Принцип работы трансформатора напряжения

Содержание

Трансформатор напряжения

Автор: Владимир Васильев · Опубликовано 20 января 2016 · Обновлено 29 августа 2018

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.

Трансформаторы напряжения назначение и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n Как работает трансформатор напряжения?

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n». Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Трансформаторы напряжения — назначение и принцип действия

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Сохраните в закладки или поделитесь с друзьями

Что такое трансформатор напряжения

Трансформатор напряжения — это одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

измерительный трансформатор напряжения

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Трансформатор напряжения назначение и принцип действия

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.

Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

измерительный трансформатор напряжения

Принципы работы трансформатора напряжения

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Устройство однофазного трансформатора напряжения

Устройство однофазного трансформатора напряжения:

  • а — общий вид трансформатора напряжения;
  • б — выемная часть;
  • 1,5 — проходные изоляторы;
  • 2 — болт для заземления;
  • 3 — сливная пробка;
  • 4 — бак;
  • 6 — обмотка;
  • 7 — сердечник;
  • 8 — винтовая пробка;
  • 9 — контакт высоковольтного ввода

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ

  • См. трансформаторы ЗНОЛ, схемы характеристики в таблице

Схемы включения трансформаторов напряжения

Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:

  • проводами линии с целью контроля линейных напряжений;
  • шиной или проводом и землей, чтобы снимать фазное значение.

Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.

На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.

Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.

Трансформатор напряжения при напряжении до 35 кВ

Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.

рис. 2.1 Схема включения однофазного трансформатора напряжения

Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.

В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные ТН. Выбор того или иного типа трансформатора напряжения зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).

Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.

По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.

Обозначение трансформатора напряжения на схеме

Предохранители трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.

Видео: Трансформаторы напряжения

Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.

Трансформаторы напряжения измерительные. Устройство, классификация, принцип работы, примеры

Трансформатор напряжения – это один из видов трансформаторов, который еще называют измерительным, предназначеннный для отделения первичных цепей высокого и сверх высокого напряжений и цепей измерений, РЗ и А. Также их используют для понижения высоких напряжений (110, 10 и 6 кВ) до стандартных нормируемых величин напряжений вторичных обмоток – 100 либо 100/√3.

Помимо этого, применение трансформаторов напряжение в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок.

Трансформаторы напряжения нашли широкое применение в силовых электроустановках высокого напряжения

От точности их работы зависит правильность коммерческого учета электроэнергии, селективность действия устройств РЗ и противоаварийной автоматики, также они служат для синхронизации и питания автоматики релейной защиты ЛЭП от коротких замыканий, и др.

Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем.

Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже:

Потери намагничивания обуславливают некоторую погрешность в классах точности.

  • конструкцией магнитопровода;
  • проницаемостью стали;
  • коэффициентом мощности, т.е. зависит от вторичной нагрузки.

Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения

Классификация трансформаторов напряжения

  1. По количеству фаз:
    • однофазные;
    • трехфазные.
  2. По числу обмоток:
    • 2-х-обмоточные;
    • 3-х-обмоточные.
  3. По способу действия системы охлаждения:
    • электрические устройства с масляным охлаждением;
    • электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие).
  4. По способу установки и размещения:
    • для наружной установки;
    • для внутренней;
    • для комплектных РУ.
  5. По классу точности: по нормируемым величинам погрешностей.

Виды трансформаторов напряжения

Рассмотрим несколько трансфомраторов напряжения разных производителей:

Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11

Производиель — Невский трансформаторный завод «Волхов».

Назначение и область применение ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

Рисунок — Габаритные размеры трансформатора

Рисунок — схемы подключения обмоток трансформаторов

Характеристики:

  1. Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27
  2. Наибольшее рабочее напряжение, кВ — 30 40,5 40,5
  3. Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5
  4. Номинальное напряжение основной вторичной обмотки, В — 57,7 100
  5. Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127
  6. Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3

Ещё одно интересное видео о работе трансформаторов тока:

Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)

Производитель «Свердловский завод трансформаторов тока»

Назначение 3хЗНОЛПМ(И)

Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150.

Рабочее положение — любое.

Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора.

Трехфазная группа может комплектоваться в 4-ех вариантах:

  • из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10;
  • из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10;
  • из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10;
  • из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А.

Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа.

Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя.

Срок службы — 30 лет.

НАМИТ-10-2

Производитель ОАО «Самарский Трансформатор»

Назначение и область применения

Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий

Технические параметры трансформатора напряжения НАМИТ-10-2

  1. Номинальное напряжение первичной обмотки, кВ — 6 или 10
  2. Наибольшее рабочее напряжение, кВ — 7,2 или 12
  3. Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110)
  4. Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3
  5. Класс точности основной вторичной обмотки — 0,2/0,5

Рисунок — Габаритные размеры и схема подключения

Читайте также:  Выбор генератора для работы погружного насоса
Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector