Устройство светильника с люминесцентными лампами

Содержание

Подробно о люминесцентных светильниках

Наиболее экономичными источниками света на сегодняшний день принято считать люминесцентные светильники. Соотношение их основных характеристик (излучаемого потока света и потребления электроэнергии) во много раз выгоднее, чем у ламп накаливания. Это же можно сказать и о сроке службы таких источников света.

Что такое люминесцентные светильники, их устройство и принцип работы

Люминесцентный светильник — наиболее распространенный тип освещения, который встречается в помещениях административного назначения (детские сады, школы, офисы), а также в домашнем быту и промышленных зонах. Его монтаж и последующие растраты на электроэнергию обойдутся недорого. Особенности конструкции позволяют использовать их и для внешнего, и для внутреннего освещения.

Источник света в таких устройствах — люминесцентная лампа. Принцип ее работы заключается в способности паров металла и некоторых газов излучать свет при воздействии на них электрическим полем. Лампы по виду похожи на стеклянные трубки.

Устройство люминесцентного светильника можно представить так: внутри него есть покрытие — люминофор, в трубке присутствует инертный газ с парами ртути. С каждого края ламповой конструкции находятся вольфрамовые спирали со слоем бария оксида, выполняющие функции катодов. Они соединены с двумя штырьками, которые и связывают лампу с наружным источником питания. Это типичная схема таких осветительных приборов.

Есть еще и люминесцентные ламповые конструкции, которые предназначены для светильников небольших размеров. Они имеют внешний вид несколько иной, при этом труба может быть изогнута в спираль, кольцо или другую форму.

Вышеперечисленные конструкции имеют свои положительные и отрицательные стороны. К плюсам таких осветительных приборов относятся:

  • способность повышенной светоотдачи: прибор в 20 Вт равен по мощности лампе накаливания в 100 Вт;
  • КПД выше, чем у осветительных приборов с лампами накаливания;
  • большой выбор оттенков излучаемого света;
  • более длительный срок эксплуатации по сравнению с лампами накаливания;
  • излучаемый свет не точечный, а рассеянный.

Если же говорить о недостатках таких осветительных приборов, то к ним можно причислить:

  • требуется специальная утилизация из-за содержания паров ртути;
  • излучение от таких светильников имеет неравномерный спектр, что является неприятным для глаз;
  • некоторые светильники в процессе своей работы могут издавать неприятные шумы.

Светильник с люминесцентными лампами нецелесообразно применять в конструкции с автоматическим включением (при установке датчиков движения), так как слишком частое срабатывание осветительных приборов приводит к быстрому выходу их из строя, сокращая срок эксплуатации.

Разновидности люминесцентных светильников

Трудно вычислить, что лежит в основе активного развития электротехнических устройств — ажиотажный потребительский спрос или инженерные разработки. Но неоспоримым считается тот факт, что сегодня на рынке можно найти варианты осветительных приборов разнообразных конструкций. Так, появились устройства, которые внешне схожи с люминесцентными, но лампочка заменена на светодиодные элементы.

Но, несмотря на все новшества, этот тип светильников занимает не последнее место и по спросу, и по количеству разновидностей устройств.

Условно их можно разделить на две большие группы: потолочные и мебельные. Каждая из них имеет достаточно большое количество подвидов.

Потолочные осветительные люминесцентные приборы

Потолочные люминесцентные осветительные приборы — наиболее часто встречаемые светильники. Основная функция которых — организация общего освещения.

В зависимости от места расположения их условно разделяют на такие подгруппы:

  • потолочные офисные;
  • потолочные промышленные.

Существует множество видов светильников люминесцентных потолочных , их можно разделить на такие типы:

  • четырехламповый (4х18, 4х36);
  • двухламповый (2х23, 2х58).

Светильники для промышленных зон

Для этих целей применяют такие же по типу лампы, но их отличительная черта — отсутствие декоративных излишеств при использовании таких осветительных приборов для промышленных зон. Они характеризуются строгой формой, но при этом дают хороший световой поток. Промышленные люминесцентные устройства дают хороший источник света для больших складских, торговых и производственных помещений. К тому же к таким светильникам выдвигают и более высокие требования по сравнению с бытовыми или офисными конструкциями.

Так, люминесцентные промышленные источники света должны быть более безопасными (светильник взрывозащищенный), сравнительно низкой стоимости, легки в установке, обеспечивать длительный срок эксплуатации при не всегда благоприятных обстоятельствах. Если условия труда предполагают соблюдение повышенной безопасности, то идеальный вариант — взрывозащищенные светильники с люминесцентными лампами. Для удобства работы при таком освещении выбирают приборы, которые не дают бликов. Промышленный светильник должен излучать ровный свет.

Светильники для офисов и бытовые

Офисные и бытовые варианты светильников могут быть классифицированы в зависимости от количества ламп в них. Так, встречаются потолочные двухламповые (ЛПО 2х36 и 2х58) или четырехламповые световые приборы. Их выбор зависит от площади территории, которую необходимо осветить. В зависимости от варианта установки они подразделяются на встраиваемые и накладные подвиды.

Встраиваемые осветительные приборы

Встраиваемые модели служат для освещения помещений офисного или бытового назначения. Конструкция таких приборов позволяет произвести монтаж в подвесных, реечных и натяжных потолочных конструкциях. Встраиваемые осветительные приборы укладываются в каркасы при монтаже потолков.

Наиболее популярными и хорошо зарекомендовавшими себя из всех видов таких встроенных конструкций являются люминесцентные светильники для потолков Армстронг. Они производятся десятками производителей и различаются своими параметрами. Подбор таких осветительных приборов производят посредством подбора параметров, исходя из размеров секции. Так, если потолочный блок Армстронг 600х600, то и светильник люминесцентный подбирают с такими же размерами. В результате потолочный фон получается ровным.

Часто используют модели люминисцентные 2х36 (на 2 лампочки) как один из дешевых видов освещения помещений, где требуется защита осветительного прибора. Светильник люминесцентный встраиваемый 2х36 встречается в спортивных залах, школах, детских садах.

Накладные осветительные приборы

Накладные светильники люминесцентные (4х18) монтируются на твердую поверхность. Это может быть как стена помещения, так и потолок (оштукатуренная железобетонная плита или гипсокартон). Такой накладной конструкцией не пользуются на натяжных потолках. Их выбор достаточно широк. Большой популярностью также пользуются источники света люминесцентные 2х36. Установка происходит при помощи саморезов или дюбелей. Идеальным местом для светильников, которые имеют накладной тип монтажа, считается современный кухонный интерьер, школьные учреждения и офисные помещения.

Одним из видов накладной осветительной конструкции является упомянутая выше модель 4х18 ЛПО-71. Состоит она из цельной стальной основы. Корпус светильника покрыт порошковой краской белого оттенка или цвета металлик. На этой основе установлены 4 люминесцентные лампочки по 18 Вт, поэтому имеет тип 4х18 .

Модель 4х18 имеет также накладной решетчатый материал, который прикрепляется к корпусу с помощью скрытых пружин.

Особенности взрывозащищенных люминесцентных осветительных приборов

Взрывозащищенный люминесцентный осветительный прибор используется в помещениях с повышенной опасностью. Корпус таких приборов сделан из сверхпрочного сплава алюминия, который противостоит коррозии, перепадам температур, попаданию влаги. К тому же все детали во взрывозащищенных светильниках с люминесцентными лампами имеют плотное соединение с герметиком, что обеспечивает изоляцию контактов от пыли и других возможных загрязнений.

Монтаж люминесцентных осветительных приборов

Монтаж люминесцентных светильников производится в зависимости от их конструкции. Приспособления для установки светильников прикрепляются к потолочным конструкциям, на стены (настенный вариант), колонны при помощи дюбелей и закладных частей. В этот же время при монтировании крепежных деталей устанавливают и потолочную розетку, которая служит для соединения проводов осветительного прибора с сетью электропитания и закрывает собой щель их выхода.

Схема подключения лампы также имеет значение. Изначально были только модели с дросселями и стартерами. Они представляют собой два устройства, имеющие отдельные гнезда. Конденсаторы выполняют разную функцию. Первый, включенный параллельно, служит для стабилизации напряжения. Второй, расположенный в стартере, выполняет функцию увеличения времени стартового импульса. Эта схема подключения называется еще электромагнитным балластом.

На каждом люминесцентном осветительном приборе с обратной стороны нарисована схема. Она несет в себе полную информацию о том, сколько ламп подключается, их мощность и количество, технические характеристики устройства.

Заметим, что осветительный прибор, который использовался для люминесцентных ламп, может быть с легкостью переоборудован под светодиодный. Но перед заменой следует изъять из схемы пускорегулирующий аппарат. Напряжение должно идти на светодиодные выводы напрямую. В этом и вся разница.

Перед тем как подключить осветительный люминесцентный прибор, убедитесь, что концы электросети изолированы.

Наилучшим способом размещения люминесцентных светильников считается их подвеска на магистральные осветительные коробки (КЛ-1 или КЛ-2). В комплекте с коробками поставляются и все необходимые детали для выполнения качественного монтажа к балкам, перекрытию, стенам и т. д.

Возможные поломки

Рассмотрим основные возможные неисправности люминесцентных светильников и пути их устранения:

  1. Срабатывает защита. Причиной этому может быть замыкание в электросети за автоматом или же неисправность в работе конденсатора на входе. Такое часто бывает при попытке замены лампочки на светодиодные элементы. Помочь решить проблему можно путем замены конденсатора. В обязательном порядке нужно проверить контакты стартера и патронов. Осуществляется замена люминесцентных ламп.
  2. Не зажигается. Это указывает, что в патроне нет совсем либо очень слабое напряжение. Следует проверить показатель с помощью индикатора или тестера. Если светильник не зажигается, а на концах трубки есть свечение, то это свидетельствует о неисправности стартера, который нужно заменить. Если же свечения нет, причинами могут быть поломки дросселя, того же стартера, испорченность самой лампочки. Если свечение замечено только в одном конце, то это явный признак ошибки, проверки требует схема подключения.
  3. Постоянное мигание. Такой вид неполадки свидетельствует о поломке стартера или сниженном напряжении в сети электросистемы.
  4. Постоянное самопроизвольное зажигание и погасание лампы говорит о необходимости ее замены.
Читайте также:  Как подключить светильник

Как проверить люминесцентный светильник

Исправность люминесцентных осветительных приборов проверяют по целостности и работе основных элементов, которые обеспечивают подачу тока:

  • дроссель (при нормальной работе не должен издавать посторонних звуков);
  • стартер (его работу проверяют последовательным подключением к лампе накаливания и розетке);
  • емкость конденсатора.

Все диагностические мероприятия проводятся в пассивном состоянии светильника, то есть при полном отключении от источника питания. Использовать для проверки рекомендовано мультиметр или омметр. Выньте стартер из патрона, соедините контакты. Подсоедините два щупа прибора к выводным отсоединенным проводам светильника. Прибор покажет значение общего сопротивления светильника.

Видео

Устройство люминесцентной лампы и принцип работы

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Что такое и какие бывают люминесцентные лампы дневного света

Что такое люминесцентные лампы

Вся планета давно уже обеспокоена вопросом экономии электроэнергии. Обычные лампы накаливания уже можно признать морально устаревшими. Низкий КПД, а об энергосбережении вопрос можно и не поднимать. При их работе экономии электроэнергии просто не существует. Поэтому одним из вариантом будут газоразрядные излучатели. Они созданы в России под руководством С.И. Вавилова в 1936 году.

Лампы люминесцентные (газоразрядные) — это колба с парой электродов. Им можно придать любую форму. При подаче напряжения между электродами начинается эмиссия электронов (тлеющий разряд), создающая излучение света. Свет этот мы не можем видеть. Спектр в ультрафиолетовом диапазоне. Чтобы мы могли получить видимый свет (длина волны должна быть в пределах видимого нами спектра) внутреннюю поверхность колбы покрывается веществом, которое может излучать видимый свет – люминофором. При разряде люминофор начинает светиться. Герметичная колба заполнена инертным газом и парами ртути. Ее наличие необходимо для тлеющего разряда. Жидкий металл его усиливает. Инертный газ безвреден для человека, так как он не вступает ни в какие химические реакции. Но, ртуть – метал опасный для человека. Поэтому возникают проблемы утилизации и вопросы о том, как избежать ртутного заражения.

Принцип работы и устойство ламп

Показатели спектральной цветопередачи существенно выше, чем у раскаленной вольфрамовой нити. Их свет дает натуральные оттенки, для глаз такое освещение более полезно, а глаза устают меньше.

Условно выделено три типа газоразрядных источников света – низкого (не более 0,01 МПа), высокого (0,1 МПа до 1 МПа) и сверхвысокого давления (более 1МПа). Они имеют значительные различия в конструкции.

При подаче напряжения электроды (катоды) разогреваются, между ними возникает тлеющий разряд, который вызывает свечение люминофорного покрытия.

Для создание ультрафиолетового излучения применяется газоразрядные лампы. Их отличие состоит лишь в том, что применяется кварцевое стекло для изготовления колбы. Люминофорное покрытие отсутствует.

Обычное стекло его не пропускает. Такие приборы применяются часто в соляриях и для обеззараживания помещений.

Как подключить люминесцентную лампу

В традиционной схеме всего три элемента:

Дроссель представляет собой обычную катушку индуктивности с наборным сердечником из пластин. Стартер – устройство, состоящее из малогабаритной неоновой лампы и конденсатора. Внутри ее колбы находятся подвижные биметаллические контакты. В момент подачи напряжения между биметаллическими контактами стартера возникает разряд, его электроды изменяют свою геометрию и замыкают цепь. Дроссель играет роль балласта. Электроды источника света прогреваются, стартер отключается, возникает тлеющий разряд, вызывающий свечение люминофора, нанесенного на внутреннюю сторону колбы. Согласно ГОСТам, схема должна включиться в течение максимум 10 секунд.

Для включения двух ламп не нужно дублировать схему. Можно использовать только один дроссель.

Обе этих схемы можно дополнить конденсатором, включенным параллельно к источнику питания. Это улучшит режим. В первой схеме параметры мощности источника света, дросселя, стартера должны совпадать. Во второй схеме параметры дросселя должны быть равны сумме мощностей двух ламп, а параметры стартеров должны соответствовать мощности каждой из ламп.

Читайте также:  Что должен знать электрик

Выбор конденсатора осуществляется исходя из номинала мощности ЛЛ. Конденсатор в таком источнике света служит для компенсации реактивной мощности, и при отсутствии её учёта как бы не обязателен. Есть — хорошо, нет — ничего страшного. Не редко, при перепадах напряжения или некачественном конденсаторе происходит его возгорание.

Люминесцентные лампы (ЛЛ)

Мощность лампы, Вт

Параллельно включенный конденсатор 250 В, мкФ

Существует и так называемая схема холодного старта. Она позволяет запустить даже лампу со сгоревшими электродами. Кроме того, схема с умножителем напряжения увеличивает период эксплуатации источника света.

Этот вариант несколько сложнее и применяется при мощностях не более 40 Вт. Здесь лампа питается постоянным током и включение происходит практически мгновенно, так как выпрямленное напряжение суммируется. Довольно быстро ртуть будет скапливаться в районе одного из электродов, при этом яркость падает. В этом случае достаточно поменять полярность. Конденсаторы С1 и С2 должны иметь напряжение порядка 900 В. А С3 и С4 – от 1000 В. Обычно применяют слюдяные конденсаторы. На электроды прикладывается напряжение порядка 900 Вольт. Со временем люминофор конечно же выгорит, и лампа будет подлежать замене и утилизации. Эта хороша тем, что позволят применять лампы с электродами, находящимися в обрыве.

Существуют и полностью готовые решения – ЭПРА. Это полностью полупроводниковое устройство, которое пришло на смену электромагнитной классике.

Собрать готовый светильник с ним очень просто.

На входные клеммы устройства подается напряжение питания. Выходные клеммы предназначены для непосредственного подключения лампы.

Достоинства электронного пуско-регулирующего аппарата:

  • Простота подключения.
  • Повышает срок эксплуатации лампы.
  • Снижает время включения лампы.
  • Отсутствует мерцание при запуске.
  • Долговечность.

Подробнее о ЭПРА вы можите прочитать — тут

Осветители на лампах высокого давления имеют такую схему.

Дроссель выполняет роль балластного устройства. Предохранитель защищает лампу и дроссель от скачка напряжения.

Как проверить люминесцентную лампу

Неисправности могут визуально проявляться таким образом.

  • Лампа не зажигается совсем.
  • Наблюдается мерцание при работе.
  • Мерцание перед выходом на рабочий режим.
  • Гудение.
  • Мерцание при горении.

Во время эксплуатации газоразрядные лампы могу потерять работоспособность. При сборке осветительного прибора на основе люминесцентных ламп иногда источник света желательно проверить до установки.

Первоначально требуется провести осмотр на наличие повреждений. Если колба имеет повреждения, то использовать такую лампу нельзя. То же самое касается и сеточки трещин. Такая колба во время работы однозначно разрушится, а ртуть может привести к заражению помещения.

Вторым моментом следует осмотреть колбу в районе расположения электродов, там не должно быть потемнений на внутренней стороне.

Обратимся к устройству самой лампы. С двух сторон у нее размещены электроды, они делаются из вольфрама, так как это тугоплавкий металл. Для увеличения срока службы эти электроды покрываются щелочным соединением. Это способствует облегчению зажигания тлеющего разряда и защищает электроды. Часты включения и выключения влекут за собой частое нагревание и остывание защитного покрытия. Таким образом со временем оно просто отслаивается, образуются незащищенные участки на вольфрамовом электроде. В момент запуска вольфрамовая нить разогревается неравномерно. Открытые участки разогреваются сильнее происходит сначала точечное выгорание, со временем произойдёт разрушение электрода. О начале выгорания и свидетельствует такое потемнение. Это — щелочные соединения, которые осаждаются на люминофорном слое. Но даже если электрод находится в обрыве, а колба лампы цела и люминофор не обсыпался, то лампу еще возможно какое-то время использовать. При этом применяется схема умножителя.

Если на контактах электродной нити, либо по краям самой газоразрядной лампы видно оранжевое свечение, при этом освещение не включается, то это говорит о разгерметизации колбы, внутри уже присутствует воздух.

Довольно часто причина отсутствия освещения банальна: отсутствие контакта. Дело в том, что контактные пластины и контактные штырьки для подключения электродов окисляются. Иногда они могут просто быть ослаблены. Восстанавливается это достаточно быстро, их следует почистить при помощи мелкозернистой наждачки, либо жидкости на основе спирта. Отлично подходит для этих целей изопропиловый спирт (он же изопропанол). Также не произойдет розжига при низких температурах (менее минус 50 градусов Цельсия) и при скачках напряжения свыше семи процентов.

Целостность электродов можно проверить еще и мультиметром. Возможно использовать режим прозвонки (значок диода на приборе). В случае целостности контактов, Вы услышите писк, как при замыкании щупов. Можно воспользоваться режимом омметра, прибор должен показать сопротивление 3-16 Ом. В случае индикации бесконечного сопротивления электрод находится в обрыве и в традиционных схемах (также как и с ЭПРА) использование принципиально невозможно.

При использовании классической схемы со стартером и дросселем, лампу, у которой хотя бы один из электродов находится в обрыве зажечь не удастся. Если балластный дроссель находится в обрыве, то лампа также не загорится. Исправный дроссель должен обладать сопротивлением 60 Ом, плюс-минус 5 Ом. Вышедший из строя дроссель можно определить «на глаз» по косвенным признакам: характерный запах, пятна.

Типы цоколей ламп дневного света

Вне зависимости от конструкции лампы, она в любом случае будет оборудована цокольными элементами. Это обязательный элемент. Они служат для подключения и подачи электрического тока на электроды осветительного прибора. Цоколь предназначен для надежного крепления и обеспечения контакта. При покупке обязательно надо обратить внимание на тип цоколя, в противном случае просто не удастся установить лампу. Цоколь и патрон обязательно должны взаимно соответствовать.

Условно их можно подразделить на две большие категории: резьбовые и штыревые. В последнее время резьбовые имеют более широкое распространение. Их можно назвать классикой. В быту они используются без каких-либо переделок патрона, т.е. люминесцентную лампу с цоколем Е14 и Е27 можно применить вместо обычных ламп накаливания. Основными характеристиками являются диаметр и расстояние между витками.

Штыревые цоколи люминесцентных ламп расположены как правило у торцов источника света. Это могут быть и прямые, и U-образные лампы.

Маркировка и технические характеристики

Напряжение в сети питания переменного тока в разных странах различается. К примеру, в странах бывшего СССР принято значение 220 Вольт, в США, Японии и других странах – 110 Вольт.

У нас наиболее востребованы осветительные приборы с цоколями Е14, Е27, Е40. Обычно маркировка осуществляется в формате Ехх. Буква «Е» — общепринятая, от фамилии изобретателя Эдисона (Edison). А хх – это цифры, означающие диаметр в мм.

Е14 – самый маленький из упомянутых. Обычно для небольших лампочек в виде свечи. Может применяться для подсветки и маленьких светильников.

Е27 – основной для нашей страны. Сейчас он применяется и для ламп накаливания, энергосберегающих и светодиодных.

Е40 – в быту практически не встречаются и предназначены для мощных осветителей. В основном он принят на производственных предприятиях, где света должно быть много. Или, например, уличное освещение.

Есть еще и Е10, но он применяется для низковольтных ламп накаливания, например может применяться в елочных гирляндах. Лампы с таким цоколем не применяются для освещения, только для декоративных целей.

На лампах со штыревым цоколем маркировка в обязательном порядке содержит латинскую букву G. После идут цифры, которые означают дистанцию между центрами штырьков в миллиметрах. Перед цифрами может дополнительно размещаться одна из букв U, X, Y, Z.

Существует российская и международная маркировка осветительных приборов.

Последние три цифры маркировки характеризуют световой поток, который дает конкретный осветитель: на картинке 8 – это цветопередача, 40 (две последние) – это цветовая температура. В данном случае индекс цветопередачи равен 80Ra, а цветовая температура 4000 К. Здесь значение 840 можно трактовать как лампа белого света для рабочих поверхностей с очень хорошей цветопередачей и светотдачей. Такие применяются в жилых помещениях и для работы. Цветовую температуру лучше выбирать не менее 4000 К. Обычный дневной свет имеет этот показатель в диапазоне от 5000 К до 6500 К. При цветовой температуре в 2700 К предметы, на которые падает свет, визуально могут иметь коричневый оттенок. Чем больше первая цифра, тем лучше и комфортнее глазу.

Российская маркировка представлена в рисунке ниже.

Спектр излучения люминофора для люминесцентных ламп

Человек способен видеть излучение в диапазоне от 380 до 780 нм. Свет – это энергия в различных диапазонах излучения. Солнечный свет включает в себя не только видимый человеком диапазон. Имеются еще инфракрасный и ультрафиолетовый. Обычно источники света в жилых и рабочих помещениях снабжены УФ-фильтрами. Такое решение снижает вредное для кожи излучение.

Существуют и специальные лампы для бактерицидной обработки помещения, так как раз и необходимо отсутствие УФ-фильтра.

Обычно люминесцентные лампы дают световой поток спектрально приближенный к обычному солнечному свету.

Левая часть изображение показывает спектр солнечного света. Правая – спектр хорошей лампы дневного света. Можно увидеть, что спектрально они похожи. Свет солнца имеет более ровную характеристику. Свет ЛЛ имеет ярко выраженный пик в зеленой части, и резкий спад в красной части. Спектр свечения многих люминесцентных ламп захватывает весь видимый диапазон. Дорогие лампы захватывают часть инфракрасного и ультрафиолетового диапазона. Чем ближе искусственный свет по спектру к естественному, тем более он благоприятен для человека. Соответственно, показатели жизнедеятельности будут выше. Это уже доказано физиологическими исследованиями. Поэтому рекомендуется для рабочих мест и в жилых помещениях применять источники света спектр которых приближен к солнечному. В некоторых случаях люминесцентные источники света будут более предпочтительны даже в сравнении со светодиодными.

Какую люминесцентную лампу стоит выбрать

Сейчас в продаже много разных источников света. Продуманное расположение источников света создает чувство комфорта. Сложность выбора состоит в том, необходимо рассматривать не только мощностные параметры, но и цветопередачу, спектральный диапазон. С яркостью все понятно, чем больше мощность, тем больше яркость. В этом случае все зависит от линейных размеров освещаемого помещения. Если их сравнить с обычными лампами накаливания, то при равной мощности ККЛ (компактная люминесцентная лампа) имеет яркость в среднем в пять раз выше.

Читайте также:  Как высчитать амперы зная мощность и напряжение

Цветовая температура должна коррелировать с конкретными нуждами. Цветовая температура — Важный параметр. 2700 К – это тепло-желтый свет, 4200 – обычный белый, а 6400К – холодный синий. Для глаз наиболее комфортно от 4000 К до 5000К. Существуют также осветители с различным окрасом люминофорного слоя. Это уже для дизайнерского креатива в оформлении помещений.

Сейчас много разных форм и конфигураций люминесцентных источников света для создания оформления. Теоретически возможно создать любую форму для дизайнерского проекта.

Преимущества и недостатки

Изучив материалы по газоразрядным осветительным приборам, можно понять их особенности. Такие лампы используются несколько десятилетий, можно сказать, что они уже достигли своего предела совершенствования и создать источник света, который будет еще лучше, на этих же физических принципах работы, уже невозможно.

Мы надеемся, что статья была полезна читателям.

Устройство люминесцентного светильника

Люминесцентные светильники (светильники с люминесцентными лампами) бывают совершенно разнообразные. Кроме дизайна, они отличаются так же формой, количеством, размером, типом используемых люминесцентных ламп, а также электронной начинкой. И это далеко не весь список отличий между светильниками, которые в настоящее время можно купить в любом специализированном магазине. Но при всем при этом, их объединяет общий принцип работы, схема подключения и общее устройство.

Рассмотрим устройство светильника под трубчатые люминесцентные лампы T8, цоколь G13 , это один из самых распространенных видов люминесцентных светильников, который вы наверняка встречали в повседневной жизни.

В качестве примера, возьмем светильник накладной люминесцентный 2х36 Вт «Айсберг» со степенью защиты ip65 .

Устройство люминесцентного светильника

Конструктивно люминесцентный светильник состоит из:

1. Пластикового корпуса.

Который закрывает и защищает все элементы электрической схемы, а также несет на себе крепежные элементы как для монтажа светильника на стену или потолок, так и для сборки всех составляющих осветительного прибора в единое целое.

2. Металлической монтажной панели – основания.

На ней располагаются все электронные составляющие, необходимые для работы светильника, а также фурнитура для установки люминесцентных ламп.

3. Светопрозрачного рассеивателя.

Который создает более комфортное для нашего зрения освещение, так как равномерно распределяет световой поток люминесцентных ламп.

Кроме этих основных компонентов, из которых состоит светильник, в комплекте поставки обычно присутствуют:

крепежные элементы для установки люминесцентного светильника на стены или потолок.

– Фиксаторы, соединяющие светопрозрачный рассеиватель с корпусом. Позволяющие достаточно просто получать доступ к внутренностям светильника, в первую очередь к лампам, для их замены.

– Заглушки – мембраны. Которыми закрываются неиспользуемые вводные отверстия в светильник, а также герметизируется место ввода питающего кабеля.

Обратите внимание! Люминесцентные лампы, чаще всего, не входят в комплект поставки светильника и их необходимо покупать отдельно.

Устройство электрической части люминесцентного светильника

Чтобы разобраться в устройстве электрических компонентов, входящих в схему люминесцентного светильника, необходимо понимать принцип работы люминесцентных ламп.

Обычно, люминесцентная лампа представляет собой трубку, заполненную инертным газом с парами ртути. Внутренняя поверхность лампы покрыта специальным веществом – люминофором. По краям трубки установлены электроды, между которыми, при включении электричества, образуется дуговой разряд, при этом, при прохождении электрического тока внутри лампы, образуется ультрафиолетовое (УФ) излучение, которое и воздействует на люминофор, вызывая его свечение.

Как вы понимаете, при таком сложном принципе действия, люминесцентная лампа не сможет полноценно работать при простом подключении к электрической сети. Более подробно причины этого, мы рассмотрим в одном из следующих материалах, всецелом посвященном люминесцентным лампам.

Сейчас же стоит отметить одно, для полноценной работы люминесцентых ламп в осветительных приборах, применяются специальные пускорегулирующие аппараты (ПРА) или по-другому балласты. Наиболее распространены электромагнитные балласты/пускорегулирующие аппараты (ЭмПРА) и электронные балласты/пускорегулирующие аппараты (ЭПРА).

В нашем примере, люминесцентном светильнике “Айсберг”, использован электронный балласт, который установлен на монтажной панели – основании. Так же к пускорегулирующему аппарату подведены все необходимые провода. К одной из сторон балласта подходят провода идущие до гнезд подключения ламп, с другой стороны до клемм, к которым в подключается питающий кабель. На балласте присутствует схема подключения, согласно которой в любой момент можно восстановить соединение, или заменить неисправный ПРА, безошибочно подключив все провода к соответствующим клеммам.

Общую схему подключения люминесцентных светильников, которая разумеется полностью подходит для данного осветительного прибора Айсберг 2х36Вт, мы уже описывали в нашей статье «Схема подключения люминесцентного светильника».

Теперь, в общих чертах познакомившись с устройством люминесцентного светильника, можно переходить к его установке. В следующем материале «Установка люминесцентного светильника», мы подробно описываем весь процесс сборки и установки светильника с люминесцентными лампами. Для лучшего понимания устройства люминесцентного светильника, обязательно ознакомьтесь с этой статьей. Там довольно подробно оказаны все компоненты светильника, их взаимодействие и многое другое.

Все вопросы, которые у вас возникли после прочтения материала, задавайте в комментариях к статье, постараемся помочь!

Принцип работы люминесцентной лампы и устройство прибора

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector