Сопротивление петли фаза ноль таблица

Содержание

Расчет токов однофазного кз в сети 0,4 кВ

В данной статье речь пойдет об определении величины тока однофазного тока к.з. в сетях 0,4 кВ с глухозаземленной нейтралью.

Данный вопрос очень актуален, так как электрические сети 0,4 кВ, являются наиболее распространёнными.

В настоящее время существует два метода расчета однофазного КЗ – точный и приближенный и оба метода основаны на методе симметричных составляющих.

1. Точный метод определения тока однофазного КЗ

1.1 Точный метод определения тока однофазного КЗ, представлен в ГОСТ 28249-93 формула 24, и рассчитывается по формуле:

Используя данный метод можно с большой степенью точности определять токи КЗ при известных сопротивлениях прямой, обратной и нулевой последовательности цепи фаза-нуль.

К сожалению, на практике данный метод не всегда возможно использовать, из-за отсутствия справочных данных на сопротивления прямой, обратной и нулевой последовательности для кабелей с алюминиевыми и медными жилами с учетом способов прокладки фазных и нулевых проводников.

2. Приближенный метод определения тока однофазного КЗ

2.1 Приближенный метод определения тока однофазного кз при большой мощности питающей энергосистемы (Хс

где:

  • Uф – фазное напряжение сети, В;
  • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
  • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

2.2 Если же питающая энергосистема имеет ограниченную мощность, то тогда ток однофазного кз определяется по формуле 2-26 [ Л3, с 39]:

2.3 Значение Z определяется по таблице 2.9 или можно определить по формуле 2-25 [ Л3, с 39]:

где:
х и r; х и r; х и r — индуктивное и активное сопротивления трансформатора токам прямой, обратной и нулевой последовательности, мОм. Принимаются по таблице 2.4 [Л3, с 29].

Значение Zт/3 для различных трансформаторов с вторичным напряжением 400/230 В, можно принять по таблицам 2, 3, 4 [Л1, с 6,7].

Сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас.

2.4 Полное сопротивление трансформатора Zт, определяется по формуле 2-24 [Л3, с 39]:

2.5 Полное сопротивление петли фаза-нуль, определяется по формуле 2-27 [Л3, с 40]:

где:

  • Zпт.уд. – полное удельное сопротивление петли фаза-нуль для каждого участка от трансформатора до места КЗ определяется по таблицам 2.10 – 2.14 [Л3, с 41,42] или по таблицам [Л2], мОм/м;
  • l – длина участка, м.

Ниже представлены справочные таблицы со значениями удельного сопротивления петли фаза-нуль для различных кабелей и шинопроводов согласно [Л3, с 41,42].

Справочные таблицы 7, 10 со значениями активных сопротивления медных и алюминиевых проводов, кабелей [Л1, с 6, 14].

Справочные таблицы 11, 12, 13 со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4) — жильных кабелей с различной изоляций и при температуре жилы +65(+80) С [Л1, с 15, 16].

На практике согласно [Л1, с 5] рекомендуется использовать приближенный метод определения тока однофазного КЗ. При таком методе, допустимая погрешность в расчете тока однофазного КЗ при неточных исходных данных в среднем равна – 10% в сторону запаса; 18-20% — при схеме соединения трансформатора Y/Y0, когда преобладает активная нагрузка и для зануления используется 4-я жила либо оболочка кабеля; 10-12% — при использовании стальных труб для зануления электропроводки.

Из выше изложенного, следует, что при использовании данного метода, создаётся не который запас при расчете, который гарантирует срабатывания защитного аппарата, согласно требованиям ПУЭ.

1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
3. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Содержание 1. Общая часть2. Исходные данные3. Токовая отсечка4. Защита от перегрузки5.Защита от повышения.

Выбор мощности трансформатора напряжения сводиться к расчету нагрузки для основной и.

В этой статье, я хотел бы рассказать какие нужно предусматривать защиты для силовых трансформаторов.

В этой статье пойдет речь об коэффициентах, которые используются в расчетных формулах при расчете.

Выполним проверку для трансформатора тока типа ТОЛ-СЭЩ-10-01-0,5S/0,5/10P-5/10/15-200/5У2 на 10%-ную погрешность по.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Территория электротехнической информации WEBSOR

Проверка условий срабатывания защитного аппарата

Проверка условий срабатывания защитного аппарата при однофазном замыкании в сетях напряжением до 1000В с глухим заземлением нейтрали

В электрических сетях напряжением до 1000 в с глухим заземлением нейтрали должно быть обеспечено надежное отключение защитным аппаратом однофазного к. з. Это диктуется требованиями техники безопасности.
Расчетными точками для определения величины тока к. з. являются наиболее удаленные (в электрическом смысле) точки сети, так как именно этим точкам соответствует наименьшее значение тока однофазного к. з.
Величина однофазного тока к. з. может быть определена по приближенной формуле

где U ф — фазное напряжение сети, в;
Z т — полное сопротивление понижающего трансформатора току замыкания на корпус, ом;
Z п — полное сопротивление петли фаза — нуль линии до наиболее удаленной точки сети, ом.
Расчетные значения полных сопротивлений понижающих трансформаторов при однофазных замыканиях приведены в табл. 7-1.
Для трансформаторов мощностью более 630 ква при определении тока к. з. можно принять:
Z т =0
Полное сопротивление петли проводов или жил кабеля линии определяется по формуле

где R п — активное сопротивление фазного ( R ф ) и нулевого (Ro) проводов, ом;
R п =R ф +R о (7-3 )
Х п — индуктивное сопротивление петли проводов или жил кабеля, ом.

Активные сопротивления проводов из цветных металлов определяются по табл. 5-1. Средние значения индуктивных сопротивлений петель проводов или жил кабелей из цветных металлов на 1 км линии даны в табл. 7-2.
Для стальных проводов индуктивное сопротивление петли проводов определяется по формуле

где Х’ п — внешнее индуктивное сопротивление петли из прямого и обратного проводов, равное для воздушной линии напряжением до 1000в 0,6 ом/км; Х» п.п и Х» п.о — внутренние индуктивные сопротивления соответственно прямого и обратного проводов линии, ом/км.
Значения полных сопротивлений петель для проводов и жил кабелей из цветных металлов на 1 км линии даны в табл. 7-3. В табл. 7-6 указаны сопротивления петли «фаза трехжильного кабеля — стальная полоса» для небронированных кабелей.

Таблица 7-1 Расчетные сопротивления трансформаторов при однофазном к. з. на стороне 400/230 в

Номинальная мощность, ква

Напряжение
обмотки ВН. кв

Полное сопротивление Zт, ом

ТМ, ТМА
ТМ
ТМ
ТМ
ТМА
ТСМА
ТСМ
ТМ, ТМА
ТМ, ТМА
ТМ. ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ

1 000
1 000
1 000
1 000

160
180
250
320
400
560
630
750
1 000
1 000

Примечания: Для понижающих трансформаторов с напряжением вторичных обмоток 230/133в значения сопротивлений в 3 раза меньше указанных в табл. 7-1.
Условные обозначения схем соединений трансформаторов:
У — звезда; Ун — звезда с выведенной нулевой точкой; Д — треугольник.

Таблица 7-2 Средние значения индуктивных сопротивлений петли прямого и обратного проводов или жил кабеля, выполненного из цветных металлов ом/км

Кабель до 1 кв или провода, проложенные в трубах
Изолированные провода на роликах
Провода на изоляторах внутри помещений или по наружным стенам здания
Воздушные линии низкого напряжения

Таблица 7-3 Полные сопротивления петли прямого и обратного провода линии или жил кабеля, ом/км

Сечение провода, мм.кв

Кабель и провода в трубах

Провода на роликах и изоляторах

Провода воздушных линий

Таблица 7-6 Полные сопротивления петли «фаза трех жильного кабеля — стальная полоса», ом/км

Сечение кабеля, мм.кв

Ток и материал жил кабеля

Размеры стальной полосы, мм

Ток срабатывания максимального расцепителя автомата, а

Номинальный ток
плавкой вставки безынарционного предохранителя, а

Материал жил кабеля:

Полное сопротивление петли, ом / км

Примечание: Сопротивление петли «фаза кабеля -стальная полоса» не остается постоянным для указанных в таблице значений тока, так как сопротивление стальной полосы зависит от тока. Для промежуточных значений тока величина сопротивления определяется интерполяцией

Надежное отключение защитным аппаратом однофазного к. з. будет обеспечено при условии выполнения соотношения

где К 31 — допустимая кратность минимального тока к. з. по отношению к номинальному току плавкой вставки предохранителя или току срабатывания, или номинальному току максимального расцепителя автомата I 3 ;
I к -наименьшая величина однофазного тока к. з., определяемая по формуле (7-1),а.
Допустимая кратность минимального тока к. з. должна быть не менее 3 по отношению к номинальному току плавкой вставки предохранителя и номинальному току расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику, и не менее 1,1 К р по отношению к току срабатывания автоматического выключателя, имеющего только электромагнитный расцепитель (К р — коэффициент, учитывающий разброс характеристик расцепителя по данным завода).
Для сетей, прокладываемых во взрывоопасных помещениях, допустимые кратности тока к. з. увеличиваются до значения 4 по отношению к номинальному току плавкой вставки предохранителя и 6 по отношению к номинальному току расрасцепителя автоматического выключателя с обратно зависимой от тока характеристикой.
Для сетей, защищаемых только от токов к. з., в необходимых случаях (например, для отстройки от токов самозапуска двигателей) допускается завышение токов плавких вставок предохранителей и уставок расцепителей автоматов, но при этом кратность тока к. з. должна иметь значение не менее 5 по отношению к номинальному току плавкой вставки предохранителя и не менее 1,5 по отношению к току срабатывания электромагнитного расцепителя автомата.
Значения допустимой кратности тока к. з. для различных условий прокладки сети приведены в табл. 7-8.

Таблица 7-8 Значения допустимой минимальной кратности тока к. з. по отношению к току защитного аппарата

Допустимая кратность тока к. з. по отношению

к номинальному току плавкой вставки предохранителя

к току уставки срабатывания автоматического выключателя, имеющего только электромагнитный
расцепитель (отсечку)

к номинальному току расцепителя
автоматического выключателя с обратно зависимой от тока характеристикой

Сеть проложена в невзрывоопасном помещении при условии выполнения требований табл. 4-50
Сеть проложена в не взрывоопасном помещении при условии, что требования табл. 4-50 не выполняются
Сеть проложена во взрывоопасном помещении

Примечания: К р — коэффициент, учитывающий разброс характеристик автоматических выключателей с электромагнитным расцепителем. При отсутствии данных завода о гарантируемой точности уставки тока срабатывания автоматического выключателя с электромагнитным расцепителем (отсечка) допускается принимать значение коэффициента К р для автоматических выключателей на номинальный ток до 100 а равным 1,4, выше 100 а — равным 1,25. При затруднении в выполнении требований, указанных в табл. 7-8, допускается применение быстродействующей защиты от замыкания на землю.

Пример 7-1.

На рис. 7-1 представлена схема четырехпроводной воздушной линии, выполненной алюминиевыми проводами и получающей питание от шин распределительного щита 380/220 в. Нейтраль системы глухо заземлена. Сечения проводов и длины участков линии указаны на рис. 7-1.
Пренебрегая сопротивлением внешней сети до шин щита и сопротивлением трансформатора, проверить действие защитных аппаратов при однофазном к. з. в наиболее удаленных точках линии для следующих вариантов:
1. Линия защищена предохранителями с плавкими вставками на номинальный ток 80 а.
2. Линия защищена автоматическим выключателем типа А 3124 с комбинированными расцепителями на номинальный ток 100 а.
3. Линия защищена автоматическим выключателем типа А 3124 с электромагнитными расцепителями с уставкой тока срабатывания 600 а .

Рис. 7-1. Схема к примеру

С оображения, по которым выбран тот или иной аппарат защиты, здесь не рассматриваются. Пример имеет ограниченную цель — показать типичные случаи проверки защитного отключения при однофазном к. з.

Решение.
Условие срабатывания аппаратов защиты проверяем по формуле (7-5). Определяем сопротивления петли фазного и нулевого проводов линии при однофазном к. з. в такой точке, для которой значение сопротивления будет наибольшим. По табл. 7-.3 находим значения удельных сопротивлений петли «фаза — нуль» для сечений участков линии:

3 X 70+1 X 35 Z n= 1 ,53 ом/км;
3 X 35+1 X 16 Zn= 3 , 0 ом / км ;
3 X 16 +1 X 16 Zn= 4 , 0 3 ом / км ;

Определяем, какая из точек Д или Е является расчетной. Сопротивление петли между точками Г и Д

4,03 X 0,08=0,323 ом;

сопротивление петли между точками Г и Е

Расчетной оказывается точка Е. Полное сопротивление петли «фаза — нуль» между точками А и Е составляет:

Zn= 1,53(0,07+0,08) +0,39 = 0,62 ом.

Номинальное фазное напряжение

Определяем величину однофазного тока при к. з. в наиболее удаленной точке Е сети (по условию примера следует принять Zт= 0):

Проверяем выполнение условия (7-5) для всех трех вариантов защиты линии.
Вариант 1.
Допустимая минимальная кратность тока к. з. по отношению к номинальному току плавкой вставки предохранителя согласно табл. 7-8 равна:

К 31 = 3.
Отсюда: 3х80=240 а Вариант 2.
Допустимая кратность тока к. з. по отношению к тепловому элементу комбинированного расцепителя, имеющему обратно зависящую от тока характеристику, равна:

К 31 = 3.
Отсюда соотношение (7-5)
3х100=300 а Вариант 3.
По данным завода гарантируемая точность уставки для автоматических выключателей типа А 3124 составляет ±15%. Приняв в соответствии с указанием табл. 7-8 коэффициент запаса равным 1,1, получим:

К 31 = 1,1х1,15=1,27;
1,27х600=760 а>355 а.

Надежность действия автоматического выключателя при к. з. в точке Е не обеспечивается.

Пример 7-2.
В системе с глухо заземленной нейтралью при напряжении 380/220 в линия защищается предохранителями с плавкими вставками на номинальный ток 100 а. Полагая Zт = 0, определить наибольшую длину линии, при которой будет обеспечиваться надежное перегорание предохранителей при однофазном к. з. в конце линии для следующих вариантов выполнения линии:
1. Воздушная линия с алюминиевыми проводами сечением 3 X 50+1 X 25 мм.кв.
2. Трехжильный кабель с алюминиевыми жилами сечением 3X50 мм.кв в алюминиевой оболочке, используемой в качестве заземляющего провода.
3. Трехжильный небронированный кабель с алюминиевыми жилами сечением 3 X 50 мм.кв с заземляющей шиной в виде стальной полосы сечением 50 X 4 мм.

Решение.
По табл. 7-8 определяем минимально допустимую кратность тока к. з.:

Наименьшая допустимая величина однофазного тока к. з.

I к = 3х100=300 а.

Учитывая, что по условию примера Zт = 0, находим по формуле (7-1) наибольшее допустимое сопротивление «фаза — нуль» линии:

Определяем удельное сопротивление 1 км петли «фаза — нуль»: для варианта 1 по табл. 7-3
Z п = 2,03 ом/км;
для варианта 2
Z п = 1,03 ом/км;
для варианта 3 по табл. 7-6
Z п = 2,74 ом/км.

Наибольшие допустимые длины линии будут равны:
вариант 1

вариант 2

вариант 3

Наибольшая длина линии обеспечивается применением кабеля с использованием алюминиевой оболочки в качестве заземляющего (нулевого) провода.

Что такое петля фаза-ноль простым языком – методика проведения измерения

Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.

Что подразумевается под термином петля фаза-ноль?

Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль. Электроэнергия, подаваемая потребителям, поступает с выходных обмоток трехфазного трансформатора, который подключен по схеме звезда. В результате естественного перекоса фаз по цепи нейтрали может протекать ток, поэтому для предотвращения проблемы измеряют фазу-ноль.

Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:

  • сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
  • невозможно рассчитать влияние аварийной ситуации на сопротивление.

Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.

Для чего проверяют сопротивление петли фаза-ноль

Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. К примеру, распространенная проблема, когда в розетку включается чайник или другой электроприбор, а автомат отключает нагрузку.

Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.

Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:

  • неплотный контакт на клеммах;
  • несоответствие тока характеристикам провода;
  • уменьшение сопротивления провода из-за устаревания.

Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.

Периодичность проведения измерений

Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:

  1. После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
  2. При требовании со стороны обслуживающих компаний.
  3. По запросу потребителя электроэнергии.

Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.

Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.

Какие приборы используют?

Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:

  • М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
  • MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
  • ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.

Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.

Как измеряется сопротивление петли фаза ноль

Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:

  • Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
  • Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
  • Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.

Сопротивление цепи фаза – ноль

В статье рассмотрены метод расчета сопротивления цепи фаза — ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при проектировании электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

В общем случае сопротивление цепи фаза ноль RLN равно:

где Zт/3 – сопротивление трансформатора, Ом; RΣпер – суммарное переходное сопротивление контактов, Ом; RΣавт –суммарное сопротивление всех автоматических выключателей, Ом; Rn– удельное сопротивление n-го участка цепи Ом/км (по таблице 1); Ln – длина n-го участка цепи, км; Rдуги – сопротивление дуги в месте короткого замыкания, Ом.

Сопротивления кабелей и отдельно фазных и нулевых жил различных сечений при температуре +65 градусов приведены в таблице 1. Данная температура жил соответствует работе кабеля при номинальной нагрузке. В таблице 1 не учтены индуктивные составляющие сопротивлений, которые в кабелях пренебрежимо малы. При этом следует иметь ввиду, что при использовании проводов индуктивное сопротивление сети может иметь соизмеримую величину с активным сопротивлением жил, особенно при увеличении расстояния между проводами.

В таблице 2 приведены сопротивления трансформатора 10 (6) кВ при вторичном напряжении 400/230 В для случая соединения обмоток по схеме «треугольник-звезда». При соединении обмоток трансформатора по схеме «звезда-зигзак» оценить сопротивление трансформатора также можно по этой таблице. При соединении обмоток по схеме «звезда-звезда» сопротивление трансформатора в 3 – 3,5 раза больше, поэтому это соединение используется реже.

В таблице 3 приведены ориентировочные величины сопротивлений автоматических выключателей (по данным каталога по модульным выключателям АВВ).

Переходные сопротивления контактов, как правило, вносят несущественную часть в общее сопротивление цепи фаза – ноль. Но при большом количестве контактов их сопротивление необходимо учитывать. Переходное сопротивление болтовых соединений, как правило, мало и не превышает величины сопротивления 1 метра подключаемого кабеля (при подключении кабелей больших сечений переходное сопротивление контактов соответственно меньше, чем у кабелей меньшего сечения). Переходное сопротивление различных контактных колодок и сжимов, используемых в групповых сетях, для расчетов можно принять равным 0,01 Ом.

Активное сопротивление дуги в месте короткого замыкания в значительной степени зависит от мощности и схемы подключения трансформатора, длины и сечения кабелей, а также в большой степени от длины дуги. Ориентировочные значения сопротивления дуги в зависимости от величины сопротивления цепи фаза – ноль цепи приведены в таблице 4. С большим количеством графиков зависимостей сопротивления дуги от мощности трансформатора, длины и сечения кабелей, можно ознакомиться в ГОСТ 28249-93.

Сечение фазных жил мм 2

Сечение нулевой жилы мм 2

Полное сопротивление цепи фаза – ноль, Ом/км при температуре жил кабеля +65 градусов

Мощность трансформатора, кВ∙А

Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

I ном. авт. выкл, А

При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза – ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

где, Rрасп – измеренное сопротивление цепи фаза – ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; Rпер.гр – сопротивление переходных контактов в групповой линии, Ом; Rавт.гр – суммарное сопротивление автоматических выключателей – вводного группового щита и отходящей групповой линии, Ом; Rnгр – удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Lnгр – длина n-й групповой линии, км.

Рассмотрим процесс вычисления сопротивления цепи фаза – ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

— трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник – звезда» — по таблице 2 находим Zт/3=0,014 Ом;

— питающая сеть – кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой – 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

— распределительная сеть – кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

1,25 Ом/км∙0,05 км=0,0625 Ом;

— групповая сеть – кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

17,46 Ом/км∙0,035 км=0,61 Ом;

— автоматический выключатель отходящий линии – 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

— переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

Суммируем все полученные значения и получаем сопротивление цепи фаза – ноль без учета сопротивления дуги RLN=0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины RLN=0,80 Ом+0,075 Ом=0,875 Ом.

В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 – 1,25 раза.

В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза – ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

Uф/ RLN=220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

Максимальное сопротивление цепи фаза – ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом — 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом – 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза – ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть ток короткого замыкания оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли требования к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия токов короткого замыкания.

Как измерить сопротивление петли фаза-ноль?

Надежность работы электрических сетей TN с классом напряжения до 1 кВ во многом зависит от параметров срабатывания защитного оборудования, отключающего аварийный участок при образовании сверхтоков. Существует несколько методик, позволяющих проверить надежность срабатывания автоматов защиты, сегодня мы подробно рассмотрим одну из них — измерение сопротивления петли «фаза-ноль». Для лучшего понимания процесса начнем с краткого описания терминологии, после чего перейдем к методике электрических испытаний при помощи специального устройства MZC-300.

Что подразумевается под цепью «фаза-ноль»?

В системах с глухозаземленной нейтралью (подробно о них можно прочитать в статье https://www.asutpp.ru/programmy-dlja-cherchenija-jelektricheskih-shem.html) при контакте одной из фаз с рабочим нулем или защитным проводником РЕ, образуется петля фаза-ноль, характерная для однофазного КЗ.

Как и любая электроцепь, она имеет внутреннее сопротивление, расчет которого позволяет определить остальные значащие параметры, в частности, ток КЗ. К сожалению, самостоятельный расчет сопротивления такой цепи связан с определенными трудностями, вызванными необходимостью учета многих составляющих, например:

  • Суммарная величина всех переходных сопротивлений петли, возникающих в АВ, предохранителях, коммутационном оборудовании и т.д.
  • Движение электротока при нештатном режиме. Петля может образоваться как с рабочим нулем, так и заземленными конструкциями здания.

Учесть в расчетах все перечисленные составляющие на практике не реально, именно поэтому возникает необходимость в электрических измерениях. Спецоборудование позволяет получить необходимые параметры автоматически.

Необходимость в измерениях

Замер сопротивления петли проводится в следующих случаях:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
  • Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
  • По заявлению потребителя.

В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:

  • Общее сопротивление цепи, которое включает в себя:

электросопротивление трансформатора на подстанции;

аналогичный параметр линейного проводника и рабочего нуля;

образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.

    Ток КЗ (IКЗ). В принципе, его можно рассчитать, используя формулу: IКЗ = UН /ZП , где UН – номинальный уровень напряжения в электросети, а ZП – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: ZП*IABРасположение основных элементов прибора MZC-300

Обозначения:

  1. Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
  2. Кнопка «Старт». Запускает следующие процессы измерений:
  • ZП, напомним, это общее сопротивление цепи Ф-Н.
  • IКЗ – ожидаемый ток КЗ.
  • Активного сопротивления, необходимо для калибровки прибора.

Старт каждого измерения сопровождается характерным звуковым сигналом.

  1. Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
  • Параметры ZП.
  • Ожидаемый IКЗ.
  • Уровень активного и реактивного сопротивления (R и Х).
  • Фазный угол ϕ.
  1. Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым IКЗ и ZП.
  2. Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
  3. Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
  4. Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
  5. Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».

Подготовительный этап

Практически все методы измерений цепи «фаза-ноль» не позволяют получить точную информацию о таких характеристиках, как ZП и IКЗ. Это связано с тем, что векторная природа напряжения не принимается во внимание. Проще говоря, учитываются упрощенные условия при коротком замыкании. В процессе испытания электроустановок такая приближенность допускается только в тех случаях, когда уровень реактивного сопротивления не имеет существенного влияния.

Перед тем, как приступить к измерению характеристик петли «Ф-Н», предварительно следует провести ряд предварительных испытаний. В частности, проверить непрерывность и уровень сопротивления защитных линий. После этого измерить сопротивление между контуром заземления и основными металлическими элементами конструкции здания.

Методика измерений с использованием MZC-300

Прежде, чем переходить непосредственно к испытаниям, кратко расскажем о принятом порядке, он включает в себя:

  • Соблюдение определенных условий, обеспечивающих необходимую точность.
  • Выбор способа подключения устройства.
  • Получение информации о напряжении сети.
  • Измерение основных характеристик петли «Ф-Н».
  • Считывание полученной информации.

Рассмотрим каждый из перечисленных выше этапов.

Соблюдение определенных условий

Следует принять во внимания некоторые особенности работы измерителя:

  • Устройство не допустит проведение испытаний, если номинальное напряжение сети превысит максимальное значение (250В). Превышение диапазона измерения (250,0 В) приведет к тому, что на экране прибора отобразится предупреждение «OFL» сопровождаемое продолжительным звучанием зуммера. В этом случае прибор следует выключить и отключить от измеряемой петли.
  • При обрыве нулевых или защитных проводников на экране устройства будет высвечиваться ошибка в виде символа «—», сопровождаемая длительным сигналом зуммера.
  • Уровень напряжения в измеряемой петле недостаточное для испытаний, как правило, если ниже 180,0 вольт. В таком случае экран выдаст ошибку с символом «U», сопровождаемую двумя сигналами зуммера.
  • Срабатывание термической блокировки прибора. При этом на экране высвечивается символ «Т», а зуммер выдает два продолжительных сигнала.

Выбор способа подключения устройства

Рассмотрим несколько вариантов электрических схем подключения прибора для проведения испытаний:

  1. Снятие характеристик с петли «Ф-Н», в примере, приведенном на рисунке измеряются параметры в цепи С-N. Испытание петли С-N
  2. Измерение в петле между одной из фаз и проводником РЕ. Испытание петли С-РЕ
  3. Измерения в цепях ТТ.

Подключение прибора в цепях с защитным заземлением

  1. Для проверки надежности заземления электрооборудования применяется способ подключения, приведенный ниже.

Испытание надежности заземления корпусов электрооборудования

Важно! Вне зависимости способа подключения прибора необходимо убедиться в надежности соединения проводов.

Получение информации о напряжении сети

Рассматриваемый нами прибор позволяет измерить UH в пределах диапазона от 0 до 250,0 вольт. Фазное напряжение отображается на дисплее прибора сразу после нажатия кнопки включения или по истечении пяти секунд, после проведения испытаний (если не было произведено нажатие управляющих кнопок, отвечающих за отображение результатов на экране).

Измерение основных характеристик петли «Ф-Н»

Методика измерения ZП в петле, применяемая в модельном ряде MZC основана на создании искусственного КЗ с использованием ограничивающего сопротивления (10,0 Ом), понижающего величину IКЗ. После испытаний микропроцессор прибора производит расчет ZП, выделяя реактивные и активные составляющие. Процедура измерения не превышает 30,0 мс.

Характерно, что прибор автоматически выбирает нужный диапазон для измерения ZП. При нажатии кнопки «Z/I» на дисплей поочередно выводятся такие основные характеристики петли, как ожидаемый ток КЗ (IКЗ) и общее сопротивление (ZП).

Следует учитывать, что при вычислениях микропроцессор устанавливает величину UH на уровне 220,0 вольт, в то время, как текущее номинальное напряжение может отличаться от расчетного. Поэтому для увеличения точности замеров электрической цепи следует вносить поправку. Например, при действительном UH, равном 240,0 В, поправка для снижения погрешности прибора будет равна 1,09 (то есть необходимо 240 разделить 220).

Процесс измерения характеристик петли запускается кнопкой «Старт».

Важно! Испытания, проводимые при помощи приборов модельного ряда MZC, практически гарантированно приводят к срабатыванию УЗО. Чтобы избежать этого, необходимо предварительно зашунтировать устройства защитного отключения. После проведения измерений не забудьте снять шунт с УЗО.

Считывание полученной информации

Как уже упоминалось выше, испытания начинаются после нажатия кнопки «Старт». После завершения измерений, на экране отображаются характеристики петли «Ф-Н», в зависимости от установленных настроек. Перебор отображаемой на дисплее информации осуществляется при помощи кнопок «SEL» и «Z/I».

Следует учитывать, что прибор MZC-300 отображает только результаты последнего измерения. Если необходимо хранение в электронной памяти результатов всех испытаний потребуется устройство с расширенными возможностями, например прибор MZC-303E.

Устройство MZC-303E для измерения характеристик петли «Ф-Н»

Такое устройство позволяет не только хранить информацию обо всех измерениях в электронной памяти, но и при необходимости переносить ее на компьютер, при помощи интерфейса USB.

Меры безопасности при измерении петли «Ф-Н»

Согласно требованиям ПУЭ и норм ПТБ испытания должны проводиться подготовленными сотрудниками электролабораторий. Для проведения данных работ необходимо распоряжение или наряд-допуск, выданный работником, обладающим данным правом.

Испытания могут проводить лица, чей возраст не менее 18 лет, прошедшие соответствующее обучение и проверку знаний ПТБ. Бригада электролаборатории должна быть обеспечена соответствующим инструментом, а также всеми необходимыми средствами индивидуальной защиты.

Бригада должна включать в себя, как минимум, двух работников с третьей группой электробезопасности.

Испытания запрещается проводить в помещениях повышенной опасности, а также, если имеет место высокая влажность.

По завершению процесса испытаний результаты вносятся в специальные протоколы испытаний (проверки).

Читайте также:  2 черных провода у одного белая полоса, какой плюс?
Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector