Разбился корпус вентильного разрядника

Вентильные разрядники: принцип действия и характеристики

Устройство и принцип действия вентильных разрядников

Основными элементами вентильного разрядника являются искровой промежуток и нелинейный последовательный резистор, которые включаются последовательно между токоведущим проводом и землей параллельно защищаемой изоляции.

При воздействии на разрядник импульса грозового перенапряжения его искровой промежуток пробивается и через разрядник проходит ток. Разрядник таким образом вводится в работу. Напряжение, при котором пробиваются искровые промежутки, называется пробивным напряжением разрядника.

После пробоя искрового промежутка напряжение на разряднике, а значит, и на защищаемой им изоляции снижается до величины, равной произведению импульсного тока I и на сопротивление последовательного резистора Rи. Это напряжение называется остающимся напряжением Uосн. Его величина не остается постоянной, а изменяется вместе с изменением величины импульсного тока I и, проходящего через разрядник. Однако в течение всего времени работы разрядника остающееся напряжение не должно повышаться до величины, опасной для защищаемой изоляции.

Рис. 1. Электрическая схема включения вентильных разрядников. ИП — искровой промежуток, Rн — сопротивление нелинейного последовательного резистора, U — импульс грозового перенапряжения, И — изоляция защищаемого объекта.

После прекращения протекания импульсного тока через разрядник продолжает проходить ток, обусловленный напряжением промышленной частоты. Этот ток называется сопровождающим. Искровые промежутки разрядника должны обеспечить надежное гашение дуги сопровождающего тока при первом прохождении его через нуль.

Рис. 2. Форма импульса напряжения до и после срабатывания вентильного разрядника. t р — время срабатывания разрядника (время разряда), I и — импульсный ток разрядника.

Напряжение гашения вентильных разрядников

Надежность гашения дуги искровым промежутком зависит от величины напряжения промышленной частоты на разряднике в момент гашения сопровождающего тока. Максимальная величина напряжения, при которой искровые промежутки разрядников надежно разрывают сопровождающий ток, называется наибольшим допустимым напряжением или напряжением гашения Uгаш.

Величина напряжения гашения вентильного разрядника задается режимом работы электроустановки, в которой он работает. Так как при грозовых воздействиях могут происходить одновременно замыкание одной фазы на землю и работа вентильных .разрядников на других неповрежденных фазах, то напряжение на этих фазах при этом повышается. Напряжение гашения вентильных разрядников выбирается с учетом подобных повышений напряжения.

Для разрядников, работающих в сетях с изолированной нейтралью, напряжение гашения принимается равным U гаш =1,1 х 1,73 х U ф = 1,1 U н, где U ф — рабочее фазное напряжение.

При этом учитывается возможность повышения напряжения на неповрежденных фазах до линейного при замыкании одной фазы на землю и еще на 10% из-за регулирования напряжения потребителя. Следовательно, наибольшее рабочее напряжение разрядника составляет 110% номинального линейного напряжения Uном.

Для разрядников, работающих в сетях с глухо заземленной нейтралью, напряжение гашения составляет 1,4 U ф, т. е. 0,8 номинального линейного напряжения сети: U гаш = 1,4 U ф = 0,8 U ном. Поэтому такие разрядники иногда называются 80%-ными.

Искровые промежутки вентильных разрядников

Искровые промежутки вентильных разрядников должны удовлетворять следующим требованиям: иметь стабильное пробивное напряжение при минимальных разбросах, иметь пологую вольт-секундную характеристику, не изменять свое пробивное напряжение после многократных срабатываний, гасить дугу сопровождающего тока при первом переходе его через нулевое значение. Этим требованиям удовлетворяют многократные искровые промежутки, которые собираются из единичных искровых промежутков с малыми воздушными зазорами. Единичные искровые промежутки включаются последовательно и на каждый из них при наибольшем допустимом напряжении приходится около 2 кВ.

Деление дуги на короткие дуги в единичных искровых промежутках повышает дугогасящие свойства вентильного разрядника, что объясняется интенсивным охлаждением дуги и большим падением напряжения у каждого электрода (эффект катодного падения напряжения).

Напряжение пробоя искровых промежутков вентильного разрядника при воздействии атмосферных перенапряжений определяются его вольт-секундной характеристикой, т. е. зависимостью времени разряда от амплитуды импульса перенапряжения. Время разряда — это время от начала воздействия импульса перенапряжения до пробоя искрового промежутка разрядника.

Для эффективной защиты изоляции вольт-секундная характеристика ее должна лежать выше вольт-секундной характеристики разрядника. Сдвиг вольт-секундных характеристик необходим для того, чтобы сохранить надежность защиты при случайном ослаблении изоляции в эксплуатации, а также из-за наличия зон разброса разрядных напряжений как у самого разрядника, так и у защищаемой изоляции.

Вольт-секундная характеристика разрядника должна иметь пологую форму. Если она будет крутой, как это показано на рис. 3 пунктиром, то это приведет к тому, что разрядник потеряет универсальность, так как для каждого вида оборудования, обладающего индивидуальной вольт-секундной характеристикой, потребуется свой специальный разрядник.

Рис. 3. Вольт-секундные характеристики вентильных разрядников и защищаемой ими изоляции.

Нелинейный последовательный резистор. К нему предъявляются два противоположных требования: в тот момент, когда через него проходит ток молнии, его сопротивление должно уменьшаться; тогда же когда через него проходит сопровождающий ток промышленной частоты, оно должно, наоборот, увеличиваться. Таким требованиям удовлетворяет карборундовое сопротивление , которое изменяется в зависимости от приложенного к нему напряжения: чем выше приложенное напряжение, тем ниже его сопротивление и, наоборот, чем ниже приложенное напряжение, тем больше его сопротивление.

Кроме того, последовательно включенное карборундовое сопротивление, являясь активным сопротивлением, уменьшает сдвиг по фазе между сопровождающим током и напряжением, а при одновременном переходе их через нулевое значение гашение дуги облегчается.

С повышением напряжения величина сопротивления запорных слоев падает, что обеспечивает прохождение больших токов при относительно небольших падениях напряжения.

HTML clipboard Зависимость напряжения на разряднике от величины проходящего через него тока (вольт-амперная характеристика) приближенно выражается уравнением:

где U — напряжение на сопротивлении нелинейного резистора вентильного разрядника, I — ток, проходящий через нелинейный резистор, С — постоянная, численно равная сопротивлению при токе 1 А, α — коэффициент вентильности.

Чем меньше коэффициент α, тем меньше изменяется напряжение на нелинейном резисторе при изменении проходящего через него тока и тем меньше остающееся напряжение на вентильном разряднике.

Каждый импульс тока оставляет в последовательном резисторе след разрушения — происходит пробой запорного слоя отдельных зерен карборунда. Многократное прохождение импульсов тока приводит к полному пробою резистора и разрушению разрядника. Полный пробой резистора наступает тем скорее, чем больше амплитуда и длина импульса тока. Поэтому пропускная способность вентильного разрядника ограничена. При оценке пропускной способности вентильных разрядников учитывается пропускная способность и последовательных резисторов и искровых промежутков.

Резисторы должны выдерживать без повреждения 20 импульсов тока длительностью 20/40 мкс с амплитудой, зависящей от типа разрядника. Например, для разрядников типов РВП и РВО напряжением 3 — 35 кВ амплитуда тока равна 5000 А, типа РВС напряжением 16 — 220 кВ — 10 000 А и типов РВМ и РВМГ напряжением 3 — 500 кВ — 10000 А.

Для повышения защитных свойств вентильного разрядника нужно снижать остающееся напряжение, чего можно достичь уменьшением коэффициента вентильности α последовательного нелинейного резистора при одновременном повышении дугогасящих свойств искровых промежутков.

Повышение дугогасящих свойств искровых промежутков дает возможность увеличить сопровождающий ток, обрываемый ими, а следовательно, позволяет уменьшить сопротивление последовательного резистора. Техническое усовершенствование вентильных разрядников в настоящее время идет именно этими путями.

Следует отметить, что в схеме вентильного разрядника важное значение имеет заземляющее устройство. При отсутствии заземления разрядник работать не может.

Заземления вентильного разрядника и защищаемого им оборудований объединяются. В тех случаях, когда вентильный разрядник по каким-либо причинам имеет отдельное от защищаемого оборудования заземление, величина его нормируется в зависимости от уровня изоляции оборудования.

После тщательного осмотра разрядники устанавливают на опорные конструкции, выверяют по уровню и отвесу с подкладкой в необходимых случаях под цоколь отрезков из листовой стали и закрепляют на опорах с помощью хомута болтами.

Вентильные разрядники

Разрез разрядника РВС-10 (разрядник вилитовый станционный) показан на рисунке ниже:

Основными элементами данного разрядника являются искровые промежутки 2, вилитовые кольца 6, рабочие резисторы 4. Эти элементы располагаются внутри фарфорового кожуха 1, который имеет специальные фланцы с торцов 3. С помощью данных фланцев осуществляется присоединение и крепление разрядника.

Особое внимание уделено герметизации внутренней плоскости. При увлажнении рабочие резисторы 4 меняют свои характеристики. Влага, оседающая на деталях и стенках внутри вентильного разрядника, ухудшает его изоляцию, что создает возможность перекрытия. Герметизация достигается посредством пластин 5, закрывающих торцы разрядника. Пластины привинчиваются к фланцам, а между пластинами ставятся резиновые прокладки 7.

Принцип работы разрядника заключается в следующем.

В случае появления перенапряжения пробивается искровой промежуток и через рабочие резисторы ток уходит на землю.

Рабочие резисторы ограничивают ток пробоя и создают условия, при которых электрическая дуга может быть погашена одним искровым промежутком (рисунок выше б)).

После пробоя искровых промежутков напряжение на разряднике будет равно:

Если сопротивление Rp разрядника линейное, то с увеличением тока пробоя будет увеличиваться напряжение на разряднике, причем оно может стать выше допустимого для электрооборудования. Чтобы избежать данного эффекта сопротивление берется нелинейным, причем, чем больше ток – тем меньше сопротивление. Зависимость между током и напряжением для данного случая можно выразить формулой:

Читайте также:  Где установить вводный автомат на баню?

Где А – постоянная, характеризующая напряжение на резисторе при токе в 1А; α- показатель нелинейности. При α = 0 будет идеальный случай, когда падение напряжения не зависит от величины протекаемого тока.

Данный тип разрядников получил название вентильные, потому что при импульсных скачках тока их сопротивление падает, что дает возможность пропускать большие токи при относительно небольших падениях напряжения на рабочих резисторах.

В качестве нелинейного материала широкое распространение получил вилит. В области больших токов его степень нелинейности α достигает 0,13 – 0,20. Вольт-амперная характеристика разрядника с вилитовым резистором показана на рисунке ниже:

Зерна карборунда SiC с удельным сопротивлением примерно 10 -2 Ом·м составляют основу вилита. На поверхности карборундовых зерен создается пленка из окиси кремния SiO2 толщиной 10 -7 м. Сопротивление данной пленки зависит от напряжения, приложенного к ней. При небольших напряжениях удельное сопротивление составляет примерно 10 4 – 10 6 Ом·м. Сопротивление пленки резко уменьшается при увеличении приложенного напряжения, что и ограничивает величину падения напряжения. В этом случае сопротивление в основном определяется зернами карборунда.

Рабочие резисторы изготавливают в виде дисков высотой (20 — 60)·10 -3 м и диаметром 0,1 – 0,15 м. Зерна карборунда объединяют в диск с помощью жидкого стекла, которое после обжига крепко схватывает зерна между собой.

Вилит очень гигроскопичен. Цилиндрические поверхности покрываются изолирующей смазкой для защиты от влаги.

Торцевые поверхности металлизируются. Они являются контактами диска.

Обычно в разрядника устанавливается несколько дисков соединенных последовательно (на рисунке выше а) изображено 10 дисков).

Остающееся напряжение при наличии дисков будет увеличено:

Число дисков n должно быть меньше для уменьшения остающегося напряжения.

В дисках выделяется тепло при прохождении электрического тока, из-за чего повышается их температура. В случае превышения допустимой температуры диски потеряют вентильные свойства и разрядники выйдут из строя. Не смотря на большой импульсной ток нагрев резисторов мал, так как длительность его протекания составляет всего несколько десятков микросекунд. Резистор успевает остыть после одиночного импульса. При протекании тока промышленной частоты длительность воздействия возрастает (1 полупериод 10 000 мкс). Именно поэтому при длительном протекании даже небольшого тока происходит разрушение разрядника.

При длительности протекания 40 мкс предельный ток диска диаметром 100 мм равен 10 кА. В случае импульса тока прямоугольной формы длительностью 2000 мкс, допустимый ток падает до 150 А. Такие токи без повреждения диск может пропустить 20 – 30 раз.

После прохождения импульсного тока через разрядник снова начинает протекать ток короткого замыкания промышленной частоты. Сопротивление вилита резко увеличивается по мере приближения тока к нулевому значению, что приводит к искажению формы кривой тока. Это значительно облегчает процесс гашения дуги, так как подводимая в момент близости тока к нулю мощность уменьшится. Активное сопротивление разрядника приближает коэффициент мощности к единице и ограничивает ток, что ведет к уменьшению восстанавливающего напряжения промышленной частоты. Это позволяет гасить электрическую дугу без применения специальных дугогасительных устройств.

Устройство единичного искрового промежутка вентильного разрядника показано на рисунке выше б).

Равномерное электрическое поле обеспечивает форма электродов, что позволяет получить довольно пологую вольт-амперную характеристику. Расстояние между электродами составляет (0,5 – 1) 10 -3 м.

Для облегчения ионизации принимаются надлежащие меры, ввиду ее возникновения из-за затруднения появления заряда в закрытом пространстве при малом времени импульса. Миканитовую прокладку помещают между электродами. Поскольку диэлектрическая проницаемость слюды значительно выше, чем воздуха, то на границе со слюдой, в воздухе, прилегающем к электродам, возникают высокие градиенты, которые и вызывают начальную ионизацию воздуха. К быстрому формированию разряда в центре основного воздушного промежутка приводят образующиеся электроны.

Промежутки соединяют в блоки (рисунок выше б)). Как правило, разрядник имеет несколько таких блоков. Вольт-секундная характеристика последовательно соединенных единичных промежутков позволяет получить пологую защитную характеристику.

После прохода электрического тока через нуль около каждого катода электрическая прочность восстанавливается практически мгновенно. Если электрическая прочность больше восстанавливающегося напряжения – электрическая дуга гаснет. Особенно хорошо данный эффект проявляется при небольших токах (до 100 А), когда термоэлектронной эмиссией с электродов можно пренебречь. Экспериментальным путем было установлено, что единичный промежуток способен отключить сопровождающий ток с амплитудой в 80 – 100 А при действующем значении восстанавливающего напряжения порядка 1 – 1,5 кВ. Количество единичных промежутков выбирается исходя данного напряжения.

Количество дисков рабочего резистора выбирается исходя из значения максимального тока, которое не должно превышать 80 – 100 А. Гашение дуги при этом обеспечивается за один полупериод.

Для обеспечения равномерной нагрузки единичных промежутков при промышленной частоте напряжения, их снабжают специальными нелинейными шунтирующими резисторами (рисунок выше 6). Сопротивление данного резистора берется как можно больше, чтобы сохранить неравномерное распределение при высокой частоте (импульсах). Термическая стойкость дисков рассчитывается на пропускание сопровождающего тока в течении одного – двух полупериодов.

Внутренние перенапряжения могут длиться до 1 с и имеют низкочастотный характер. Из-за небольшой термической стойкости вилит не может использоваться для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений может использоваться тервит, который обладает хорошей термической стойкостью. Тервит имеет коэффициент нелинейности α больше, чем у вилита, что приводит к значительному увеличению остающегося напряжения и делает данный материал непригодным для защиты от атмосферных перенапряжений. Поэтому для защиты от внешних и внутренних перенапряжений разрядник выполняется комбинированным. Защита от внутренних перенапряжений осуществляют тервитовыми дисками, а от внешних – вилитовыми.

Для предотвращения срабатывания вентильных разрядников от внутренних перенапряжений нижний предел напряжения срабатывания должен быть не менее чем в 2,7 раза меньше фазного напряжения промышленной частоты.

Работа вентильного разрядника протекает бесшумно. Для фиксации количества срабатываний между заземлением и нижним выводом разрядника устанавливается регистратор. Электромагнитный регистратор является наиболее надежным. Якорь электромагнитного регистратора при прохождении импульсного тока втягивается и воздействует на храповой механизм счетного устройства.

В другом виде регистратора при прохождении импульсного тока сгорает плавкая вставка, что и приводит к поворачиванию счетного механизма на одно деление.

Чтобы повысить защитные характеристики разрядников необходимо уменьшить остающееся напряжение, то есть число дисков. Но при этом произойдет увеличение сопровождающего тока.

Простые промежутки (рисунок б)) не способны отключать токи в 200 – 250 А. В таких случаях применяют камеры магнитного дутья. Магнитное поле создается постоянным магнитом. Возникающая в искровом промежутке дуга подвергается действию магнитного поля, которое «загоняет» ее в узкую щель, стенки которой выполняются из керамики. По такому принципу работают разрядники на напряжение до 500 кВ. Поднять термическую стойкость позволяет увеличение диаметров дисков до 150 мм. В большинстве случаев магнито-вентильные разрядники используются для ограничения внутренних перенапряжений.

Вентильные разрядники высокого напряжения — Отказы вентильных разрядников и их повреждения

Содержание материала

5. Отказы вентильных разрядников и их повреждения в условиях эксплуатации
Анализ и обобщение многолетнего опыта эксплуатации вентильных разрядников РВП и РВС в энергосистемах Союза ССР [87] показывает, что при принятых схемах защиты от перенапряжений вентильные разрядники обеспечивают высокую надежность защиты от перенапряжений изоляции электрооборудования, находящегося в нормальном состоянии.
Относительно немногочисленные случаи повреждения изоляции под действием перенапряжений (назовем их отказами разрядников), зарегистрированные за период 1946—1961 гг., обусловливались следующими причинами:
а) пониженная электрическая прочность соответствующей поврежденной изоляции (трансформаторы с ослабленной изоляцией, пробой или перекрытие дефектных изоляторов и т. п.) — 55% случаев;
б) недостаток или несовершенство схемы защиты (отсутствие координации пробивных напряжений трубчатых разрядников, установленных на подходах линий к подстанциям, и вентильных разрядников, отсутствие защиты регулировочных обмоток или защиты неиспользуемых третичных обмоток трансформаторов и т. п.) — 21% случаев;
в) неустановленные причины (главным образом из-за отсутствия подробных данных о повреждениях) обусловливают 24% случаев.
Распределение этих повреждений в процентах от общего числа обследованных разрядников соответствующего напряжения составило: 3—10 кВ — 0,02% в год, 20—35 кВ — 0,09% в год, 110 кВ— 0,1% в год, 220 кВ — 0,16% в год. С увеличением номинального напряжения удельное число случаев отказов разрядников возрастает, т. е. эффективность защиты снижается.
Большинство отказов вентильных разрядников наблюдалось при воздействии на изоляцию грозовых перенапряжений, однако были также повреждения изоляции и при внутренних перенапряжениях (феррорезонансные перенапряжения, перемежающиеся дуги на землю и пр.).
Отдельные случаи повреждения изоляции под действием перенапряжений на подстанциях с магнитно-вентильными разрядник ками были отмечены пока только с оборудованием 500 кВ, причем произошли они, по имеющимся данным, не из-за недостаточных защитных свойств разрядников, а по другим причинам: вследствие ослабления изоляции реактора 500 кВ из-за сдвига отдель* ных секций обмотки, заводского дефекта в изоляции масляного выключателя МКП-500, вследствие длительного воздействия на изоляцию повышенного до (1,5—1,6) Uφ напряжения, возникшего при ненормальной коммутации сети, и пр. [85].
В подавляющем большинстве случаев вентильные разрядники; срабатывая под действием перенапряжений, гасят дугу сопровождающего тока и оказываются пригодными для дальнейшей эксплуатации. Однако наряду с этим фиксируются относительно немногочисленные случаи повреждений разрядников при их работе.
Анализ и систематизация данных о работе разрядников РВС и РВП в энергосистемах Союза ССР за 1946—1961 гг. [87] показал, что в среднем в год число разрядников, поврежденных при их срабатывании под действием перенапряжений, составило 0,08% установленных разрядников РВС на 15—220 кВ и 0,14% — установленных разрядников РВП на 3—10 кВ. Следовательно, в среднем ежегодно повреждался при срабатывании под действием перенапряжений один разрядник из 1250 разрядников РВС или из 700 разрядников РВП.

Читайте также:  Предохранитель с плавкой вставкой

Причинами повреждений разрядников РВС были:

  1. Воздействия на разрядники внутренних перенапряжений — 48% случаев. Отмечались разрушения по этой причине каждого третьего поврежденного разрядника РВС-35. Имели место повреждения разрядников РВС на 154—220 кВ при неполнофазных отключениях выключателей, при отключении ненагруженной линии 220 кВ, фиксировались повреждения разрядников при качаниях в системе.
  2. Работа разрядников, предназначенных для сетей с заземленной нейтралью, в режиме изолированной нейтрали при отключениях трансформаторов, имевших заземление нейтрали, и значительном повышении напряжения на разряднике из-за смещения нейтрали сети — 19% случаев.
  3. Прочие причины — 22% случаев. Ими, в частности, вызывались: а) повреждения разрядников РВС-35, которые были установлены для защиты изолированных от земли нейтралей трансформаторов 110 кВ, хотя при замыканиях в сети на землю, а особенно при неполнофазных операциях выключателей, на нейтрали трансформатора могли возникать напряжения, значительно превышающие наибольшее допустимое напряжение разрядника 35 кВ (см. § 5-1); б) повреждения разрядников РВС-220 кВ из-за сильного загрязнения их (подробнее об этих повреждениях см. в § 5-6);
  4. Неустановленные причины — 11 % случаев.

При повреждениях разрядников РВП в ряде случаев одновременно были отмечены замыкания на землю в других точках сети: можно предполагать, что причиной повреждения разрядников также явилось их срабатывание при длительно действующих внутренних перенапряжениях. Возможны также случаи разрушения разрядников РВП проходившими через них токами молнии вследствие превышения пропускной способности разрядников.
Срабатыванию разрядников под действием перенапряжений, возникающих при перемежающихся дугах на землю, может способствовать некоторое снижение пробивного напряжения разрядников после ряда лет их эксплуатации. Оно может вызываться возникновением внутри разрядников в процессе эксплуатации

пониженного давления вследствие образования внутри герметически закрытых разрядников (из-за коронирования внутренних деталей или при пробое искровых промежутков) окислов азота и озона, соединяющихся с имеющимися внутри разрядников влагой и металлами. Подобное снижение давления внутри разрядников на 15—20% обнаруживалось у некоторых разрядников РВП-35, находившихся в эксплуатации в течение нескольких лет [87].
В процессе эксплуатации случаются также механические разрушения разрядников РВС, вызывающие падение разрядников на землю вследствие возникновения трещин в фарфоровых покрышках разрядников. В отдельных случаях механические разрушения являются следствием тото, что монтажный или эксплуатационный персонал нарушает установленные правила эксплуатации разрядников: прислоняет к разрядникам лестницы, не обеспечивает слабины у токоведущей шины для компенсации ее длины при низких температурах и т. п. При этом происходит разрушение всех или большего числа элементов разрядника. Анализ данных о механических повреждениях разрядников РВС в эксплуатации дает основание предполагать, что наряду с внешними нагрузками (тяжение, ветер) существенное влияние на механические повреждения разрядников РВС в эксплуатации оказывают термомеханические усилия, возникающие вследствие различия температурных коэффициентов фарфора, цемента и металла, а также усилия от набухания цемента и при замерзании проникшей в цемент воды.
Разрядники РВС, разрушившиеся вследствие механического повреждения фарфоровых покрышек и падения на землю, составили за период 1946—1961 гг. в среднем в год 0,17% установленных разрядников РВС. Таким образом, общее число повреждений разрядников РВС во время работы, включая как повреждения во время срабатывания, так и механические повреждения, составило в среднем в год 0,25% установленных разрядников РВС.
Отмечено несколько случаев повреждений во время работы магнитно-вентильных разрядников 330—500 кВ. Причинами их были [85]: 1) неправильная сборка разрядника РВМК-330 монтажной организацией; 2) перегрузка разрядника РВМК-500 при неоднократной работе его во время специальных опытов по созданию внутренних перенапряжений (разрядник был выведен из работы до его разрушения); 3) перекрытие сильно загрязненных опорных изоляторов разрядника РВМГ-330 (разрядник после этого вновь был введен в эксплуатацию). Причины повреждений двух разрядников РВМК-500 установить не удалось.
Наиболее характерным недостатком, выявившимся во время эксплуатации у магнитно-вентильных разрядников первых лет выпуска, было, как указано на стр. 215, появление многочисленных трещин на чугунных фланцах элементов разрядников. Причина появления трещин на фланцах — та же, которая вызывала трещины на фарфоровых покрышках разрядников РВС, — механическое воздействие узла армировки.
Опубликованные в зарубежной литературе данные о повреждаемости вентильных разрядников в эксплуатации показывают, что удельное число повреждений разрядников за рубежом находится на таком же уровне, как в нашей стране, или несколько превышает его [110, 115, 132, 148, 163, 194]. Так, в Швеции, Финляндии, ГДР, ФРГ и ПНР поврежденные во время работы разрядники составляют 0,2—1,1% установленных разрядников в год. В США сообщается, что из 50 тыс. установленных разрядников 10 кВ ежегодно выходит из строя около 2% разрядников [106].
Указываются те же причины повреждений разрядников, которые отмечаются в нашей стране: внутренние перенапряжения, в частности, при отключениях длинных линий 220 кВ и их повторных включениях, а также при перемежающихся дугах на землю, загрязнение наружной поверхности разрядников, перегрузки их токами молнии, нарушение герметичности, ошибки при установке разрядников.

Разрядники и ограничители перенапряжений

В электрических цепях достаточно часто возникают перенапряжения. Их причиной могут быть атмосферные грозовые разряды, которые сопровождаются значительной ионизацией воздуха и снижением электрической прочности воздушных промежутков. Импульсные повышения напряжения, кроме того, могут возникать при коммутационных перенапряжениях.

Для снижения их амплитуды на подстанциях используют специальные устройства. Они делятся на два основных класса: разрядники и ограничители перенапряжения.

Разрядники — это электрические аппараты, которые предназначены для уменьшения амплитуды атмосферных, коммутационных или резонансных перенапряжений в электрических установках.

На подстанциях применяют два вида разрядников: вентильные и трубчатые.

В вентильных разрядниках используются вилитовые или терви- товые резисторы, имеющие нелинейную характеристику, и несколько искровых промежутков. Вилит (карбид кремния с нанесенной на него пленкой оксида кремния) обладает способностью изменять свое сопротивление в зависимости от протекающего тока. При его повышении сопротивление вилитовых дисков резко падает и волна перенапряжения уходит через заземление, снижая амплитуду напряжения до значений, достаточных для гашения дуги в пробитых искровых промежутках. Тервит (зерна карбида кремния, связующим элементом которых служит эмульсия глинозема в жидком стекле) обладает повышенной, по сравнению с вилитовой, термической стойкостью и пропускной способностью, а также еще большей нелинейностью сопротивления и может ограничивать как внутренние коммутационные, так и внешние атмосферные перенапряжения большой амплитуды.

Конструктивно вентильные разрядники состоят из фарфорового корпуса с фланцами для крепления, внутри которого находятся вилитовые или тервитовые кольца, несколько искровых промежутков и резисторы (рис. 2.20). При появлении перенапряжения последовательно пробиваются искровые промежутки и через нелинейные резисторы, сопротивление которых резко уменьшилось, импульс тока замыкается на землю. Резисторы при этом ограничивают возникающие сопровождающие токи. Количество срабатываний разрядника фиксируется специальными регистраторами.

Рис. 2.20. Вентильный разрядник РВКУ-3,ЗА-101:

1 — фарфоровая крышка; 2 — искровой промежуток; 3 — блок нелинейных резисторов; 4 — прокладка; 5 — уплотнительное кольцо; 6 — днище; 7 — предохранительный клапан

Как правило, разрядники изготавливают либо для защиты от внутренних, либо от внешних перенапряжений. Однако существуют и комбинированные разрядники, в которых используют тервит. В таких разрядниках при внутренних перенапряжениях работают два нелинейных элемента и один искровой промежуток, а при внешних пробивается и второй искровой промежуток, существенно уменьшая волну перенапряжения.

Одной из разновидностей вентильных разрядников служат магнитовентильные разрядники, в которых искровые промежутки снабжены постоянными магнитами, создающими при прохождении тока магнитное поле, которое заставляет дугу вращаться с достаточно высокой скоростью и сокращает время ее гашения.

Трубчатые разрядники предназначены в первую очередь для ограничения перенапряжений в электрических сетях. На подстанциях они применяются как вспомогательное средство защиты оборудования вместе с вентильными, ограничивая волну перенапряжения уже на подходе к электрическим аппаратам и снижая тем самым нагрузку на вентильных разрядниках, увеличивая надежность защиты изоляции при атмосферных грозовых разрядах.

Конструктивно трубчатые разрядники представляют собой трубку из винипласта, фибры или фибробакелита, внутри которой расположены металлические электроды, образующие внутренний ис-

Рис. 2.21. Трубчатый фибробакелитовый разрядник:

/ — ушко для крепления; 2 — указатель срабатывания; 3 — плоский электрод; 4 — наконечник; 5 — фибробакелитовая трубка; 6 — хомуты крепления; 7 — внутренний стержневой электрод; 8 — заземление

кровой промежуток (рис. 2.21). Внешний искровой промежуток, изолирующий разрядник от постоянного контакта с токоведущей частью, образуют два стальных электрода, один из которых соединен с открытым металлическим наконечником, закрепленном на одном конце трубки.

Принцип работы такого разрядника основан на том, что при набегании волны перенапряжения искровые промежутки пробиваются и между электродами образуется электрическая дуга. Высокая температура дуги приводит к интенсивному разложению материала трубки и выделению газов, образующих в трубке продольное дутье и последующее гашение дуги при переходе переменного тока через ноль. Срабатывание разрядника сопровождается выхлопом ионизированных газов, поэтому их необходимо устанавливать таким образом, чтобы в зоне выхлопа не оказались другие токоведущие части.

Читайте также:  Почему моргают точечные светильники на потолке?

В настоящее время применение разрядников сильно ограничено в связи с появлением электрических устройств нового поколения, к которым относятся ограничители перенапряжения.

Ограничители перенапряжений нелинейные, в отличие от вентильных разрядников не имеют искровых промежутков и обладают рядом существенных преимуществ. К ним относятся повышенное быстродействие (время срабатывания составляет меньше наносекунды), отсутствие сопровождающего тока, неизменность характеристик нелинейных элементов в течение всего срока эксплуатации и, как следствие, снижение затрат на обслуживание, простота конструкции в связи с отсутствием искровых промежутков и низкая себестоимость производства.

Рис. 2.22. Ограничитель перенапряжений ОПН-3,3-01:

1 — контактный вывод; 2 — фарфоровая покрышка; 3 — блок оксидно-цинковых резисторов; 4 — предохранительный клапан; 5 — днище; 6 — чугунное основание

Конструктивно ограничитель перенапряжений представляет собой колонку из последовательно соединенных нелинейных сопротивлений — варисторов, выполненных из оксида цинка, помещенных в прочный фарфоровый или стеклопластиковый корпус (рис. 2.22), воспринимающий механические нагрузки. В первом случае фарфор, кроме того, служит для изоляции, во втором случае на стеклопластик наносится ребристое покрытие из кремнийорганической резины.

Нелинейная вольтамперная характеристика металлооксидных резисторов, используемых в ограничителях перенапряжений, позволяет им длительно находиться в непроводящем состоянии, пропуская через себя лишь малый, преимущественно емкостной ток, величина которого не превышает миллиампера. При возникновении импульса перенапряжения ограничитель переходит в проводящее состояние и способен пропустить через варисторы токи в сотни и тысячи ампер, что существенно снижает напряжение на защищаемом оборудовании. После срабатывания ограничитель перенапряжений возвращается в свое исходное состояние, сохраняя при этом все свои характеристики.

Роговые разрядники применяются для защиты от перенапряжений фидеров контактной сети. Их устанавливают на фидерных опорах на специальных выносных консолях. При электрическом пробое они кратковременно замыкают провода на рельсы или заземляющие устройства. В результате этого ток разряда уходит на

Рис. 2.23. Роговый разрядник

тяговую подстанцию или в землю, после чего изоляция контактной сети восстанавливается.

Конструктивно роговые разрядники представляют собой воздушные промежутки, создаваемые дугогасящими рогами, выполненными из стального прутка диаметром 12 мм (рис. 2.23). Один их рогов соединяется с контактной сетью, другой — с рельсами или с заземляющим устройством. Как правило, разрядники выполняют с двумя искровыми промежутками, расположенными друг за другом, для исключения ложных срабатываний в результате случайного замыкания (например, птицами). При срабатывании разрядника образовавшаяся дуга растягивается по наклонным рогам, охлаждается и в результате гасится.

Из чего состоит разрядник?

Сейчас в наше время разрядники распространены повсеместно. Поэтому вопросы о разрядниках стали актуальными. Но на большинстве сайтов информация очень сложная и непонятная. Эта статья очень проста в понимании. Из неё вы узнаете: что такое разрядник, принцип работы, устройство и виды разрядников.

В современной электронике довольно часто возникают сильные всплески напряжения. Перенапряжения могут сильно повлиять на электрические устройства, работающие при нормальных условиях, даже если они кратковременны. Причиной этого может стать плохая коммутация электрических цепей, слабая изоляция, резонансные помехи. Причины бывают, как и внутренние, так и внешние. Атмосферные разряды гроз могут стать внешней причиной перенапряжения.

Для предохранения от перенапряжения раньше применялись только громоотводы. Сейчас с высоким развитием современной электроники стали применяться такие замечательные устройства, как разрядники.

Содержание статьи:

Что такое разрядник?

Разрядник- это устройство, которое защищает современную электронику от высоких скачков напряжения.

С высоким развитием промышленности удалось сделать разрядники экономичными и эффективными для использования в своих целях. Сейчас в наше время использование надежной изоляции весьма дорого и неэффективно, удобнее всего, конечно же, использовать разрядники.

В узком смысле разрядники являются защитными элементами электрических цепей, без которых часто бы портились электрические приборы, изоляция ЛЭП кабелей или проводов.

Из чего состоит разрядник?

Разрядник состоит из двух основных частей: электродов и дугогасительного устройства.

Устройство разрядника в зависимости от его вида бывает разным.

Разрядник имеет прочный герметичный корпус, который предохраняет его от внешних механических повреждений. Промежуток между электродами называется искровым промежутком. Один из электродов присоединяется к защищаемому элементу электрической цепи, а другой обязательно заземляется. Без заземления разрядник бесполезен.

Важно то, что дугогасительное устройство несёт большее значение в работе разрядника, в ином случае разрядник не сможет предотвратить от фазного пробоя. Фазный пробой повлечет за собой короткое замыкание (КЗ).

На рисунке 2 показано устройство трубчатого разрядника. Он имеет прочный корпус 1, который способен выдержать большую температуру. Фланец 3, к нему присоединяется защищаемый участок электрической цепи, сам фланец является электродом разрядника. Электрод 2 подключается к заземлению. Он бывает двух видов: с регулировкой и без неё. Первый может менять размер искрового промежутка, тем самым изменяет величину пробивного напряжения.

Рис 2. Устройство трубчатого разрядника

Пробивное напряжение – это одна из главных характеристик разрядника, которая показывает напряжение, при котором в разряднике, между его электродами возникает искры, то есть разрядник пробивается. Полярность подключение к электродам 2 и 3 не имеет существенной разницы, если это разрядник переменной сети.

Дугогасительное устройство в данном случае представляет из себя корпус, который выделяет газ. Современные методы производства позволяют создавать разрядники различных характеристик.

Принцип работы разрядника

Принцип работы разрядника довольно прост, как и его устройство. При возникновение перенапряжения на электродах разрядника значительно возрастает напряжение. Если это напряжение станет больше напряжение пробоя, которое прописано в характеристике устройства, то возникнет пробой.

Между электродами проскочит искра. При этом снизится напряжение на его электродах, а в искровом промежутке ионизируется воздух. Разрядник станет пробиваться фазным напряжением и возникнет короткое замыкание.

Чтобы этого не произошло, в разряднике присутствует дугогасительное устройство. В зависимости от вида разрядника имеются различные виды дугогасительных устройств. Все разрядники подразделяются на несколько видов.

Ниже представлены основные виды разрядников.

Виды разрядников:

-Магнитовентильный разрядник (РВМГ);

-Ограничитель перенапряжения нелинейный (ОПН);

-Трубчатые разрядники ( воздушный )

Трубчатый разрядник

Трубчатый разрядник представляет собой трубку из прочного материала. Сам материал – это различные полимеры. Самый распространённый из них – это полихлорвинил. Полихлорвинил способен вынести температуру, пригодную для данного типа разрядников.

В трубку помещены два электрода (рис 1.). Один присоединяется к защищаемому элементу, а другой заземляется. Принцип работы трубчатого разрядника довольно прост.

При напряжении пробоя образуется искра, которая ионизирует воздух. Воздух сильно нагревается, при этом идет массовое выделение газов.

Интенсивная газовая генерация гасит дугу фазного напряжения. Такое дугогасительное устройство называется продольным дутьём. Для выхода газов наружу, в разряднике имеется отверстие.

Газовый разрядник отличается от воздушного только тем, что его корпус наполняют инертным газом (аргоном или неоном). В отличие от воздушного разрядника, в газовом разряднике дугу, образованную фазным напряжением, гасят инертные газы.

В современной электронике трубчатые разрядники распространены повсеместно. Они просты по устройству и надежны. Пробивное напряжение воздушных разрядников невысокое, поэтому такие разрядники не применяются в более высоковольтной аппаратуре.

Более высокое пробивное напряжение у газовых разрядников. Они гораздо эффективнее, так как газы не вступают в реакции, тем самым продлевают жизнь электродам.

Вентильные разрядники

Вентильный разрядник состоит из набора многократно повторяющихся искровых промежутков и нелинейных сопротивлений.

Принцип работы вентильного разрядника немного другой, чем у трубчатых разрядников. Во время работы электроды искрового промежутка снимают перенапряжения, а нелинейные сопротивления(резисторы) гасят дугу фазного напряжения.

Резисторы состоят из набора вилитовых дисков. Вилит – это запеченная смесь карбида кальция с жидким стеклом. По сравнению с трубчатыми и газовыми разрядниками, вентильные разрядники имеют более высокое напряжение пробоя.

Рис 4. Вентильный разрядник

Магнитовентильный разрядник (РВМГ)

В отличие от устройства вентильного разрядника, в устройство магнитовентильного разрядника входит набор кольцевых магнитов.

Принцип работы магнитовентильного разрядника немного другой. При пробое фазным напряжением образуются дуга. Под воздействием магнитного поля магнитов дуга начинает вращаться, тем самым дуга гасится.

Рис 5. Магнитовентильный разрядник (РВМГ)

Ограничители перенапряжения нелинейные (ОПН)

Ограничители перенапряжения нелинейные не имеют электродов. Они состоят из набора нелинейных полупроводниковых сопротивлений – варисторов.

Варистор – это полупроводниковый резистор, который меняет сопротивление в зависимости от приложенного к нему напряжения. При возрастании напряжения, сопротивление варистора падает, поэтому он пропускает через себя электрический ток, тем самым снимая напряжение с защищаемого участка электрической цепи.

Варисторы в процессе работы очень сильно нагреваются, поэтому корпуса нелинейных ограничителей перенапряжения делают теплопроводными. Это позволяет отводить тепло.

Сама конструкция ОПН очень проста, поэтому это упрощает методы производства. Также у ОПН неплохие технические характеристики. Количество варисторов можно варьировать в зависимости от нужного пробивного напряжения нелинейного ограничителя перенапряжения.

Рис 6.Ограничитель перенапряжения нелинейный (ОПН)

В заключение хочу скачать, что помимо высоковольтных разрядников, в современной электронике появились низковольтные разрядники.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector