Схема подключения узип

Содержание

УЗИП для частного дома

Во время грозы довольно часто возникают токовые импульсы, способные полностью вывести из строя приборы, оборудование, электронную аппаратуру, установленные внутри помещений. Для того чтобы защититься от негативных воздействий потребуется УЗИП для частного дома, представляющий собой устройство защиты от импульсных перенапряжений. Эти приборы применяются в низковольтных сетях, напряжением до 1 кВ. Область применения защитных устройств охватывает не только промышленные предприятия, но и частные жилые объекты.

Назначение УЗИП

До недавних пор основными средствами защит от перепадов напряжения считались УЗМ – устройства защитные многофункциональные. Они надежно защищали оборудование при наступлении аварийных ситуаций. Эти приборы массово устанавливаются в квартире, а также владельцами частных домов, и ни у кого не возникает сомнений в их целесообразности. С УЗИП наблюдается совершенно другая ситуация. Многие хозяева просто не понимают, что такое УЗИП и для чего нужен, ведь на объекте уже установлены УЗМ?

УЗИП обеспечивает защиту не от какого-то незначительного повышения напряжения с 220 до 380 вольт, а от мгновенного импульса, достигающего нескольких киловольт. При таких высоких значениях реле напряжения становится просто бесполезным, поскольку оно выйдет из строя вместе с другим оборудованием.

С другой стороны, УЗИП в силу своей специфики, не способно защитить сеть от перепадов в десятки или сотни вольт. Таким образом, не существует альтернативы УЗИП или реле напряжения, каждое из этих устройств используется отдельно, функционально дополняя друг друга и повышая тем самым степень защищенности объекта.

Импульсное высокое перенапряжение возникает даже при ударах молнии на значительном расстоянии от воздушной линии. Удар в ЛЭП на опоре может произойти очень далеко от дома, а импульс с высокой вероятность все равно проникает в домашнюю сеть. Общая протяженность кабелей и проводов в современных домах может достигать нескольких километров. Принимая на себя грозовой импульс, они получают огромное наведенное напряжение, с которым сможет справиться только УЗИП. После его срабатывания сеть оказывается обесточенной, и вся электроника остается в целости и сохранности.

Конструкция

Конструктивные особенности того или иного прибора зависят от степени защиты, которую он обеспечивает. Поэтому в качестве основы могут использоваться варисторы или разрядники. В обычном режиме эти устройства выступают в качестве байпаса, создавая резервный путь для электрического тока на случай аварийной ситуации. С этой целью УЗИП через шунт соединяется с заземлением.

Чаще всего для защиты объектов и электрики используются варисторные устройства. Они оборудуются тепловой защитой, обеспечивающей нормальную работу приборов в течение продолжительного времени. Постоянное воздействие токов с высокими амплитудами приводит к износу варистора и снижению его показателя – максимально допустимого рабочего напряжения. Увеличенные токи утечки, проходящие через корпус, нередко приводят к его перегреву и деформации. Пластик расплавляется и фазные клеммы оказываются коротко замкнутыми с металлической ДИН-рейкой.

Поэтому вместе с варисторами устанавливается тепловая защита или термический размыкатель. Их простейшая конструкция состоит из контакта с пружиной, припаянного к выводу УЗИП, который, в свою очередь, связан с пожарной сигнализацией. В некоторых приборах используются контакты, подключаемые к автономной сигнализации, срабатывающей при неисправностях устройства и передающей сигнал в места получения и обработки информации.

Иногда под воздействием огромных токов тепловая защита может отреагировать с некоторой задержкой, что приводит к образованию дуги и расплавлению корпуса. Поэтому, во избежание подобных ситуаций, последовательно с УЗИП устанавливаются тепловые предохранители с необходимыми характеристиками. Они устойчивы к высоким импульсным перенапряжениям и отличаются очень быстрым срабатыванием. Подобная защита обеспечивает своевременное полное или частичное отключение электрической сети.

Принцип работы

Все защитные устройства УЗИП разделяются на две основные категории:

  • Ограничители перенапряжений сети – ОПС.
  • Ограничители импульсных напряжений – ОИН.

Эти приборы обладают двумя видами защиты:

  • Несимметричная или синфазная защита. При возникновении перенапряжения все импульсы перенаправляются на землю по маршрутам фаза-земля и нейтраль-земля.
  • Симметричная или дифференциальная защита. В случае перенапряжений направление энергии изменяется в сторону другого активного проводника: фаза-фаза или фаза-ноль.

Принцип работы УЗИП заключается в использовании в нем варистора, представляющего собой полупроводниковый резистор с нелинейными характеристиками. В обычном состоянии сети в 220 V он свободно пропускает через себя электрический ток. Когда при ударе молнии в цепи возникает импульс, происходит резкий скачок напряжения. Под его воздействием происходит снижение сопротивление в УЗИП и возникает запланированное короткое замыкание.

В результате, срабатывает автоматический выключатель, и вся цепь оказывается отключенной. Резкий перепад напряжения не затрагивает электрооборудование и через него не будут протекать высокие токи.

В зависимости от конструкции, все УЗИП разделяются на несколько видов, для каждого из которых предусмотрена собственная схема подключения:

  • Коммутирующие. Они отличаются высоким сопротивлением, которое впоследствии под действием сильных импульсов мгновенно снижается до нуля. Основой этих устройств служат разрядники.
  • Ограничивающие приборы – ОПН. Они также отличаются высоким сопротивлением. В отличие от предыдущих устройств, его снижение происходит постепенно. Резкий рост напряжения приводит к такому же резкому росту силы тока, проходящего непосредственно через варистор. За счет этого происходит сглаживание электрических импульсов, а прибор возвращается в исходное положение.
  • Комбинированные устройства соединяют в себе свойства варисторов и разрядников, выполняя функции обоих устройств.

Классификация и характеристики

Как выбрать УЗИП для частного дома? Все защитные устройства классифицируются по своим функциональным возможностям и, соответственно, отличаются собственными техническими характеристиками.

По классам защиты эти приборы условно подразделяются:

  • 1-й класс (В). Защищают от ударов молний в систему электроснабжения, нейтрализуют атмосферные и коммутационные перенапряжения. Устанавливаются в щитках ВРУ на вводе или внутри главного распределительного щита. Обязательны к установке в отдельных зданиях, расположенных на открытой местности, на объектах, оборудованных молниеотводом или находящихся возле высоких деревьев. Величина номинального разрядного тока для таких устройств составляет от 30 до 60 кА.
  • 2-й класс (С). Используются для защиты сетей от остаточных явлений, связанных с атмосферными и коммутационными перенапряжениями, которые смогли преодолеть прибор 1-го класса. Монтируются в местные распределительные щитки, например, на вводе в квартиру. Номинальное значение разрядного тока находится в пределах 20-40 кА.
  • 3-й класс (D). Непосредственно защищают электронную аппаратуру от перенапряжений и помех, прошедших сквозь устройство 2-го класса. Монтируются в распределительных коробках, розетках или в самом оборудовании. Типичным примером является сетевой фильтр, в который подключаются компьютеры. Номинальный разрядный ток для таких приборов – 5-10 кА.

Перечень основных характеристик УЗИП:

  • Величина номинального и максимального сетевого напряжения, на которое рассчитано конкретное защитное устройство.
  • Значение рабочей частоты тока, необходимой для нормального функционирования УЗИП.
  • Подобрать показатель номинального разрядного тока, многократно пропускаемого устройством без потерь работоспособности.
  • Величина максимального разрядного тока, однократно пропускаемого через УЗИП без выхода из строя защитного устройства.
  • Значение напряжения защиты. Означает степень максимального падения напряжения под действием импульса (кВ). Указывает на способность УЗИП путем подбора к ограничению перенапряжения.

Схема подключения

Защитные устройства подключаются по разным схемам в зависимости от сетевого напряжения 220 и 380 V. Такие сети могут использоваться в однофазной сети или трехфазной. Основным приоритетом схемы является ее бесперебойная или безопасная работа. В первом случае допускается временное отключение от молниезащиты во избежание перебоев в электроснабжении. Второй вариант не допускает такого отключения даже на короткое время, возможно лишь полностью отключить подачу электричества.

Чаще всего подключение УЗИП выполняется в однофазных сетях с заземляющей системой TN-S или ТТ. В этом случае к защитному устройству выполняется подключение фазного, а также двух нулевых проводников – рабочего и защитного. Вначале фазный провод и ноль подключаются к своим клеммам, после чего через общий шлейф они выводятся на линию с оборудованием.

Защитный проводник соединяется с заземляющим проводом. Монтаж УЗИП в однофазной сети выполняется сразу же за вводным автоматом. Все контакты прибора имеют свои обозначения, поэтому проблем с подключением обычно не возникает.

Представленная схема подключения используется для трехфазной сети, подключенной к заземляющей системе по варианту TN-S или ТТ. От однофазной она отличается наличием пяти проводников, идущих от источника питания. В их число входят три фазных и два нулевых проводника – рабочий и защитный. Три фазы и ноль подключаются к клеммам, а защитных проводник соединяется с корпусом электроприбора и землей, выполняя функцию своеобразной перемычки.

При использовании системы заземления по схеме TN-C, существует еще одна возможность произвести подключение УЗИП в трехфазной сети. Основным отличием является соединение рабочего и защитного проводников в общий провод PEN. Данная схема подключения считается устаревшей и применяется в домах старой постройки, где отсутствует заземление и заземляющие проводники.

Читайте также:  Схема реверса трехфазного двигателя

В случае возникновения перенапряжения в каждом из трех вариантов высокий ток направляется в сторону земля при помощи монтажа заземляющего или общего защитного провода, не позволяя импульсу причинить вред оборудованию.

Ошибки при монтаже и подключении

Эффективность работы УЗИП во многом зависит от его правильного выбора, установки и подключения. Поэтому, перед тем как подключить УЗИП нужно учитывать следующие факторы:

  • Нельзя устанавливать прибор в щитке с некачественным заземляющим контуром. Первый же удар молнии разрушит не только все оборудование, но и саму щитовую. Высоким токам просто некуда будет уходить.
  • Неправильный выбор УЗИП в частном доме, когда устройство несовместимо с действующей системой заземления. Необходимо внимательно изучить техническую документацию перед покупкой.
  • Установка УЗИП не с тем классом защиты.
  • Не следует ограничиваться одним устройством. В некоторых случаях могут понадобиться 2 или даже 3 прибора, которые нужно правильно выбирать.
  • Класс УЗИП перепутан с местом его установки. Защитная схема подключения серьезно нарушается и становится неэффективной.

В любом случае, перед оборудованием защитной системы с помощью этих устройств, следует проконсультироваться с опытными специалистами.

УЗИП – что это такое, описание и схемы подключения в частном доме

Перенапряжение — это превышение максимального показателя напряжения для той или иной сети. Под импульсным перенапряжением понимается резкий скачок напряжения между фазой и землей, который занимает долю секунды. Такой перепад напряжения опасен не только для линии, но и для подключенных к ней электроприборов. Чтобы не допустить подобной ситуации, используется устройство защиты от импульсных перенапряжений.

Что такое УЗИП и для чего оно нужно?

УЗИП — это устройство защиты от импульсных перенапряжений, которое обеспечивает защиту электроустановок до 1 кВ. Устройство защищает от перенапряжений в электросети, а также от грозовых воздействий посредством отвода импульсов тока на землю.

УЗИП применяют только в низковольтных силовых распределительных системах. Данное устройство подходит как для промышленных предприятий, так и для жилых строений.

УЗИП бывает двух типов:

  • ОПС — ограничитель перенапряжений сети;
  • ОИН — ограничитель импульсных напряжений.

Принцип действия и устройство

Принцип работы УЗИП заключается в применении варисторов — нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

УЗИП имеет два вида защиты:

  • Несимметричный (синфазный) — при перенапряжении устройство направляет импульсы на землю (фаза — земля и нейтраль – земля);
  • Симметричный (дифференциальный) — при перенапряжении энергия направляется на другой активный проводник (фаза — фаза или фаза – нейтраль).

Чтобы лучше понять принцип работы УЗИП приведем небольшой пример.

Нормальное напряжение цепи 220 В, а при возникновении импульса в этой самой цепи напряжение резко поднимается, например, при ударе молнии. При резком скачке напряжения, в УЗИП уменьшается сопротивление, что приводит к короткому замыканию, которое в свою очередь приводит к срабатыванию автоматического выключателя и в последствии к отключению самой цепи. Таким образом обеспечивается защита электрооборудования от резких перепадов напряжения, не допуская протекания через него импульса высокого напряжения.

Разновидности УЗИП

Устройства защиты от импульсных перенапряжений бывают с одним и двумя вводами, и подразделяются на:

  • Коммутирующие;
  • Ограничивающие;
  • Комбинированные.

Коммутирующие защитные аппараты

Характерной особенностью коммутирующих устройств является высокое сопротивление, которое при возникновении сильного импульса в напряжении мгновенно падает до нуля. Принцип работы коммутирующих устройств основывается на разрядниках.

Ограничители сетевого перенапряжения (ОПН)

Для ограничителя сетевых напряжений также характерно высокое сопротивление. Его отличие от коммутирующего аппарата только в том, что снижение сопротивления происходит постепенно. ОПН основывается на работе варистора (резистора), который используется в его конструкции. Сопротивление варистора находится в нелинейной зависимости от воздействующего на него напряжения. При резком увеличении напряжения происходит также резкое увеличение силы тока, который проходит непосредственно через варистор и таким образом сглаживаются электрические импульсы, после чего ограничитель сетевого напряжения возвращается в первоначальное состояние.

Комбинированные УЗИП

УЗИП комбинированного типа объединяют в себе разрядники и варисторы, и могут выполнять как функцию разрядника так и ограничителя.

Классы УЗИП

Существует всего три класса устройств по степени защиты:

  • Устройство I класса (категория перенапряжения IV) — защищает систему от прямых ударов молнии, и устанавливается в главном распределительном щите или в вводно-распределительном устройстве (ВРУ). Обязательно нужно использовать данное устройство, если здание находится на открытой местности и окружено множеством высоких деревьев, что увеличивает риск грозового воздействия.
  • Устройство II класса (категория перенапряжения III) — используется как дополнение к устройству I класса для защиты сети от коммутационного воздействия, т.е. от внутреннего перенапряжения сети. Устанавливается в распределительном щите.
  • Устройство III класса (категория перенапряжения II) — применяется для защиты от остаточных атмосферных и коммутационных перенапряжений, а также для устранения высокочастотных помех прошедших через устройство II класса. Проводится монтаж как в обычные розетки или разветвительные коробки, так и в сами электроприборы, которые необходимо обезопасить.

Классификация по степени разряда тока:

  • Класс В — разрядки воздушные или же газовые с током разряда от 45 до 60 кА. Устанавливаются на вводе в здание в главном щите или в вводно-распределительном устройстве.
  • Класс С — варисторные модули с токами разряда порядка 40 кА. Устанавливаются в дополнительных щитах.
  • Классы С и D применяются в тандеме в случае, если необходим подземный кабельный ввод.

ВАЖНО! Расстояние между УЗИП должно быть не меньше 10 метров по длине проводки.

Как выбрать УЗИП?

Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.

Система заземления бывает трех типов:

  • TN-S с одной фазой;
  • TN-S с тремя фазами;
  • TN-C или TN-C-S с тремя фазами.

Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25. Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

При выборе УЗИП также необходимо учесть следующие факторы:

  • Значимость защищаемого оборудования;
  • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ. Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 — 1, приложение 1.

При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке.

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

СПРАВКА. Рекомендуется использовать предохранители для дополнительной защиты УЗИП, которые ставятся непосредственно на само устройство.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Ошибки при подключении

1. Установка УЗИП в электрощитовую с плохим контуром заземления.

При допущении подобной ошибки можно лишиться не только всех электроприборов, но и самой щитовой при первом попадании молнии, так как от защиты с плохим контуром заземления не будет никакого толку, и соответственно никакой защиты.

2. Неправильно выбранное УЗИП, которое не подходит под используемую систему заземления.

Перед покупкой устройства обязательно узнайте какая система заземления используется в вашем доме, а при покупке тщательно ознакомьтесь с его техдокументацией во избежание ошибок.

3. Использование УЗИП не того класса.

Как уже разбирали выше, есть 3 класса устройств защиты от импульсного перенапряжения. Каждый класс соответствует определенной щитовой, и должен устанавливаться согласно правилам и нормам.

4. Установка УЗИП только одного класса.

Часто бывает недостаточно установки УЗИП одного класса для надежной защиты.

5. Перепутан класс устройства и место его назначения.

Бывает и такое, что приборы класса B ставятся в распределительный щит квартиры, приборы класса С в ВРУ здания, а приборы класса D перед электронной аппаратурой.

Читайте также:  Почему подсветка в выключателе света работает через раз?

Определение и подключения УЗИП

В любой цепи могут случиться скачки напряжения. При большом значении тока возможен выход оборудования из строя. Чтобы предотвратить это, используется УЗИП.

Что это такое

Приборы для защиты от перенапряжений сетей и электрооборудования с напряжением до 1 кВ называются УЗИП. Они предназначены для предотвращения порчи электрооборудования при скачках напряжения, а также в различных непредвиденных ситуациях. Они используются для ограничения переходных перенапряжений и устранения импульсов тока, чтобы снизить величину перенапряжений до уровня, который безопасен для электрических приборов. УЗИП используются на промышленных предприятиях и
в гражданском строительстве.

Основным российским положением, дающим определение УЗИП, является ГОСТ Р 51992-2002 «Оборудование для предотвращения скачков напряжения в низковольтных распределительных сетях».
SPD стремится обеспечить молниезащиту для систем молниеотводов и заземления зданий (сооружений) или воздушных линий электропередачи (LEP) для защиты высокочувствительного оборудования и устройств от скачков напряжения и скачков импульсного напряжения. Широкий ассортимент УЗИП с возможностью быстрого монтажа, который можно установить на DIN-рейку.

Принцип работы

Принцип действия данных приборов может быть основан на возникновении искрового разряда между двумя проводниками при прохождении тока высокого напряжения. Также имеются устройства, которые собраны на основе нелинейных резисторов. Оба варианты защищают оборудование от перенапряжения путем перенаправления тока в цепь заземления.

В зависимости от устройства и принципа действия УЗИП делятся на несколько видов.

Коммутирующие защитные аппараты

Также называются искровыми разрядниками. Принцип работы разрядника основан применении явления искрового промежутка. Конструкция имеет воздушный зазор в перемычке, которая соединяет каждую из линий электропередачи с контуром заземления. Цепь в перемычке разомкнута при номинальном напряжении. Если происходит разряд молнии из-за перенапряжения в линии электропередачи, произойдет пробой воздушного зазора, цепь между фазой и землей будет замкнута, а импульс высокого напряжения будет напрямую заземлен. Конструкция разрядника клапана в цепи с искровым разрядником обеспечивает резистор, на котором подавляются импульсы высокого напряжения. В большинстве случаев разрядники используются в высоковольтных сетях.

Ограничители сетевого перенапряжения (ОПН)

Эти устройства заменили устаревшие, громоздкие разрядники. Чтобы понять принцип работы ограничителя, необходимо рассмотреть характеристики нелинейного резистора, так как принцип работы разрядника основан на его вольтамперной функции. Варисторы используются в качестве нелинейных резисторов в данных устройствах. Основным материалом для изготовления варистора является оксид цинка. В смеси с другими оксидами металлов образуется компонент, образующий p-n-переход с вольтамперными характеристиками. Когда напряжение в сети соответствует номинальному параметру, ток в цепи варистора близок к нулю. Когда в p-n-переходе возникает перенапряжение, ток резко увеличивается, что приводит к падению напряжения до номинального значения. После стандартизации параметров сети варистор возвращается в непроводящий режим, не влияя на работу устройства.

Комбинированные УЗИП

Комбинированные приборы работают по принципу разрядника, но также имеют в конструкции резистор. С помощью данной конструкции напряжение не только заземляется, но и параллельно стабилизируется в основной цепи.

Такие устройства которые можно разделить на несколько категорий:

  • Класс I. Предназначен для предотвращения прямого воздействия молнии. Эти устройства должны быть оснащены входным распределительным оборудованием (АСУ) для административных и промышленных зданий и жилых многоквартирных домов.
  • Класс II. Они обеспечивают защиту распределительной сети от перенапряжений, вызванных процессом переключения, и выполняют функцию вторичной защиты, чтобы предотвратить воздействие ударов молнии. Они установлены и подключены к сети в щитке.
  • Класс III. Они используются для защиты оборудования от импульсов напряжения, вызванных остаточными скачками и асимметричным распределением напряжения между фазовой и нейтральной линиями. Такие устройства также могут работать в режиме фильтра высокочастотных помех. Наиболее удобным для частных домов или квартир является то, что они подключены и установлены непосредственно потребителями. Особенно популярным является изготовление устройства в виде модуля, который можно быстро монтировать на DIN-рейку, или конфигурации с сетевой розеткой или штепсельной вилкой.

Как выбрать

При выборе УЗИП с любым рабочим элементом (варистор, искровой разрядник, пробойный диод) следует учитывать следующие факторы:

  • Параметры сети (номинальный ток, напряжение, параметры передачи), эффекты защиты (пропускная способность и уровень напряжения защиты).
  • Факторы, влияющие на установку (конструкция, условия подключения).

Принцип защиты силовой цепи заключается в установке УЗИП в соответствии с концепцией области, и при выборе типа важно надежно оценить его текущую нагрузку. Система защиты цепи управления и измерения основана на типе защищаемого сигнала и выборе УЗИП. Сначала необходимо определить параметры защищаемой цепи. В соответствии с номинальным выдерживаемым напряжением, сеть низкого напряжения 380/220 В подразделяется на 4 категории (I — IV) с нормированными значениями 1,5; 2,5; 4,0 и 6,0 кВ. Класс УЗИП соответствует уровню защиты: уровень I-≤4 кВ; уровень II-1,3 … 2,5 кВ; уровень III-0,8 … 1,5 кВ. Уровень защиты выбранного УЗИП не должен превышать выдерживаемое напряжение электросети.

Помимо этого, устройство имеет следующие параметры:

  • Номинальное напряжение.
  • Максимальное непрерывное рабочее напряжение (рабочее напряжение сети в течение длительного времени).
  • Амплитуда импульсного тока, который может пройти, по крайней мере, один раз без повреждений цепи и устройства защиты (для класса I).
  • Амплитуда импульса составляет 8/20 мкс, SPD, по крайней мере, один раз неразрушающий (для класса II).
  • Амплитуда импульса тока, протекающего через УЗИП, который устройство защиты от перенапряжений может выдерживать многократно.
  • Верхний уровень напряжения защиты — характеризует УЗИП, ограничивая напряжение на клемме при протекании тока.
  • Допустимый сопутствующий ток (для разрядников).
  • Время срабатывания.

Определение системы заземления

Тип системы заземления, используемой в доме, может быть определен тем, как разделены проводники PEN. Если все готово, проводка похожа на систему TN-C-S. В этом случае для трехфазной цепи пять главных проводов выходят из главного распределительного щита дома, а для однофазной цепи только три провода. PEN-проводники разделяются на PE и N компоненты.

На заметку! Если он не разделен, проводка будет работать в соответствии с системой TN-C, с 4 проводами от трехфазной системы и 2 проводами от однофазной системы, идущими от распределительного щита.

Основываясь на описанных принципах, можно легко определить тип системы заземления. Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной.

Значение защищаемого оборудования

Защищаемые объекты делятся на несколько классов:

  1. Специальные (критические) объекты вредные для окружающей среды, жизни человека и животных. Примеры: химическая и нефтехимическая продукция, биохимические и бактериологические центры, производство взрывчатых веществ, атомные электростанции и др. Надежность защиты от молниевого удара достигает 0,98 (для отдельных предметов в зонах категории A она может быть установлена ​​на более высоком уровне 0,995). Негативные последствия ударов молнии: пожары, взрывы, выбросы токсичных веществ, повышение радиации на больших площадях, экологические катастрофы, повлекшие за собой непоправимые материальные и человеческие жертвы
  2. Виды специальных объектов, которые представляют опасность для окружающей среды. Примеры: нефтепереработка, АЗС, мукомольные заводы, деревообрабатывающие заводы, производство изделий из пластмасс и др.
    Надежность защиты гарантированно будет равна 0,95. Негативное воздействие ударов молнии: пожары, взрывы в районе и вокруг него. Стены и потолки могут рухнуть, получить серьезные травмы и даже смерть сотрудников и посетителей. В этом случае значительные финансовые потери будут зафиксированы.
  3. Объект — специальная критическая инфраструктура. Типы объектов: предприятия связи и ИКТ, трубопроводный транспорт, линии электропередачи, оборудование центрального отопления, транспортная инфраструктура и др. Надежность защиты от удара гарантирована — 0,9. Негативные последствия ударов молнии: нарушение связи, частичная или полная потеря контроля, прерывание воды и отопления, временное снижение качества жизни и потеря материала.
  4. Общие, промышленные и гражданские объекты и связанная с ними инфраструктура. Примеры: жилые дома, промышленные здания (до 60 м высотой), дома и хижины в селах, объекты социально-культурного назначения, учебные заведения, больницы и музеи, храмы, церкви. Гарантия от ударов молнии −0,8. Негативные последствия ударов молнии: сильные пожары, повреждения зданий, нарушение транспорта, нарушение систем связи, возможная потеря исторического и культурного наследия. Значительные материальные и финансовые потери. Может привести к травмам или смерти людей.

На заметку! Из приведенной выше системы классификации видно, что любой тип защищаемого объекта отличается от другого с точки зрения характеристик и цели молниезащиты установки и типа заземляющего устройства, его конструкция определяется назначением и расположением конструкции.

Риск воздействия объекта

Подключение УЗИП различной классности совместно с системой заземления снижает риск поломки оборудования из-за скачка напряжения в сети или удара молнии на 80-99%.

Подключение в частном доме

Подключение в частном доме может производиться в однофазную и трехфазную сеть. При этом могут для УЗИП схема подключения может быть различной.

Однофазная электрическая схема (TN-S)

На рисунке показан прибор серии Easy9 от Schneider Electric. Следующие проводники подключены: фаза, нулевой проводник и нулевой для защиты. Здесь он устанавливается сразу после включения автомата. Все контакты для подключения на любом приборе указаны. Следовательно, легко определить, где «фаза», а где «ноль». Зеленая отметка на корпусе указывает на хорошее состояние, а красная отметка указывает на неисправность.

Предоставленное оборудование относится к классу 2. Одно это устройство не может предотвратить прямые удары молнии. Также рекомендуется защитить оборудование с помощью предохранителя.

Схема трехфазного сетевого подключения (TN-S)

На этой схеме также показаны устройство серии Easy9, производимые Schneider Electric, но использовавшиеся в трехфазных сетях. На рисунке показано 4-полюсное устройство с нулевым рабочим проводником.

Существует также 3-полюсный прибор той же серии. Используется в системах заземления TN-C. Нет контактов для подключения нейтрального провода.

Схема трехфазного сетевого подключения (TN-C)

На рисунке показан переход от TN-C к системе заземления TN-C-S, что требуется по современным стандартам. На первом рисунке показан 4-полюсный входной автоматический выключатель, а на втором — 3-полюсный вход.

УЗИП — устройство необходимое для полноценной защиты электрического оборудования.

Конструкция может быть собрана на основе резисторов или использовать метод искровых промежутков. Подключение производится по различным схемам к одно- и трехфазной сети.

УЗИП — устройство защиты от импульсных перенапряжений

Назначение УЗИП

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Читайте также:  Охранные зоны линий электропередач

Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

Внешний вид УЗИП:

Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

Маркировка УЗИП — характеристики

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.

    Схема подключения УЗИП

    Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):

    Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

    Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

    Принципиальные схемы подключения УЗИП выглядят следующим образом:

    При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Сборка щита учета с УЗИП и УЗО, заземление TN-C-S

    Использование в щите учета частного дома Устройства Защиты от Импульсных Перенапряжений — УЗИП, позволяет значительно обезопасить жилище. Защитить электрооборудование, предотвратить возможное возникновение пожара.

    В отличии от многоквартирного, частный дом значительно чаще страдает от воздействий кратковременных высоких напряжений. Например, при ударе молнии, коротком замыкании или включении в сеть мощных потребителей. Именно для таких случаев и используется УЗИП, оно не пропускает высокое напряжение, переводя его на контур заземления.

    Из-за своего принципа работы или возможного брака оборудования, при сработке УЗИП – при улавливании высокого напряжения, оно разрушится, нередко его просто разрывает.

    При этом, как и при взрыве, выделяется тепло, летят искры. Случись это внутри помещения, например, в распределительном щитке (РЩ), вероятность возникновения пожара очень велика. А если это произойдёт в щите учета, установленном на улице, за пределами жилища, большая вероятность потерять лишь электрощит, избежав серьезных последствий.

    Ранее, мы уже рассмотрели все основные схемы монтажа учетных электрощитов 380В, для выделенной мощности 15кВт, в том числе и с УЗИП. При этом, для разных заземлений, подключения отличаются.

    В этой статье, мы рассмотрим сборку щита учета электрической энергии частного дома с УЗИП и УЗО, при заземлении TN-C-S.

    Вариант для системы ТТ – смотрите ЗДЕСЬ.

    Сейчас же перейдём к самой схеме:

    Щит учета частного дома с УЗИП при системе заземления TN-C-S

    Чаще всего защиту от импульсных перенапряжений разумнее всего подключать сразу после вводного автомата, параллельно остальной нагрузке.

    Мы рассмотрим пошаговую схему сборки такой схемы электрощита, где, для обеспечения максимальной защиты дома, используется и УЗИП и селективное противопожарное Устройство Защитного Отключения.

    1. В первую очередь в электрощит устанавливается всё модульное оборудование.

    Важно при этом не забыть, что всё, что стоит до счетчика электрической энергии, обязательно необходимо защитить от возможности несанкционированного подсоединения и кражи электроэнергии.

    Обычно для этого монтируется пластиковый бокс, который имеет возможность пломбировки.

    Именно в него устанавливается и вводной автоматический выключатель и Устройство защиты от импульсных перенапряжений

    В данной сборке используется:

    1) Стальной электрический щит (степень защиты ip54 или выше)

    2) Бокс/кожух для установки вводного АВ на 3 модуля

    3) Автоматический выключатель трехполюсный 25А

    4) Трехфазный счетчик электрической энергии 380В

    5) распределительный блок на DIN-рейку

    6) Селективное УЗО от 40А, ток утечки 100мА или 300мА

    7) Бокс/кожух для установки вводного АВ на 4 модуля (в зависимости от типа УЗИП)

    8) Устройство Защиты от Импульсных Перенапряжений — УЗИП

    Разводка проводов внутри щита и их подключение

    Вводные проводники – СИП

    В первую очередь подключаются провода с большим сечением, в нашем случае это ввод — СИП 4 х 16мм.кв.

    Для системы TN-C-S они должны подсоединяться в следующем порядке:

    Фазные проводники – с желтой, зеленой и красной полосой, к верхним контактам главного автомата, а провод с синей маркировкой – PEN, к распределительному блоку.

    Соединение контура заземления с УЗИП при TN-C-S

    Следующим шагом подключаем все защитные заземления. Провод идущий от контура дома 1х10мм.кв. заводится в распределительный блок. Затем от него, такой же провод прокладывается до соответствующей клеммы Устройства защиты от перенапряжений, со знаком заземления. А также заземляется корпус щита как показано на изображении ниже:

    Соединение вводного автомата со счётчиком электрической энергии

    Теперь можно соединять вводной автоматический выключатель и электросчётчик. Для этого три фазы, пробрасываются до соответствующих клемм счётчика. Схема и порядок подсоединения для трехфазного счётчика – подробно рассмотрена нами ранее ЗДЕСЬ.

    Ноль прокинут до распределительного блока.

    Подключение УЗИП в щите учета

    От нижних клемм главного автоматического выключателя, где уже есть провода, идущие в счетчик, прокладываются фазные проводники к контактам устройства защиты от импульсных перенапряжений.

    Нулевой проводник к клемме «N», подводится от распределительного блока. Как показано на изображении ниже:

    Далее соединяется противопожарное селективное УЗО, с выводными клеммами электросчётчика.

    При этом задействовано 4 провода — фазы и ноль.

    Важно запомнить, что после УЗО соединять где-то в схеме НОЛЬ и ЗАЗЕМЛЕНИЕ уже нельзя.

    Кабель идущий в Распределительный щиток дома

    Финальный шаг – к нижним контактам Устройства Защитного Отключения, подсоединяются жилы кабеля, идущего в РЩ дома.

    Фазные и нулевая жила, как показано выше, подсоединяются к УЗО снизу, при этом голубой — ноль, к контакту со маркировкой «N».

    А вот заземление – желто-зеленая жила, цепляется к распределительному блоку.

    На этом всё, сборка щита учета частного дома с защитой от импульсных перенапряжений – УЗИП, завершена. Теперь можно вызвать представителей энергосбытовой компании, чтобы они опечатали ВРУ и вы смогли им полноценно пользоваться.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector