Расчет мощности трехфазного двигателя

Содержание

Расчет мощности трехфазного двигателя

Расчет для трехфазного асинхронного двигателя (мощность Рн=30 кВт)

1.Активную мощность, потребляемую двигателем из сети.

2.Номинальный, пусковой момент на валу двигателя.

3.Номинальный, пусковой ток в обмотке статора.

4.Номинальное и критическое скольжение двигателя.

5.Построить скоростную М=f(S) и механическую n2 =f(M) характеристику.

6.Определить реактивную мощность, потребляемую двигателем из сети при номинальном режиме работы.

7.Определить мощность, емкость батареи для повышения cosφ до 0,95.

8.Построить векторную диаграмму для одной фазы двигателя.

9.Начертить схему управления двигателем с реверсом и подключенными конденсаторами.

1.Определяем активную мощность, потребляемую двигателем из сети Р :

2.Определяем номинальный и пусковой момент на валу двигателя:

3.Определяем номинальный и пусковой ток в обмотке статора:

4.Определяем номинальное и критическое скольжение:

5.Построить скоростную и механическую характеристики:

6.Определяем реактивную мощность потребляемую двигателем из сети при номинальном режиме работы:

7.Определяем мощность и емкость батареи для повышения cosφ до 0.95:

8.Строим векторную диаграмму для одной фазы двигателя:

Описание схемы реверсирования трехфазного асинхронного электрического двигателя.

Автор: admin Рубрика: Электродвигателя 4 комментария

Расчет тока электродвигателя

Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.

Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей. и когда писал какие бывают номиналы электродвигателей .

Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.

Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн ),

Где Pн – это мощность электродвигателя; измеряется в кВт

Uн – это напряжение, при котором работает электродвигатель; В

ηн – это коэффициент полезного действия, обычно это значение 0.9

ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.

Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.

Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.

Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А

Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732

Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.

Как определить ток электродвигателя на практике.

Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.

А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.

На этом у меня всё. Пока.

С уважением Александр!

Читайте также статьи:

  • Устройство и принцип действия асинхронных электродвигателей
  • Схема пуска асинхронного двигателя
  • Неисправности электрических машин
  • Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором
  • Устройство, принцип действия, способы регулирования частоты вращения, применение, достоинства и недостатки двигателя постоянного тока

Хочешь получать статьи этого блога на почту?

Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. […]

Трехфазные электродвигатели

Перед тем, как рассматривать трудности, которые могут возникать при запуске трехфазного электродвигателя, напомним о общих положениях. В качестве примера возьмем небольшой двигатель и расшифруем надпись на прикрепленной к нему табличке (рис. 62.1).

Ph 3 – W 375 – согласно данной надписи двигатель имеет три фазы, а его выходная мощность составляет 375 Вт.

220/380 V — двигатель может работать от переменного трехфазного тока 220 В (подключение обмоток статора выполняется по схеме «треугольник» Δ) и 380 В (подключение по схеме «звезда» Y).

1,7/1А – рабочий ток двигателя при номинальной нагрузке составляет 1,7А, согласно схемы «треугольник» и 1 А – согласно схемы «звезда» (рис. 62.2).

Представим, что данный двигатель применяют для привода компрессора. Известно, что при изменении давления нагнетания мощность на валу компрессора и потребляемый двигателем ток также изменятся. При увеличении давления нагнетания сила тока растет и наоборот.

Получается, что потребляемая двигателем сила тока на данный момент может не соответствовать указанной на табличке, но вместе с этим, двигатель никогда не должен ее превосходить. Потребляемый двигателем ток будет равен 1 А только тогда напряжение в сети 380 В (обмотки подключены по схеме «звезда») а мощность на валу компрессора точно соответствует 375 Вт (рис. 62.3).

В свою очередь, потребляемый двигателем ток будет равен 1,7 А, когда напряжение в сети составит 220 В (что встречается довольно редко) и потребная мощность на валу компрессора составит 375 Вт (рис. 62.4).

Напомним. Что мощность, которую потребляет трехфазный двигатель можно определить по формуле:

Р=U x I х &#8730 3 х cosφ,

где U – напряжение сети, I – потребляемый ток, а cosφ – коэффициент мощности (для небольших двигателей cosφ=0,8).

Таким образом, мощность нашего двигателя составит:

  • напряжение тока 220 В: 220×1,7х 3 х0,8=520 Вт;
  • напряжение 380 В: 380×1х 3 х0,8=520 Вт.

Согласно расчетам можно сделать следующие выводы:

  • потребляемая мощность двигателя не зависит от сети;
  • потребляемая мощность (520 Вт) превышает мощность на валу (375 Вт), значение которой указано на табличке. Указанная цифра отвечает максимальному значению, которое может быть достигнуто на валу данного двигателя.

Следует помнить, что обмотка статора двигателя выполнена из медного провода, который при прохождении через него тока нагревается, аналогично любому электронагревательному прибору. Поэтому часть энергии двигателя тратится не на вращение ротора, а на нежелательный нагрев обмоток (данная энергия представляет собой потери).

Так в рассматриваемом нами примере потребляемая из сети мощность двигателя составляет 520 Вт, а на валу только 375 Вт. Исходя из этого, потери составляют 520-375=145 Вт, которые только нагревают окружающую среду (рис. 62.7).

При этом коэффициент полезного действия (КПД)? двигателя определяется отношением полезной мощности на валу к мощности, потребляемой из сети:

Из этого следует, что 72% потребляемой двигателем энергии расходуется на совершение полезной работы. При этом 28% потребляемой энергии расходуется впустую.

Отметим, что рассматриваемый нами двигатель является распространенной моделью. На его клеммной коробке имеется 6 клемм, условно обозначенные U-V-W и Z-X-Y (рис. 62.8).

Следует быть внимательными, поскольку клеммы нижнего ряда имеют обозначение не соответствующее алфавитному порядку ZXY, а не XYZ. Теперь проверим порядок подключения обмоток к клеммам и получим следующее рис. 62.9. В данном двигателе предусмотрено три обмотки, которые подключены к клеммам следующим образом: U-X; V-Y; W-Z.

Если двигатель находится в исправном состоянии, то сопротивление между его клеммами U-X; V-Y; W-Z при снятых клеммах будет одинаковое (если нет, то случилось короткое замыкание или произошел обрыв).

Читайте также:  Основные неисправности автоматов и причины их возникновения

Онлайн расчет характеристик трехфазных электродвигателей

1. Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2. Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторы кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

3. Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

4. Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Расчет мощности трехфазного тока

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P.

Мощность трехфазного тока равна тройной мощности одной фазы.

При соединении в звезду PY=3·Uф·Iф· cos фи =3·Uф·I· cosфи .

При соединении в треугольник P=3·Uф·Iф· cos фи =3·U·Iф· cosфи .

На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/1,73, а во второе Iф=I/1,73, получим общую формулу P= 1 ,73·U·I· cosфи .

1. Какую мощность P1 берет из сети трехфазный асинхронный двигатель, показанный на рис. 1 и 2, при соединении в звезду и треугольник, если линейное напряжение U=380 В, а линейный ток I=20 А при cosфи =0,7·

Вольтметр и амперметр показывают линейные значения, действующие значения.

Мощность двигателя по общей формуле будет:

P1=1 ,73·U·I· cosфи =1,73 · 380·20·0,7=9203 Вт=9,2 кВт.

Если подсчитать мощность через фазные значения тока и напряжения, то при соединении в звезду фазный ток равен Iф=I=20 А, а фазное напряжение Uф=U/1,73=380/1,73,

P1=3·Uф·Iф · cosфи =3·U/1,73·I· cosфи =31,7380/1,73·20·0,7;

P1=3 · 380/1,73·20·0,7=9225 Вт = 9,2 кВт.

При соединении в треугольник фазное напряжение Uф=U, а фазный ток Iф=I/ 1 ,73=20/ 1 ,73; таким образом,

P1=3·Uф·Iф · cosфи =3·U·I/ 1 ,73· cosфи ;

P1=3 · 380·20/1,73·0,7=9225 Вт = 9,2 кВт.

2. В четырехпроводную сеть трехфазного тока между линейными и нулевым проводами включены лампы, а к трем линейным проводам подключается двигатель Д, как показано на рис. 3.

На каждую фазу включены 100 ламп по 40 Вт каждая и 10 двигателей мощностью по 5 кВт. Какие активную и полную мощности должен отдавать генератор Г при sinфи=0,8 Каковы токи фазный, линейный и в нулевом проводе генератора при линейном напряжении U=380 В·

Общая мощность ламп Pл=3·100·40 Вт =12000 Вт = 12 кВт.

Лампы находятся под фазным напряжением Uф=U/ 1 ,73=380/1,73=220 В.

Общая мощность трехфазных двигателей Pд=10·5 кВт = 50 кВт.

Активная мощность, отдаваемая генератором, PГ и получаемая потребителем P1 равны, если пренебречь потерей мощности в проводах электропередачи:

P1= PГ=Pл+Pд=12+50=62 кВт.

Полная мощность генератора S=PГ/ cosфи =62/0,8=77,5 кВА.

В этом примере все фазы одинаково нагружены, а потому в нулевом проводе в каждое мгновение ток равен нулю.

Фазный ток обмотки статора генератора равен линейному току линии (Iф=I), а его значение можно получить, воспользовавшись формулой для мощности трехфазного тока:

I=P/( 1,73 ·U · cosфи )=62000/(1,73·380·0,8)=117,8 А.

3. На рис. 4 показано, что к фазе B и нулевому проводу подключена плитка мощностью 500 Вт, а к фазе C и нулевому проводу – лампа 60 Вт. К трем фазам ABC подключены двигатель мощностью 2 кВт при cosфи =0,7 и электрическая плита мощностью 3 кВт.

Чему равны общая активная и полная мощности потребителей· Какие токи проходят в отдельных фазах при линейном напряжении сети U=380 В

Активная мощность потребителей P=500+60+2000+3000=5560 Вт=5,56 кВт.

Полная мощность двигателя S=P/ cosфи =2000/0,7=2857 ВА.

Общая полная мощность потребителей будет: Sобщ=500+60+2857+3000=6417 ВА = 6,417 кВА.

Ток электрической плитки Iп=Pп/Uф =Pп/(U· 1 ,73)=500/220=2,27 А.

Ток лампы Iл=Pл/Uл =60/220=0,27 А.

Ток электрической плиты определим по формуле мощности для трехфазного тока при cosфи =1 (активное сопротивление):

P= 1 ,73·U·I· cosфи = 1 ,73·U·I;

I=P/( 1 ,73·U)=3000/( 1 ,73 · 380)=4,56 А.

Ток двигателя IД=P/( 1,73 ·U· cosфи )=2000/( 1,73 ·380·0,7)=4,34 А.

В проводе фазы A течет ток двигателя и электрической плиты:

В фазе B течет ток двигателя, плитки и электрической плиты:

В фазе C течет ток двигателя, лампы и электрической плиты:

Везде даны действующие значения токов.

На рис. 4 показано защитное заземление З электрической установки. Нулевой провод заземляется наглухо у питающей подстанции и потребителя. Все части установок, к которым возможно прикосновение человека, присоединяются к нулевому проводу и тем самым заземляются.

При случайном заземлении одной из фаз, например C, возникает однофазное короткое замыкание и предохранитель или автомат этой фазы отключает ее от источника питания. Если человек, стоящий на земле, коснется неизолированного провода фаз A и B, то он окажется только под фазным напряжением. При незаземленной нейтрали фаза C не была бы отключена и человек оказался бы под линейным напряжением по отношениям к фазам A и B.

4. Какую подводимую к двигателю мощность покажет трехфазный ваттметр, включенный в трехфазную сеть с линейным напряжением U=380 В при линейном токе I=10 А и cosфи =0,7· К. п. д. двигателя =0,8 Чему равна мощность двигателя на валу (рис. 5)·

Ваттметр покажет подводимую к двигателю мощность P1 т. е. мощность полезную P2 плюс потери мощности в двигателе:

P1= 1,73 U·I· cosфи =1,73 · 380·10·0,7=4,6 кВт.

Полезная мощность, за вычетом потерь в обмотках и стали, а также механических в подшипниках

5. Трехфазный генератор отдает ток I=50 А при напряжении U=400 В и cosфи =0,7. Какая механическая мощность в лошадиных силах необходима для вращения генератора при к. п. д. генератора равна 0,8 (рис. 6)·

Активная электрическая мощность генератора, отдаваемая электродвигателю, PГ2=·(3·) U·I· cosфи =1,73·400·50·0,7=24220 Вт =24,22 кВт.

Механическая мощность, подводимая к генератору, PГ1 покрывает активную мощность PГ2 и потери в нем: PГ1=PГ2/Г =24,22/0,8 · 30,3 кВт.

Эта механическая мощность, выраженная в лошадиных силах, равна:

PГ1=30,3·1,36·41,2 л. с.

На рис. 6 показано, что к генератору подводится механическая мощность PГ1. Генератор преобразует ее в электрическую, которая равна

Эта мощность, активная и равна PГ2=1,73·U·I· cosфи , передается по проводам электродвигателю, в котором она преобразуется в механическую мощность. Кроме того, генератор посылает электродвигателю реактивную мощность Q, которая намагничивает двигатель, но в нем не расходуется, а возвращается в генератор.

Читайте также:  Можно ли подключить параллельно два аккумулятора разной емкости?

Она равна Q=1,73·U·I·sinфи и не превращается ни в тепло, ни в механическую мощность. Полная мощность S=P· cosфи , как мы видели раньше, определяет только степень использования материалов, затраченных на изготовление машины. ]

6. Трехфазный генератор работает при напряжении U=5000 В и токе I=200 А при cosфи =0,8. Чему равен его к. п. д., если мощность, отдаваемая двигателем, вращающим генератор, равна 2000 л. с.

Мощность двигателя, поданная на вал генератора (если нет промежуточных передач),

Мощность, развиваемая трехфазным генератором,

PГ2=(3·)U·I· cosфи =1,73·5000·200·0,8=1384000 Вт =1384 кВт.

К. п. д. генератора PГ2/PГ1 =1384/1472=0,94=94%.

7. Какой ток проходит в обмотке трехфазного трансформатора при мощности 100 кВА и напряжении U=22000 В при cosфи =1

Полная мощность трансформатора S=1,73·U·I=1,73·22000·I.

Отсюда ток I=S/(1,73·U)=(100·1000)/(1,73·22000)=2,63 А. ;

8. Какой ток потребляет трехфазный асинхронный двигатель при мощности на валу 40 л. с. при напряжении 380 В, если его cosфи =0,8, а к. п. д.= 0,9

Мощность двигателя на валу, т. е. полезная, P2=40·736=29440 Вт.

Подводимая к двигателю мощность, т. е. мощность, получаемая из сети,

Ток двигателя I=P1/(1,73·U·I· cosфи )=32711/(1,73 · 380·0,8)=62 А.

9. Трехфазный асинхронный двигатель имеет на щитке следующие данные: P=15 л. с.; U=380/220 В; cosфи =0,8 соединение – звезда. Величины, обозначенные на щитке, называются номинальными.

Чему равны активная, полная и реактивная мощности двигателя? Каковы величины токов: полного, активного и реактивного (рис. 7)?

Механическая мощность двигателя (полезная) равна:

Подводимая к двигателю мощность P1 больше полезной на величину потерь в двигателе:

Полная мощность S=P1/ cosфи =13/0,8=16,25 кВА;

Q=S·sinфи=16,25·0,6=9,75 кВАр (см. треугольник мощностей).

Ток в соединительных проводах, т. е. линейный, равен: I=P1/(1,73·U· cosфи )=S/(1,73·U)=16250/(1,731,7380)=24,7 А.

Активный ток Iа=I· cosфи =24,7·0,8=19,76 А.

Реактивный (намагничивающий) ток Iр=I·sinфи=24,7·0,6=14,82 А.

10. Определить ток в обмотке трехфазного электродвигателя, если она соединена в треугольник и полезная мощность двигателя P2=5,8 л. с. при к. п. д. =90%, коэффциенте мощности cosфи =0,8 и линейном напряжении сети 380 В.

Полезная мощность двигателя P2=5,8 л. с., или 4,26 кВт. Поданная к двигателю мощность

P1=4,26/0,9=4,74 кВт. I=P1/(1,73·U· cosфи )=(4,74·1000)/(1,73 · 380·0,8)=9,02 А.

При соединении в треугольник ток в обмотке фазы двигателя будет меньше, чем ток подводящих проводов: Iф=I/1,73=9,02/1,73=5,2 А.

11. Генератор постоянного тока для электролизной установки, рассчитанный на напряжение U=6 В и ток I=3000 А, в соединении с трехфазным асинхронным двигателем образует двигатель-генератор. К. п. д. генератора Г=70%, к. п. д. двигателя Д=90%, а его коэфициент мощности cosфи =0,8. Определить мощность двигателя на валу и подводимую к нему мощность (рис. 8 и 6).

Полезная мощность генератора PГ2=UГ·IГ=61,73000=18000 Вт.

Подводимая к генератору мощность равна мощности на валу P2 приводного асинхронного двигателя, которая равна сумме PГ2 и потерь мощности в генераторе, т. е. PГ1=18000/0,7=25714 Вт.

Активная мощность двигателя, подаваемая к нему из сети переменного тока,

P1 =25714/0,9=28571 Вт = 28,67 кВт.

12. Паровая турбина с к. п. д. ·Т=30% вращает генератор с к. п. д. = 92% и cosфи = 0,9. Какую подводимую мощность (л. с. и ккал/сек) должна иметь турбина, чтобы генератор обеспечивал ток 2000 А при напряжении U=6000 В (Перед началом расчета см. рис. 6 и 9.)

Мощность генератора переменного тока, отдаваемая потребителю,

PГ2=1,73 · U·I· cosфи =1,73·6000·2000·0,9=18684 кВт.

Подводимая к генератору мощность равна мощности P2 на валу турбины:

Подводимая к турбине при помощи пара мощность

или P1=67693·1,36=92062 л. с.

Подводимую мощность к турбине в ккал/сек определим по формуле Q=0,24·P·t;

13. Определить сечение провода длиной 22 м, по которому идет ток к трехфазному двигателю мощностью 5 л. с. напряжением 220 В при соединении обмотки статора в треугольник. cosфи =0,8; ·=0,85. Допустимое падение напряжения в проводах U=5%.

Подводимая к двигателю мощность при полезной мощности P2

По соединительным проводам протекает ток I=P1/(U·1,73· cosфи ) = 4430/(220·1,73·0,8)=14,57 А.

В трехфазной линии токи складываются геометрически, поэтому падение напряжения в проводе следует брать U : 1,73 , а не U : 2, как при однофазном токе. Тогда сопротивление провода:

где U – в вольтах.

Сечение проводов в трехфазной цепи получается меньшим, чем в однофазной.

14. Определить и сравнить сечения проводов для постоянного переменного однофазного и трехфазного токов. К сети подсоединены 210 ламп по 60 Вт каждая на напряжение 220 В, находящиеся на расстоянии 200 м, от источника тока. Допустимое падение напряжения 2%.

а) При постоянном и однофазном переменном токах, т. е. когда имеются два провода, сечения будут одинаковыми, так как при осветительной нагрузке cosфи =1 и передаваемая мощность

а ток I=P/U=12600/220=57,3 А.

Допустимое падение напряжения U=220·2/100=4,4 В.

Сопротивление двух проводов r=U/I·4,4/57,3=0,0768 Ом.

Для передачи мощности необходимо общее сечение проводов 2·S1=2·91,4=182,8 мм2 при длине провода 200 м.

б) При трехфазном токе лампы можно соединить в треугольник, по 70 ламп на сторону.

При cosфи =1 передаваемая по проводам мощность P=1,73·Uл·I.

Допустимое падение напряжения в одном проводе трехфазной сети не U·2 (как в однофазной сети), a U·1,73. Сопротивление одного провода в трехфазной сети будет:

Общее сечение проводов для передачи мощности 12,6 кВт в трехфазной сети при соединении в треугольник меньше, чем в однофазной: 3·S3ф=137,1 мм2.

в) При соединении в звезду необходимо линейное напряжение U=380 В, чтобы фазное напряжение на лампах было 220 В, т. е. чтобы лампы включались между нулевым проводом и каждым линейным.

Ток в проводах будет: I=P/(U:1,73)=12600/(380:1,73)=19,15 А.

Сопротивление провода r=(U:1,73)/I=(4,4:1,73)/19,15=0,1325 Ом;

Общее сечение при соединении в звезду – самое маленькое, что достигается увеличением напряжения тока для передачи данной мощности: 3·S3зв=3·25,15=75,45 мм2.

Расчет мощности электродвигателя

Если вы задались целью создать электрический привод, например, собственную мельницу, насосную станцию, транспортерную ленту или другое полезное в хозяйстве устройство, вам надо найти или купить электродвигатель и убедиться в том, что его мощность соответствует поставленным задачам.

Сегодня мы осветим некоторые аспекты, касающиеся устройства и рабочих качеств электрических машин, что поможет вам сделать правильный выбор.

Как выбрать электродвигатель

Подбор электродвигателя стоит начать со знакомства с типами электрических машин. Основное их отличие состоит в способе взаимодействия магнитных полей статора и ротора. По этому признаку они делятся на два типа:

Синхронные электрические машины

У них магнитное поле статора и ротора создается внешними источниками, они независимы друг от друга, их смена положения их полюсов происходит синхронно.

Двигатели постоянного тока

Исходя из принципа механики Ньютона, утверждающего, что всякое движение относительно, электродвигатель постоянного тока можно назвать синхронной машиной. Хотя магнитные поля статора и ротора в ней неподвижные, а вращение вала происходит за счет эффекта отталкивания одноименных полюсов магнитов и притягивания разноименных.

Синхронизация их положения относительно друг друга происходит особого устройства – коллектора, расположенного на валу ротора. Это кольцо из меди, поделенное на секторы диэлектриком. Концы обмоток ротора подключаются к этим секторам и создают контактные пары.

На них через угольные щетки подается постоянный ток. Во время вращения вала происходит переключение полюсов между парами. Магнитное поле статора может создаваться металлами с остаточным магнетизмом или прохождением тока по обмоткам. Последние применяются в электрических машинах большой мощности.

Их достоинством является большой коэффициент полезного действия, до 98%, а также стабильно высокий вращающий момент и малая зависимость от перегрузок. Двигатели постоянного тока отлично подходят для привода подъемных механизмов, а также в качестве тяговых на электротранспорте.

Ими очень просто управлять: для снижения скорости вращения надо лишь уменьшить величину подаваемого напряжения, а для реверсирования достаточно сменить полярность. Недостатком является сложность устройства и невысокая надежность щеточного узла, его склонность к искрению и шумность. Кроме того, постоянное напряжение сложно передавать на большие расстояния, из-за чего нет магистральных линий такого типа. Питание придется создавать самостоятельно, используя выпрямительные или инверторные схемы. Также про двигатели постоянного тока можно почитать здесь.

Коллекторные двигатели

По своей конструкции они аналогичны двигателям постоянного тока. Однако питаются переменным однофазным током. Статорная обмотка возбуждения у них включена последовательно с обмоткой якоря. Вращение вала происходит за счет синхронной смены полюсов магнитного поля в статорной и роторной обмотках.

К перечисленным выше достоинствам – большому вращающему моменту, нечувствительности к перегрузкам, стоит отнести и то, что это единственная электрическая машина переменного тока, которой можно без проблем управлять.

Для изменения скорости вращения вала достаточно уменьшить питающее напряжение, а для реверсирования поменять местами точки подключения коллекторного узла со статорной обмоткой. Поэтому коллекторные электродвигатели широко применяются в бытовых электроприборах.

Например, в стиральных машинах, дрелях и другом электрифицированном инструменте. К недостаткам, основным из которых является сложность и малая надежность щеточного узла, стоит отнести и невозможность подключения трехфазного напряжения. Просто потому, что в этом случае щеток должно быть шесть. Это ограничивает максимальную мощность двигателей: у однофазных машин при напряжении 220 вольт это значение не бывает более 2,5 киловатта.

Читайте также:  Как проинформировать электромонтажника, что до него прошлую бригаду обманули?

Синхронные электродвигатели переменного тока

У них статорная обмотка питается переменным трехфазным током, а роторная – постоянным. Чтобы их магнитные полюса сцепились и вызвали движение вала, такой электродвигатель надо раскрутить вручную или другим мотором. Фактически они являются генератором переменного тока, работающим в режиме вращения. Достоинством машины являются высокий крутящий момент и стабильность частоты вращения.

Недостатками – сложность пуска и наличие коллектора со щеточным узлом, что снижает их надежность. А также невозможность регулирования частоты вращения. Применяются в установках, которые работают постоянно или с очень длительным рабочим циклом. Например, на перекачивающих станциях или транспортерных лентах.

Узнать больше об электродвигателях можно узнать в нашей статье «Электрический двигатель: виды и характеристики».

Асинхронные электрические машины

В них магнитное поле ротора является порождением вращающегося магнитного поля статора. Поскольку между этими деталями машины есть воздушный зазор, передача энергии между ними происходит с потерями. Поэтому фаза тока в роторе отстает от фазы тока в статоре на небольшой угол (не более 100), который определяет величину коэффициента мощности cosφ. Это отставание и является причиной того, что электрическую машину этого типа называют асинхронной.

Двигатели с короткозамкнутым ротором

Обмотка ротора у них – это набор металлических стержней, которые соединяют два кольца. Получившуюся фигуру называют «беличье колесо». В момент подачи напряжения на статорную обмотку в роторе возникает ток короткого замыкания, энергия которого тратится на раскручивании вала и тем самым гасится. У него несколько меньший КПД, чем у синхронных машин, он не превышает 80%.

После набора оборотов он имеет очень стабильный вращающий момент на валу и хорошо выдерживает перегрузки. Главными достоинствами таких двигателей является его простота и надежность, благодаря которым они очень широко распространены. Недостатками – сложность управления.

Для изменения скорости вращения необходимо менять частоту питающего напряжения или количество статорных обмоток, которое определяет количество полюсов электромагнита – чем их больше, тем она ниже. Также электродвигателям с короткозамкнутым ротором свойственен большой пусковой ток, перегружающий сеть, а также резкий рост вращающего момента при подключении питания, что может вызвать поломку редуктора привода.

Двигатели с фазным ротором

Пуск асинхронных двигателей с короткозамкнутым ротором большой мощности (более 30 кВт) связан с чрезвычайной перегрузкой питающей сети. Для устранения этого явления используют машины с фазным ротором, обмотка которых состоит из трех катушек, соединенных звездой. Их концы соединены угольными щетками с тремя контактными кольцами, расположенными на оси двигателя.

В отличие от коллектора двигателя постоянного тока они не поделены на сектора. При запуске такой машины используется трехфазный реостат, сопротивление которого в момент пуска максимальное. Постепенно уменьшая активное сопротивление ротора, добиваются плавной раскрутки вала электродвигателя. При достижении номинальных оборотов его закорачивают.

Изменяя сопротивление ротора, можно добиться изменения частоты вращения. Достоинством машины такого типа является отсутствие перегрузки в момент запуска и плавное нарастание вращающего момента. Поэтому ее применяют в грузоподъемном оборудовании. Недостаток – сложность устройства и более низкий, чем у машин с короткозамкнутым ротором КПД, он не более 60%.

Как рассчитать мощность электродвигателя

При расчете мощности электродвигателя надо ориентироваться на потребности обеспечиваемого технологического процесса. В Сети так много методичек для определения этого параметра, что вы можете запутаться окончательно. Предлагаем вам довольно простую универсальную формулу, пригодную для любых случаев.

P – мощность электродвигателя. Т – потребный вращающий момент на валу, а Ω – угловая скорость.

Ft– потребное тяговое усилие, оно рассчитывается по формуле: Ft= t ∙ M ∙ 2.5, где t – коэффициент трения (для подшипников качения он равен 0.02), М – масса перемещаемого груза, а 2.5 – это коэффициент Ньютона. R – радиус рабочего органа, например, крыльчатки насоса.

Ω = π ∙ n / 30, где π = 3.14, а n – паспортная частота вращения приводимого в действие устройства.
Полученное значение лучше увеличить в 1,5 раза, чтобы предусмотреть возможные перегрузки во время работы привода.

При расчете рабочего тока электродвигателя необходимо учитывать, что при соединении обмоток статора асинхронного электродвигателя звездой он в 1,73 раза меньше, чем при соединении треугольником. На эту же величину уменьшается и мощность.

Окончательно убедиться в работоспособности созданного привода вы сможете только на практике. Но если вы будете следовать изложенным выше рекомендациям, то вероятность того, что все будет работать как надо без дополнительных переделок, значительно повысится.

Как рассчитать мощность электродвигателя

Как выполнить расчёт потребляемой мощности асинхронного электродвигателя из сети, если по шильдикам можно узнать только номинальную мощность? Для этого необходимо:

  • обратить внимание на остальные показатели – это η и cosφ (КПД и коэффициент мощности);
  • учесть связь динамических характеристик вала и КПД.

По имеющимся данным, можно рассчитать затраченную мощность электроэнергии:

Pз=Р/η.

Но нужно помнить, что потребляемая энергия электрическими приборами включает в себя как активную, так и реактивную компоненту.

Расчёты основных параметров асинхронного электродвигателя

Активная мощность тратится на выполнение полезной работы и создание тепла. Обозначается буквой «P», измеряется в W и вычисляется:

P=I*U*cosφ.

Реактивная мощность создаётся колебаниями энергии электрического поля. Она обуславливает способность деталей реактивной машины сохранять и излучать электромагнитную энергию. Речь идёт о токе, который заряжает конденсатор или создает магнитное поле вокруг витков обмотки катушки. Обозначается буквой «Q», измеряется в Var и рассчитывается:

Q=I*U*sinφ.

Полная мощность «S» представляется математической комбинацией по формуле теоремы Пифагора: S*S = Q*Q + P*P. Она измеряется в V*A и вычисляется:

S = P / cosφ = √(P 2 + Q 2 )=I*U.

Реактивную мощность трехфазного асинхронного двигателя можно представить суммой двух составляющих: индуктивной и емкостной.

Лучшее представление данной величины может быть получено в виде векторной диаграммы, индуктивная составляющая – это положительная координата на оси Y, емкостная – отрицательная. Очевидно, что эти два значения несколько компенсируют друг друга, составляя координату вектора, которая будет либо положительной, либо отрицательной. Чем меньше угол между ними, тем полная мощность становится ближе к активной.

Коэффициент мощности cosφ для трёхфазного асинхронного двигателя равен 0,8–0,9. Если его необходимо увеличить, то довольно часто добавляют конденсаторы в цепи двигателя. Функция этих конденсаторов заключается в том, чтобы обеспечить намагничивающий ток, снижающий амплитуду реактивной составляющей. Чем выше cosφ, тем меньше электромашина потребляет энергии.

Как определить мощность электродвигателя?

Для того чтобы выполнить расчёт понадобятся измерительные инструменты и справочная информация. Итак, существуют варианты определения мощности электродвигателя:

  • по току. Подаём питание на асинхронный электродвигатель. Поочередно делаем замеры тока в каждой обвивке амперметром. В итоге среднее значение тока умножается на напряжение и получается потребляемая мощность электродвигателя;
  • по размерам. Замеряем диаметр и длину сердечника статора. Узнаем частоту оборотов вала. Далее, производим приближённый расчёт «постоянной» по формуле:

3,14•D•n/(120•f).

На основе расчёта находим в справочнике константу. Вычисляем

P = C•D²•l•n•10^(-6);

  • по тяговой силе. Измеряем скорость оборотов вала с помощью тахометра, радиус вала обычной линейкой, тяговое усилие движка динамометром. Для расчёта все найденные значения перемножаем

P =Mw= F•2•3,14•nr.

На основе этих математических выражений можно сделать вывод, что асинхронные двигатели могут иметь одинаковую мощность, но различаться по частоте вращения вала, что существенно влияет на его габариты. Рассмотрим также смысл использования регуляторов мощности.

Какие бывают виды регуляторов?

Существует два вида регуляторов, доступных на сегодняшнем рынке:

  • на переменном резисторе,
  • электронный (шаговый и подвижный).

Все они обладают разными способами управления скоростью вращения и, посему, эффективность (потребление электроэнергии) у каждого вида отличается. С этой точки зрения, классический регулятор – самый дешевый, но неэффективный. Давайте рассмотрим все три типа.

Регулятор на переменном резисторе

На самом деле этот реостат имеет внутри огромную катушку. Выбирая низкие параметры скорости, мы, по сути, выбираем более высокое сопротивление цепи. Это приводит к снижению потребляемого тока (так как напряжение является фиксированной величиной). Аппараты громоздкие по размеру и недорогие по цене.

Электронный регулятор

Электронные – это новейшие типы из доступных регуляторов на рынке. Они намного меньше по размерам, чем другие. Для понижения напряжения в них используются вместо резисторов конденсаторы, которые регулируя скорость вращения, управляют сигналом электропитания. В отличие от реостатов не нагреваются и, значит, экономят электроэнергию, когда мотор работает на малых скоростях.

Регуляторы способны сэкономить до 40% на «1» скорости и около 30% на «2-й» скорости по сравнению со своими резисторными аналогами. Существуют электронные разновидности регуляторов:

  1. подвижные с плавным регулированием.

  1. шаговые с пронумерованной скоростью действия (обычно от 1 до 5).

Эти устройства обеспечивают низкий уровень искажений движения мотора и, следовательно, меньше нагреваются. Вариант с лучшей технологией и экономией электричества.

Заключение

Мощность асинхронного двигателя – основная техническая характеристика этого устройства, которая влияет на сферу применения и выполняемые задачи. Для регулирования соотношения физических величин используются регуляторы. Формулы, выражающие связь физических показателей асинхронных двигателей необязательно помнить все, их можно легко выводить самим из тех, что знакомы по школьной программе физики.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector