникает необходимость:

  • определения связи мощности и тока;
  • нахождения мощности отдельного электрического прибора.

Связь между Ваттами и Амперами проста и следует прямо из приведенного выше определения Ватта. Задача упрощается тем, что напряжение исправной бытовой сети всегда одинаково (220 или 230 В). Отсюда по току всегда находится мощность.

Как определить?

Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.

Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.

Смотрим в техпаспорт

Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.

В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.

Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.

Закон Ома в помощь

Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:

P = U 2 /R.
U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле
P = 48 400/R Вт.

Например, при R = 200 Ом получаем мощность Р = 240 Вт.

Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.

Используем электросчетчик

При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.

При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.

Рисунок 1. Лицевая панель бытового счетчика электроэнергии с оптическим индикатором

После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.

Пример. Для счетчика имеем k = 1600 импульсов на киловатт час. При 20 минутном интервале замера индикатор сработал (вспыхнул) 160 раз. Тогда мощность устройства составит 160*3/1600 = 0,3 кВт или 300 Вт.

При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.

Ваттметром

Современный бытовой измеритель мощности или ваттметр удобен для использования, так как:

  • включается непосредственно в разрыв цепи, для чего снабжен вилкой и розеткой, см. рисунок 2;
  • оборудован легко читаемым цифровым индикатором и снабжен внутренними цепями автоматической настройки, что исключает ошибки в показаниях;
  • отличается хорошими массогабаритными показателями.

Прибор готов к работе немедленно после включения.

Рис. 2. Цифровой бытовой ваттметр

Единственный его недостаток – узкая специализация, поэтому этот прибор редко встречается в домашнем хозяйстве.

Прямое измерение тока

Методы той группы отличаются более высокой точностью за счет того, что основаны на прямом измерении тока. Существуют два прибора для выполнения этой процедуры в бытовых условиях.

Замер токовыми клещами

Наиболее удобны для использования токовые клещи, которые не требуют разрыва контролируемой цепи. Выполнены как ручное устройство с измерительным узлом на основе тороидального сердечника. Для замера тока узел раскрывают на манер губок клещей, после чего закрывают с охватом провода, рисунок 3. Действующее значение тока находится по изменению магнитного поля, которое фиксируется датчиком Холла.

Рис. 3. Измерение токовыми клещами

Замер тестером

Второй способ основан на применении тестера, который переключают в режим амперметра и включают в разрыв цепи. Сложности реализации этой процедуры простыми средствами делают его мало популярным на практике. Нельзя сбрасывать со счетов также то, что некоторые модели тестеров не имеют токовой защиты и выходят из строя (сгорают) при неправильном выборе диапазона (токовой перегрузке).

Заключение

Как видим, мощность электроприборов может быть определена различными способами. Выбор конкретного из них зависит от уровня технической подготовки пользователя и наличия у него необходимых приборов, а доступность нескольких из них вполне может привлекаться как средство контроля правильности выполнения расчетов и измерений.

Простота реализации любого из рассмотренных способов позволяет гарантировать отсутствие перегрузки силовых розеток и достаточно быстро и довольно точно определять фактический потребляемый ток в том случае, если у электрического устройства отсутствуют паспортные данные.

Читайте также:  Пуэ-7 глава 3.2: релейная защита

8 предметов бытовой техники, ломающихся просто потому, что мы не прочли инструкцию

Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Чаще всего в поломке бытовой техники виновата лень, которая накатывает на нас при одном только взгляде на книжечку с инструкцией. А ведь всего 20 минут, потраченных на чтение мануала, было бы достаточно, чтобы продлить срок эксплуатации техники на годы. Мы составили список самых распространенных поломок бытовой техники, случающихся по вине пользователей, и подготовили советы, как их избежать.

AdMe.ru надеется, что в следующий раз инструкция не полетит в мусорное ведро вместе с упаковкой.

1. Стиральная машина

  • Самая распространенная поломка в стиральных машинах — это выход из строя сливного насоса. Его может испортить любой мелкий мусор, выпавший из карманов, обломки металлических и пластиковых элементов декора одежды, монеты, мелкие предметы одежды, попавшие в слив. Поэтому обязательно проверяйте карманы перед загрузкой вещей в машинку и используйте мешки для стирки мелкого белья.

  • Перегрузка стиральной машины грозит не только расшатыванием ножек из-за дисбаланса во время отжима, но и смещением или даже порчей ремня, благодаря которому крутится барабан. Впрочем, это может произойти и из-за неравномерно распределенного белья.

  • Нагревательный элемент портится от перегрева из-за налета и накипи, которые появляются не только по вине жесткой воды, но и из-за слишком большого количества стирального порошка.
  • Резиновый уплотнитель дверцы изнашивается со временем. Это нормально. Но использование популярных самодельных средств для удаления накипи, содержащих уксус, ускоряет износ в разы. Лучше отказаться от сомнительных народных рецептов.

2. Холодильник

    Наиболее распространенной причиной поломки холодильника до сих пор остаются горячие кастрюли с едой. Возможно, владельцам кажется, что современная техника выдержит все, но это не так: перегрузка компрессора грозит любой модели, даже самой современной.

Неправильное распределение продуктов или работа пустого холодильника без соответствующей настройки температуры охлаждения также грозит компрессору перегрузками. Всю необходимую информацию об этом можно найти в инструкции к вашей модели.

При разморозке холодильника всегда есть соблазн сковырнуть ножом слой льда. Не стоит этого делать, даже учитывая то, что испаритель покрыт слоем пенной изоляции: при повреждении испарителя такого типа придется менять всю морозилку.

3. Микроволновая печь

    Большая часть проблем возникает из-за несвоевременной замены слюдяной пластины. Заменить ее несложно (это можно сделать даже самостоятельно), но гораздо проще продлить срок ее эксплуатации. Для этого необходимо следить за чистотой и целостностью пластины и регулярно очищать ее от жира. Покрытая грязью пластина может прогореть или деформироваться от неравномерного нагрева.

Использование жестких губок и щеток при чистке микроволновки ведет к повреждению эмали. Если корпус выполнен не из нержавеющей стали, то он может довольно быстро проржаветь насквозь.

Все знают, что для разогрева еды в микроволновке нельзя использовать металлические емкости. Но следует помнить, что под запрет попадает и фарфоровая посуда с рисунком: любая краска может содержать металлы, которые под воздействием микроволн начинают искрить. Поэтому выбирайте керамику без орнамента.

4. Посудомоечная машина

    Почти все проблемы с посудомоечной машиной происходят из-за небрежной очистки посуды от пищи перед загрузкой. Несмотря на фильтры, кусочки еды забивают не только слив, но и распылители на коромыслах. Из-за этого давление воды падает, и посуда практически не отмывается.

Жесткая вода тоже постепенно забивает отверстия в распылителях, в результате чего качество мытья посуды ухудшается. Поэтому не стоит экономить на специальных средствах для смягчения воды.

Не загружайте в машину посуду, которая не предназначена для мытья в посудомойке: она трескается от высоких температур, и осколок может попасть в сливной насос и блокировать крыльчатку. Вынуть его самостоятельно будет довольно сложно.

5. Пылесос

    Ни в коем случае не используйте для моющего пылесоса обычное моющее средство вместо специального. У обычных средств для мытья пола неконтролируемое пенообразование, и пена, которая начнет лезть отовсюду, может попасть в мотор.

Обычный бытовой пылесос может работать без перерыва не больше 30–40 минут в день. В противном случае под воздействием высоких температур с материалом, из которого изготовлена турбина, начинают происходить необратимые изменения, что сильно сокращает срок службы турбины.

От сырости ржавеет металл мотора, а на лопасти налипает все больше пыли. Постепенно она собирается в тяжелый ком и затрудняет работу устройства, создавая повышенную нагрузку на пылесос.

Грязные фильтры и перегруженная емкость для сбора мусора также увеличивают нагрузку на прибор и негативно влияют на срок жизни турбины.

6. Кондиционер

Большая часть кондиционеров средней ценовой категории не приспособлена для долгой работы в режиме обогрева при зимних температурах ниже −10 °C. Такая работа повышает нагрузку на компрессор и укорачивает срок эксплуатации кондиционера. А если внешняя часть не изолирована, то конденсат в трубке смерзается в ледяную пробку, из-за которой вода начинает собираться внутри помещения.

Забитый пылью и мелким мусором теплообменник может стать причиной поломки кондиционера. Необходимо регулярно чистить внешний блок.

На крыльчатках и фильтрах кондиционера постоянно скапливаются пыль и копоть, которые уменьшают скорость потока выдуваемого воздуха, забивают дренажную систему, мешают нормальной работе охладительной системы. Это вызывает появление льда на медном трубопроводе, который при выключении кондиционера начинает таять и капать на пол.

7. Кухонные плиты

  • Жидкости, содержащие сахар, не должны попадать на горячую поверхность плиты, поскольку ее неравномерное остывание приводит к появлению трещин. Подобные субстанции необходимо убирать специальным скребком сразу же, пока те не успели остыть.
  • Холодное дно кухонной утвари или капли холодной воды, оказавшиеся на горячей поверхности, тоже вызывают растрескивание стеклокерамики.

Неровное дно кухонной утвари часто становится причиной появления царапин или даже трещин на стеклокерамическом покрытии плит.

Точечные удары также могут привести к появлению трещин. Неважно, что плита запросто выдерживает вес тяжелых кастрюль: точечный удар, к примеру, металлической ложкой, может стать причиной появления трещины, которая сделает дальнейшую эксплуатацию плиты невозможной.

8. Увлажнитель воздуха

  • Увлажнители воздуха нуждаются в регулярной чистке из-за минерального налета, который появляется от воды. Поэтому лучше использовать дистиллированную воду, а не водопроводную.
  • Купив увлажнитель для ароматерапии, его владельцы недоумевают, почему прибор в скором времени выходит из строя. При добавлении масла в емкость с водой портится пластик, забиваются фильтры, регулярная чистка затрудняется. У большинства моделей, предназначенных для ароматерапии, предусмотрена емкость для впитывающего материала, пропитанного маслом.

Бонус: поучительная история о пользе чтения инструкций

Резюмируя все вышесказанное, следует признать, что большая часть поломок происходит из-за несоблюдения правил эксплуатации техники. Это доказывает и забавный случай, произошедший в Ирландии с Майком Маклоулином (Mike Mc Loughlin).

Спустя 10 лет использования посудомоечной машины, которая раздражала его тем, что не вмещала большие тарелки, он узнал, что верхнюю полку можно сдвинуть вверх, тем самым освободив достаточно места для габаритной посуды. Он написал о своем открытии в твиттере и получил тысячи комментариев со словами благодарности за столь полезную подсказку. Майк рассказал, что недавно искал в гугле инструкцию по поводу другой проблемы и случайно наткнулся на информацию о полке.

Физика для девушек

Энергетика должна быть умной

Пятеро школьников изобрели специальный прибор, который крепится к электрическому счетчику и считывает информацию о том, сколько энергии потребляется квартирой или домом. К нему идет приложение для смартфона, чтобы информацию можно было просмотреть в любой точке мира.

— По сути, принцип работы такой же, как у фитнес-браслета, — говорит одиннадцатиклассница белгородского лицея N9 Анна Арчибасова.

Человек она просто неуловимый. Не успела вернуться из Москвы, где ее наградили как победителя конкурса интеллектуальной энергетики ПАО «Россети «Энергопрорыв», как уехала в Санкт-Петербург покорять новые научные вершины. В промежутке между поездками мы встречаемся с ней в городской кофейне, где она словно эксперт по меню рекомендует особенный тирамису.

— Я просто часто тут бываю, — говорит. — Все попробовала уже.

— И когда только ты успеваешь наукой заниматься?

Собеседница снимает школьный рюкзак и с улыбкой выдает:

— Физику за два месяца выучила.

Вернемся к прибору. Проект Ани и ее коллег — четверых парней из Екатеринбурга, Саранска, Самары и Белгорода (с Аней работал и ее одноклассник) — называется мудрено: «Анализ структуры нагрузки у потребителей».

— Но если говорить проще, то это такая небольшая коробочка, которая позволит владельцу крупного предприятия или, например, гостиницы, понять, как сделать работу более энергоэффективной. Это же сейчас тренд, — рассказывает Аня. — Прибором можно пользоваться даже в многоквартирном доме. Все платят за общедомовую электроэнергию, и чтобы понять, не майнит ли кто-то криптовалюту в вашем подъезде, нагоняя круглую сумму в платежке за ОДН, можно посмотреть на данные прибора. Он покажет, где перерасход. Но это глобальные цели, а ведь в обычном доме или квартире прибор тоже пригодится — поставили на счетчик и смотрите, какая техника у вас пожирает большую часть электричества. Узнали — задумались: не пора ли ее заменить? Сразу можно и просчитать, когда это окупится. Но чаще всего, конечно, меня спрашивают: «А если утюг не выключила и ушла из дома, он покажет?» Отвечаю — покажет, даже не сомневайтесь. По поводу утюга переживают все.

«Звездные» разработки

Весь проект «Арчибасова и партнеры» — по-другому назвать их уже не получается — придумали за профильную смену «Россетей» во всероссийском детском центре «Орленок», которую организовали для победителей и призеров первой Всероссийской Олимпиады школьников по физике, математике и информатике.

— Нам дали это задание, мы посмотрели аналоги, их много, но ничего пока не выпускается в промышленных масштабах, и сделали свое, — рассказывает Аня.

На вопрос о том, в чем была сложность, она отвечает неожиданно: мол, не было нормальных условий для работы.

— В «Орленке» нас удивило то, что работать в принципе было неудобно, — говорит она. — Смартфоны у нас забирали, чтобы не отвлекали на орлятских мероприятиях, которых было ну очень много, при этом ночью тоже нет возможности потрудиться: в спальне на шестнадцать человек одна розетка. Но это профильная смена! И мы все же себе выбили место для работы.

В самом процессе было много неожиданностей, в том числе и не совсем приятных. Так, однажды все наработки попросту случайно удалили.

— Что делали? Да посмеялись и восстановили, — говорит Аня. Это для обывателя создать прибор — наука, для нее, кажется, игра.

Сегодня она увлекается физикой и астрономией, информатикой и другими точными науками, а еще несколько лет назад рисовала и училась в музыкальной школе.

— Ну я же девочка, — улыбается она и добавляет: — рисование помогло мне победить в «Энергопрорыве». Знаете, как важно не просто создать хороший проект, но и представить его на суд жюри. Вот наша презентация и получилась интересной: мы все прорисовали сами — графики, диаграммы, фон. Было реально здорово! А у других — мы посмотрели — все скачано, все знакомо. И все же мне жаль, что я раньше физикой не начала заниматься вот так, вплотную. Потеряла массу времени. Конечно, теперь я играю на скрипке и гитаре, и это интересно моим знакомым из круга физиков. Ведь там таких мало. К тому же девушек среди физиков тоже немного, и я думаю, что это все из-за известных всем стереотипов. А на самом деле это наука и для девушек, это уж точно!

Удивительно, что Аня, в отличие от ее сверстников, не говорит о выпускных экзаменах как о чем-то страшном. Олимпиады и конкурсы проектов — показывать свои знания она давно привыкла. Теперь вот команда ребят устраивает презентации прибора для потенциальных инвесторов, и уже есть желающие сделать пробный выпуск прибора. По сути, эти школьники уже нашли свое место в экономике и на рынке труда. А как же вуз?

— Знаете, я думаю, что сегодня университет — это место, где получают не столько знания, сколько опыт общения с другими людьми, единомышленниками, и собирают интересный круг знакомств. Поэтому я и буду поступать в вуз. Надеюсь, все получится.

И мы надеемся! Удачи, Аня!

Наталья Якшина, начальник Департамента энергосбережения и повышения энергоэффективности ПАО «МРСК Центра», наставник Арчибасовой

Наша компания заинтересована в работе с талантливой перспективной молодежью и в практической стороне подобных исследований. Перед нами стоят глобальные задачи, решать которые предстоит таким молодым и энергичным ребятам, вооруженным глубокими знаниями и нестандартными идеями. За ними будущее.

Прибор для электрика: тестер напряжения

Тестер напряжения — вспомогательное измерительное средство для достижения бесперебойной работы любых электрических приборов. Что оно собой представляет, как пользоваться электронным тестером, что такое электрические пробники напряжения, какие есть разновидности и другое далее.

Описание

Тестером напряжения является портативный электрический и технический прибор, который нужен, чтобы индефицировать возможный потенциал токопроводящих участков. Благодаря нему обеспечивается простое и быстрое тестирование переменного с постоянным напряжением до 400 Ватт. Стоит отметить, что он только указывает на диапазон, но не указывает точный показатель.

Конструкция

Современный тестер считается многофункциональным измерительным прибором, который носит второе название — мультиметр. Состоит он из внешнего и встроенного измерительного щупа, светодиодной шкалы индикации, защитного кольца и кнопки тестирования. Бывают двух типов: аналоговые или стрелочные, цифровые. Первые осуществляют определение величины измеряемого тока при помощи положения стрелки на циферблатной шкале устройства.

Обратите внимание! Сегодня такие приборы морально устарели из-за небольшой погрешности измерений. Важно, что шкала такого агрегата имеет зеркальную дорожку, поэтому, снимая показания, стрелка должна совпасть с зеркальным отражением. Это требуется, чтобы сделать четкую фиксацию величины тока.

Цифровые или электронные измерители — высокоточные устройства, которые сегодня наиболее распространены на рынке. В них показатели находятся внутри жидкокристаллического экрана. Показываются цифрами. Гнезда приборов оснащены двумя щупами, которые, в свою очередь, дополнены специальными наконечниками для измерения.

Технические характеристики

Как правило, каждый электротестер нацелен на измерение постоянного с переменным током от 150 до 500 ватт. Показывает данные с точностью от −30% до 0% от показываемого числа. Диапазон частот равен от 50 до 60 герц. Работает непрерывно в течение 30 секунд при температуре от −15 до 45 градусов Цельсия и влажности не больше 80%. Предельно может функционировать на высоте не более 2000 метров. Весит от 100 до 150 граммов. Восстанавливается примерно 10 минут, после того как был произведен первый замер.

Как пользоваться

Пользоваться устройством нужно, в соответствии с инструкцией, не применяя силу. Его можно использовать как дома, так и в условиях производства. Чтобы делать измерение сетевого уровня электроцепи дома, достаточно воспользоваться руководством для пользователя универсального тестера. Современные мультиметры обладают расширенным функционалом. Они позволяют совершать определение полярности диода, замер емкости конденсатора, а самые продвинутые модели способны делать замер температуры объекта.

Режимы работы

Оснащен агрегат несколькими режимами и параметрами работы. Он работает на низком уровне чувствительности, чтобы изучить напряжение переменного тока, на среднем уровне чувствительности для бесконтактного обнаружения наличия переменного тока и на высоком уровне чувствительности.

Разновидности электрических пробников напряжения

Электрические пробники напряжения призваны проверять целостность электроцепи. От них будет зависеть работа любого элетрического прибора. Каждый многофункциональный тестер обладает целой схемой с отдельным питанием активной сети, который призван осуществлять прозвон даже обесточенных электрических цепей.

Бывает пробник пассивным, активным, многофункциональным, универсальным и самодельным. Пассивный тестер оснащен одним полюсом фазы и выполняет только одну задачу. Он показывает, есть или нет напряжения в электроцепи. Профессиональные электрики его не используют из-за того, что у него ограниченный функционал, а для домашнего использования он подходит.

Активный индикатор считается чувствительным детектором напряжения, состоящим из светодиода, реагирующего на все электромагнитное поле проводника. Спектр его использования больше. К примеру, он помогает отыскать место обрыва проводки дома. Также он позволяет прозванивать провода, и определять исправность их работы.

Многофункциональный тестер — улучшенный вариант активного индикатора. Отличие лишь в том, что в этом имеется переключатель, регулирующий чувствительность устройств. Он работает как в контактном, так и бесконтактном режиме. Дополняется такой тестер дисплейным управлением и зуммером. В отличие от мультиметров, имеет только один щуп.

Универсальный аппарат — распространенный функциональный и удобный тестер, который может как определять фазу с нулевой сетью, так и прозванивать проводку для определения напряжения. Кроме того, он обладает звуковой и визуальной индикацией.

Самодельный контрольный аппарат — это пробник, который имеет обычную 220 вольтовую лампочку, вкрученную в патрон с проводами в виде щупов.

Обратите внимание! Отличается от других пробников тем, что по яркости свечения лампы можно узнать оптимальное напряжение или нет. Кроме того, с таким агрегатом можно осуществлять проверку всех трех фаз.

Дополнительные функции

Современные тесторы сделаны так, что с помощью них можно проверять биполярные транзисторы, а также определять емкость конденсатора и индуктивность катушек.

Проверка транзисторов

Транзисторная проверка является специфичной процедурой. Она нужна только тем, кто занимается ремонтированием радиоэлектронных приборов. Чтобы определить работает ли биполярный триод, пользователь тестера прозванивает диоды при помощи поочередного поключения щупов. Транзистор исправен, если все показания сходятся в случае с подключением база-эмиттер.

Определение емкости и индуктивности

Емкостью называется физический показатель величины, который характеризуется как способность конденсатора к накоплению электрической энергии. Электроемкость измеряется в микрофараде, нанофараде и пикофараде. Индуктивность это показатель накопителя энергии тока, преобразующаяся в энергию магнитного поля.

Определить емкость и индуктивность можно с помощью мультиметра, точнее путем переключения его в диапазон этих величин. Все что нужно, это вставить приборные штекеры и сделать измерение так же, как и измерение сопротивления. Осуществляя замеры, необходимо использовать зажимы крокодилы.

Важно! Определяя емкость конденсаторов, имеющих электролит, необходимо соблюдать тот факт, чтобы было полярное подключение.

Уход за тестером

Тестер не требует какого-то специфического ухода. Все что нужно, это держать его в сухости, хранить при оптимальной температуре, обращаться с ним бережно и аккуратно и держать прибор в чистоте. Важно не допускать падения прибора и деформации его деталей, а также не протирать от пыли корпус, используя растворители с моющими средствами. При поломке оборудования, необходимо его выкинуть, поскольку ремонт может обойтись дороже нового.

Инструкция по безопасному применению

Как правило, инструкция по безопасной эксплуатации для всех аппаратов общая. До начала проведения работ с тестером, необходимо надеть на руки средства личной безопасности. Затем изучить инструкцию к конкретному выключателю тока, который нужно протестировать. Далее нужно нажать кнопку выключателя тока или короткого замыкания, вставить щуп к фазному выходу, а другой подсоединить к заземленному контакту тестируемого прибора. Потом требуется нажать кнопку тестирования и узнать данные.

Обратите внимание! Важно, что тестировать незаземленные контакты нельзя. Это может быть опасно для жизни.

В целом, тестер напряжения или мультиметр, согласно современной терминологии, — устройство многофункциональное, направленное на проверку любого электрооборудования. Бывает разных видов и поставляется на рынок с разными функциями. Позволяет проверять емкость, индуктивность и транзистор во многих случаях. Работает исправно в течение многих лет по инструкции. Не требует особого ухода.

Как узнать, сколько потребляют различные электроприборы в доме

Экология потребления.Наука и техника: Измеритель мощности — недорогой и полезный прибор, позволяющий узнать, сколько потребляют различные электроприборы.

Недавно я рассказывал, почему для точного измерения мощности электроприборов, работающих от сети, нужен специальный прибор — измеритель мощности (ваттметр), а любые измерения с помощью обычных мультиметров не могут быть точными.

Свой первый измеритель мощности BEBUY я купил пять лет назад в одном из китайских интернет-магазинов. Он, как и многие другие подобные измерители, достаточно точен при измерении мощностей от десятков ватт, но на малых мощностях точность измерения снижается.

В одном из обзоров светодиодных ламп на сайте led-obzor.ru я увидел фотографию измерителя мощности, который показывал значения мощности с сотыми долями. Я спросил у автора сайта, что это за измеритель. Оказался, Robiton. У этого производителя есть две модели измерителей мощности: Robiton PM-1 и Robiton PM-2. Я попросил представителей бренда предоставить мне обе модели для пристального изучения.

Приборы не сильно отличаются по цене (PM-1 стоит 780 рублей, PM-2 белого цвета — 900 рублей, чёрного — 1000 рублей), но очень сильно отличаются по возможностям и точности измерений.

Возможности

Оба прибора включаются в евророзетку, а нагрузка, мощность которой предстоит измерять, подключаются к розетке на корпусе прибора. У обоих приборов три кнопки управления. Оба прибора способны измерять мощность до 3600 Вт.

Прибор измеряет мощность, количество энергии, которую потребила нагрузка (киловатт-часы), и стоимость потреблённой энергии. Цена киловатта настраивается.

Разрешение при измерении мощности не очень высокое, поэтому, при нагрузке 6 Вт показания прибора всё время «скачут» между 5.5 и 6.4 Вт.

Измеритель мощности Robiton PM-1 подойдёт для измерения мощности и стоимости потребляемой энергии электроприборов средней и большой мощности — компьютеров, нагревателей, чайников, холодильников, стиральных машин.

Robiton PM-2 имеет гораздо больше возможностей и более высокую точность.

Три батарейки используются для работы встроенных часов и сохранения показаний после отключения от сети.

Прибор отображает время, напряжение сети, частоту, ток, мощность нагрузки, коэффициент мощности (Power Factor), время измерения, количество энергии, которую потребила нагрузка (киловатт-часы), и стоимость потреблённой энергии. Цена киловатта настраивается с учётом дневного и ночного потребления при двухтарифном учёте. Есть возможность сбросить показания времени измерения, потребления энергии и стоимости.

Точность измерений

Для того, чтобы понять насколько точны ваттметры, я задействовал весь свой арсенал измерительных приборов.

В качестве источника образцового напряжения 230 В я использовал источник бесперебойного питания с чистой синусоидой APC Smart UPS 700INET в режиме работы от батарей.
Самый точный из моих мультиметров — Mastech MY65 (точность ±(0.1%+3), т.е. ±0.53 В на 230 В) показывал 231.2-232.0 В. Предположительно, источник даёт 231.5 В. Robiton PM2 честно показывал 232 В. Мультиметр UNI-T UT61E завышал показания, но его точность (±0.8%+10) это лишь ±2.84 В на 230 В.

В качестве маломощной измерительной нагрузки я использовал резистор 27 кОм 2 Вт. MY65 (точность ±(0.3%+1)) показал, что его сопротивление составляет 26950 Ом. Мощность должна быть 231.5/26950*231.5=1,9886 Вт. Robiton PM-2 показал 1.99 Вт. Идеально точно!
Robiton PM-1 показывал попеременно 1.8 и 2.0 Вт.

Кроме того я измерил мощность ламп накаливания 25 и 75 Вт. PM-1 показал 25.7 и 75.4 Вт, PM-2 — 25,95 и 75.58 Вт.

У меня была возможность сравнить результаты измерения мощности ваттметра Robiton PM-2 с результатами, полученными на дорогом лабораторном оборудовании для измерения мощности, да ещё и на нагрузке с низким коэффициентом мощности и «рваным» потреблением — светодиодных лампах. По десяти разным образцам ламп с мощностью от 3.4 до 13.8 Вт отклонения составили от 0.2% до 2.1%. Отличный результат!

Несмотря на широкий диапазон измерений, Robiton PM-2 даёт весьма точные результаты даже на малой мощности.

А что внутри?

Для того, чтобы вскрыть измерители мощности, понадобится хитрая трёхгранная отвёртка. Конструкция PM-1 состоит из двух плат.

На плате индикатора есть кнопка калибровки. Я решил не рисковать и не нажимать её.

Обратная сторона основной платы.

Конструкция Robiton PM-2.

Основная плата и шунт.

Плата с обратной стороны.

Заключение

Измеритель мощности — недорогой и полезный прибор, позволяющий узнать, сколько потребляют различные электроприборы. С помощью него можно узнать, сколько потребляет холодильник за сутки, сколько потребляет стиральная машина за одну стирку или узнать, во сколько обходится одно кипячение чайника. С помощью этого прибора можно определить, какие электроприборы в доме потребляют больше всего энергии (поверьте, это далеко не самые мощные приборы) и узнать, как экономить электроэнергию.

Из двух ваттметров Robiton я, конечно же, рекомендую Robiton PM-2 — он точнее и имеет гораздо большие возможности. опубликовано econet.ru

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector