Выбираем блок питания для светодиодной ленты

Содержание

Как подобрать блок питания для светодиодной ленты

Светодиодные ленты рассчитаны на относительно невысокое напряжение питания 5, 12, 24 или 36В. У нас в сети 220В, поэтому подключение подсветки напрямую к розетке невозможно. Чтобы система LED освещения работала, подключать ее нужно только через блок питания (драйвер, трансформатор). Это сравнительно недорогое устройство, которое преобразует 220 В сети в напряжение, которое необходимо ленте. Так трансформатор обеспечивает надежную и долговечную работу LED подсветки. Когда покупатель определился с системой освещения, обычно появляется вопрос о том, как подобрать блок питания для светодиодной ленты. Эта статья как раз посвящена решению данной проблемы.

Для выбора нужно знать параметры вашей LED подсветки и предлагаемых БП. К основным характеристикам драйверов относятся:

  • напряжение;
  • мощность;
  • класс защиты;
  • габариты;
  • наличие диммирования.

Рассмотрим каждый из этих параметров подробнее, чтобы вы смогли наверняка рассчитать, какой блок питания нужен для светодиодной ленты в вашем случае.

Выбор напряжения питания

Для начала при выборе драйвера стоит узнать напряжение питания LED ленты. Обычно распространены изделия с напряжением 12 или 24В. Трансформатор должен иметь такое же значение. Принцип здесь простой:

  • откройте технические характеристики ленты и найдите нужный вам параметр;
  • допустим, лента питается от напряжения 12В;
  • тогда выбирайте блок питания 12В.

Для светодиодной подсветки с напряжением 24В, соответственно, подходит БП на 24В.

Как узнать минимальную мощность блока

Следующий критерий выбора – значение мощности драйвера. Это очень важный момент, так как от расчета мощности блока питания для светодиодной ленты зависит, сколько он проработает.

У каждой ленты своя яркость, а значит и своя потребляемая мощность на 1 погонный метр. Обычно, чем ярче диоды, тем выше показатель потребляемой мощности. Обычно вы можете найти этот параметр перед покупкой в характеристиках LED ленты на сайте. А если вы уже купили подсветку, то смотрите значение на упаковке, например, 4,2 или 28,8 Вт/м.

Теперь приведем пример того, как рассчитать мощность блока питания для светодиодной ленты:

  1. Допустим, у нас есть 10 метров ленты с потреблением 9,6 Вт/м.
  2. Определяем потребление следующим образом: 10 м * 9,6 Вт = 96 Вт.
  3. К полученному значению прибавляем 15–20% запаса мощности – обязательное условие, чтобы БП прослужил достаточно долго. Запас в 20% рассчитывается следующим образом: 96 Вт * 0,2 = 19,2 Вт. Теперь прибавляем это значение: 96 Вт + 19,2 Вт = 115,2 Вт.
  4. Согласно расчетам, для работы 10 м ленты с удельным потреблением 9,6 Вт нужен трансформатор питания мощностью не меньше 115 Вт. Полученное значение нужно сравнить с параметрами имеющихся на рынке драйверов.
  5. Заходим в каталог интернет-магазина LedRus и выбираем ближайший по мощности трансформатор с округлением в большую сторону. В нашем случае идеально подходит БП на 120 Вт, но можно поставить и более мощный драйвер. Трансформатор с меньшей нагрузкой проработает дольше, но он может быть больше и стоить дороже, поэтому слишком мощный БП тоже не лучший вариант.

Теперь, зная эту схему на примере, вы можете рассчитать блок питания для светодиодной ленты самостоятельно с учетом параметров своей подсветки. Методика определения получается сравнительно простая.

Обратите внимание! Все БП мощностью от 250 Вт имеют встроенный вентилятор, который шумит при работе. Вы слышали, какие звуки издает кулер системного блока компьютера? Вентилятор драйвера работает примерно так же, и этот шум придется слышать всякий раз, когда вы включаете свет. Если вас это не устраивает, вместо одного мощного драйвера можно установить блоки мощностью поменьше, которые идут без кулера. Например, вместо трансформатора на 500 Вт можно подключить два БП по 250 Вт без системы охлаждения. Как видите, при любой ситуации есть выбор.

Класс IP защиты

Следующий шаг подбора блока питания для светодиодной ленты заключается в выборе класса ip защиты. Этот параметр показывает, насколько драйвер защищен от внешних воздействий, то есть пыли, грязи и влаги.

Блоки питания выпускают со следующими классами защиты:

  • IP20-33 – открытые БП с минимальной защитой. Такие модели обычно имеют перфорированный (дырявый) корпус, из которого хорошо отводится тепло. Эти драйвера подходят только для сухих отапливаемых помещений, но даже в таком случае это не лучший вариант, так как внутренние части прибора не защищены от пыли, мелких предметов, шерсти домашних животных и т. п. Все это негативно влияет на систему в целом. Зато открытые драйверы наиболее экономичные.
  • IP65 – закрытые БП (обычно в пластиковом корпусе). Такой вариант хорошо подходит для размещения внутри помещений или автомобилей. Такой драйвер внешне напоминает БП от ноутбука. Прибор хорошо защищен от проникновения воды под любым углом, поэтому подходит для комнат с высокой влажностью. Если собираетесь организовать подсветку в ванне или на кухне, стоит купить как раз такой драйвер. Но трансформатор с классом ip65 нельзя использовать для наружного применения и погружения под воду.
  • IP67-68 – герметичные БП с максимальной защитой. Корпус обычно выполнен из алюминия и полностью герметичен. Попадание влаги или пыли ему не грозит, благодаря чему трансформатор одинаково хорошо подходит для размещения внутри и снаружи зданий. Такие драйвера используют для подсветки наружных рекламных вывесок, фасадов зданий, а также в условиях очень высокой влажности. Устройства выдерживают погружение под воду на определенную глубину и время, а также работают при широком диапазоне температур от -25 до +85 градусов.

Таким образом, выбор блока питания для светодиодной ленты в данном случае зависит от условий размещения. Если вы организуете подсветку на улице или в комнатах с высоким уровнем влажности, стоит однозначно выбирать герметичный прибор. А для закрытых помещений с нормальной влажностью можно сэкономить и взять открытый БП.

Габариты

Когда вы решили, какой блок питания выбрать для светодиодной ленты по напряжению, мощности и классу защиты, самое время задуматься о его габаритах. Размеры драйвера имеют немаловажное значение, если его нужно спрятать. Производители позаботились об этом и предусмотрели несколько вариантов БП с разными габаритами, но одинаковыми параметрами.

При оценке размеров возможны следующие варианты:

  • габариты устраивают, устройство помещается, например, за карниз или под плинтус – оставляем как есть;
  • слишком большой прибор, непонятно, куда его спрятать – можно сделать специальную нишу, полку или полость в стене, которая закрывается декоративной дверцей;
  • все равно не помещается – выводим трансформатор в техническое помещение.

Стоит учитывать, что мощный драйвер может иметь достаточно большие габариты, так что в порой разумнее пересмотреть схему подключения подсветки. Возможно, один трансформатор стоит заменить несколькими маленькими БП с меньшей мощностью, которые намного легче спрятать. Кроме того, существуют модели драйверов с одинаковыми параметрами, но разной формой: прямоугольные широкие или вытянутые в длину, квадратные. В продаже также бывают компактные БП, но они стоят дороже обычных.

Обратите внимание! Устанавливать трансформатор нужно в месте, где предусмотрена циркуляция воздуха для естественного охлаждения прибора. Кроме того, нужно предусмотреть удобный доступ к устройству для обслуживания и замены. При правильном выборе БП прослужит долго, но случаи выхода из строя все же нельзя полностью исключать.

Выбор сечения кабеля для подключения

Устанавливать драйвер стоит не вплотную к LED ленте, а на некотором расстоянии от нее, но не больше 15–20 метров. Чем дальше трансформатор от источников света, те большее сечение кабеля требуется.

Если прибор находится на значительном расстоянии, нужно учитывать потери мощности, которые может создать соединяющий провод. Зависимость в этом случае простая: кабели с большим сечением дают меньшие потери мощности.

Диммирование

Сейчас многие пользователи отдают предпочтение LED лентам с диммером. Устройство позволяет менять интенсивность подсветки, регулируя количество энергии, которое передается от сети к подсветке.

Владельцы светодиодных лент часто ищут диммируемые БП, полагая, что яркость светодиодного освещения можно менять с помощью реостатного диммера, который располагается в цепи перед блоком. Это распространенная ошибка, так как LED лента в действительности управляется отдельными контроллерами и диммерами, которые устанавливаются между трансформатором и источником света. То есть диммируемые БП не нужны, так как управление осуществляется после блока.

Однако спрос порождает предложение, и теперь в продаже широко распространены диммируемые драйверы. Но их использование сопровождается сложностями, так как такие БП работают нестабильно и менее надежны, чем стандартные устройства. Кроме того, диммирование происходит не плавно, а рывками, а пользователь не может снизить яркость ниже определенного порога в 10-30% от общей яркости источника света.

Так происходит, потому что основное количество современных LED лент с классическими диммерами работают некорректно. Старые диммеры рассчитаны на более мощные источники света, они не воспринимают минимальную нагрузку от светодиодов на сниженной яркости. «Регуляторы» начинают работать, только когда потребление источника света преодолевает какой-то порог, который индивидуален для каждого диммера.

Как рассчитать и выбрать блок питания для светодиодной ленты 12В

Светодиодная лента позволяет организовать подсветку и освещение. При использовании моделей с питанием 220В для подключения нужен небольшой адаптер с диодным мостом внутри. А вот для подключения низковольтных светодиодных лент на 12В или 24В вам понадобится блок питания. А для многоцветных моделей еще и контроллер. О том, как выбрать и рассчитать блок питания для светодиодной ленты по току и мощности мы и поговорим в этой статье.

Читайте также:  Правила опломбирования электрических счетчиков

Виды

Всё сказанное далее справедливо как для распространенной светодиодной ленты на 12В, так и для моделей с напряжением питания 5В или на 24 вольта.

Прежде чем перейти к расчету мощности блока питания для светодиодной ленты, нужно определиться с тем, где он будет установлен, от этого зависит на какой вариант обратить внимание.

По способу охлаждения различают два вида блоков питания:

С активным охлаждением;

С пассивным охлаждением.

Активное охлаждение состоит из радиаторов и вентилятора (кулер, аналогичный тем что устанавливаются в компьютерах). Преимущества этой системы состоит в том, что радиаторы на силовых элементах используются меньших размеров, а значит блок питания будет меньше и легче, чем блок питания с пассивным охлаждением той же мощности.

Однако хорошие массогабаритные показатели блоков питания с активным охлаждением перекрываются существенным недостатком – кулер со временем начинает работать всё громче и громче, из-за механического износа. Поэтому использовать их в жилых помещениях не рекомендуется, поскольку гул во время работы может доставлять дискомфорт пользователю.

Блоки питания с активным охлаждением обычно имеют большую мощность – от 100 ватт и более, в связи с чем отлично подходят для подключения подсветки в больших помещениях, общественных местах или для подключения светодиодной инсталляции большой длины, например, для уличной подсветки (фасада, рекламных щитов и пр.) от одного источника.

Пассивные блоки питания производятся в широком диапазоне мощностей, но наибольшее распространение получили модели мощностью до 100-150 ватт. Их преимущество состоит в том, что они бесшумны в работе. Поэтому их можно не задумываясь устанавливать в спальне или другом жилом помещении. Размеры таких устройств обычно больше чем у активных блоков питания.

На рынке можно встретить изделия отличающиеся классом пылевлагозащищенности (класс IPxx), например, IP22, IP44, IP67. Я же предпочитаю разделить их на два вида:

Герметичные (IP65 и выше) или так называемые «уличные» блоки питания для LED-лент. Их корпус часто напоминает блок питания от ноутбука (черные пластиковый брусок), а герметичные блоки питания высокой мощности выполняются в металлическом кожухе с заглушками по торцам.

Не герметичные. Это те которые выполняются в пластиковом не герметичном корпусе или в металлическом корпусе с перфорацией через которую осуществляется конвекция воздуха при охлаждении элементов.

Когда вы определились где будете устанавливать блок, какой класс защиты нужен и в каком диапазоне мощностей продаются эти блоки можно перейти к расчету схемы питания светодиодной ленты.

Как рассчитать блок питания

Для начала ознакомьтесь с таблицей мощности типовой светодиодной продукции.

Здесь указан тип светодиодов и значение мощности для разного количества штук на погонный метр, а также типовые значения светового потока.

По ней вы можете посчитать общую мощность светодиодной ленты в вашей установке. Допустим вы купили отрезок длинной 4 метра со светодиодами SMD 5050 60 шт/м. Мощность 1 метра ленты 14.4 Ватта. Расчет блока питания по мощности производится так:

1. Определяем сколько всего потребляет нагрузка:

14.4Вт/м*4 м=57,6 Ватт

2. Блок питания должен быть на 20-40% мощнее чем подключаемая к нему нагрузка. Запас выбирают исходя из условий его эксплуатации – если он будет хорошо вентилироваться, то достаточно и 20%, если будет стоять в маленьком замкнутом пространстве, то и 40% может не хватить, особенно если рядом будет проходить, например, отопление. Допустим у нас первый случай (берём запас в 20%), то нужно покупать блок питания мощностью не менее:

Округляем до 70 Вт. Можно больше, но не меньше — выбираем ближайшую величину доступную в магазине. Ниже вы видите типовой ряд номинальных мощностей блоков питания с классом защиты IP20 из каталога оптовых поставщиков, кстати под буквой В – обозначен блок питания с активным охлаждением (кулером).

Но иногда случается так, что на этикетке блока питания указана не мощность, а максимальный выходной ток, тогда для расчета по току нужно мощность разделить на напряжение:

69,12 Вт /12 В= 5,76 А

То есть выходной ток должен быть (округлим) не меньше 6 ампер.

Схема подключения

Расчёт достаточно прост. Но есть некоторые особенности в подключении светодиодной ленты большой длинны, что особенно актуально при подсветке потолка по периметру комнаты. Рассмотрим несколько типовых схем подключения и правил, которые нужно учесть.

Главное правило – не подключать больше 5 метров ленты в одну линию. Светодиодные ленты продают в бухтах по 5 метров не просто так. Их токопроводящие дорожки рассчитаны на ток потребления именно этих 5 метров. Если к концу такого отрезка подключить следующие куски ленты, то будут просадки напряжения к концу линию, она будет греться и быстро выйдет из строя.

ОБЩАЯ ДЛИННА ВСЕХ ОТРЕЗКОВ СВЕТОДИОДНОЙ ЛЕНТЫ ПОДКЛЮЧЕННОЙ ДРУГ К ДРУГУ НЕ ДОЛЖНА ПРЕВЫШАТЬ 5 МЕТРОВ.

Если вам нужно подключить больше 5 метров, то есть два варианта:

1. Прокладывайте кабель от блока питания до каждого следующего отрезка.

2. Прокладывать кабель 220В и подключать их к новому блоку питания.

В первом случае нужно учесть, что сечение провода для линии 12В должно быть не меньше 0,75 мм², точно рассчитывается по току. К сведению, 5 метров светодиодной ленты SMD5050 60 шт/м потребляет 72Вт или 6А тока. Приведем несколько типовых схем подключения светодиодной ленты.

К одному блоку питания отрезка общей длины до 5 метров:

Нескольких лент к одному блоку питания общей длинной больше 5 метров:

Подключение подсветки большой протяженности к двум блокам питания:

Как вы можете убедиться, в выборе блока питания для светодиодной ленты нет ничего сложно. Нужно учесть 3 фактора:

2. Метраж ленты и конечная схема подключения и монтажа.

3. Ток потребляемый лентой.

Таким образом вы можете определить мощность и количество блоков питания, необходимых для организации подсветки или освещения.

Как подобрать блок питания для светодиодной ленты

В данной статье рассматриваются основные моменты, на которые следует обращать внимание при выборе блока питания для светодиодной ленты, а также кратко освещаются вопросы о том, что такое PFC и как вычислить диаметр токопроводящей жилы.

Блок питания — это источник напряжения(трансформатор), который преобразует 220В в 12В, 24В или другое необходимое значение рабочего напряжения. Для питания светодиодных лент и модулей чаще всего используются импульсные блоки питания, где в качестве ограничителей тока работают резисторы, в отличие от драйверов, которые представляют собой источники тока, используемые для светодиодов, модулей и ламп, которые не имеют ограничителей тока.

Чтобы подобрать блок питания к выбранной светодиодной ленте нужно обратить внимание на следующие факторы:

  1. Рабочее напряжение светодиодной ленты.
  2. Суммарная мощность светодиодной ленты.
  3. Необходимость защиты корпуса блока питания от воды и пыли.
  4. Габаритные размеры блока питания.

Рассмотрим подробнее каждый фактор.

1. Рабочее напряжение (U)

Рабочее напряжение светодиодной ленты может быть 12 В, 24 В, иногда 36 В, управляемые ленты SPI обычно 5 В. Соответственно оно должно соответствовать выходному напряжению блока питания.

Существуют также блоки питания с возможностью плавной регулировки выходного напряжения, например источники напряжения Arlight серии JTS, такие можно применять в специальных проектах, где требуется нестандартное значение выходного напряжения, а также там, где необходимо скомпенсировать падение напряжения на длинных проводах.

Еще из нестандартных решений можно отметить блоки питания с несколькими каналами, в которых разное выходное напряжение, это может быть полезно, если нужно запитать ленты с разным рабочим напряжением на один источник напряжения.

2. Мощность светодиодной ленты (PСД)

Подбор блока питания по мощности осуществляется по следующему принципу: мощность должна быть равна суммарной мощности светодиодной ленты, умноженной на коэффициент запаса КЗ, равный 25÷30%, если пренебрегать коэффициентом запаса и использовать блок питания на пределе, то он не проработает долго из-за постоянного перегрева элементов.

Суммарная мощность светодиодной ленты вычисляется путем умножения мощности ленты на 1 метр длины PСД на общую длину L.

Таким образом, получаем следующую формулу:

L — длина ленты (м)

PСД — удельная мощность светодиодной ленты на 1 метр (W/м)>

Kз — коэффициент запаса (ед.)

3. Степень защиты корпуса блока питания от проникновения жидкости и пыли (класс защиты IP)

При выборе блока питания следует учитывать условия, в которых он будет находиться, если это обычное сухое жилое помещение, то подойдет блок питания в защитном кожухе с IP20 (защита от проникновения твердых предметов >12,5 мм, защиты от влаги нет).

Зачастую в блоках питания мощность более 250Вт в исполнении «Защитный кожух» IP20-IP40 используется активное охлаждение в виде кулера(вентилятора). Если Вы планируете рассматривать данные блоки питания, необходимо выбрать конструктив, когда кулер расположен перпендикулярно элементам платы в изделии, следовательно обдув воздуха будет более равномерный (воздух идет вдоль платы), и элементы будут меньше греться. На неудачных моделях вентиляторы расположены над платой и обдув платы источника напряжения происходит неравномерно.

Блоки питания и комплектующие для лент рекомендуется устанавливать в щитовые.

Установка светодиодной ленты в ванную комнату или помещение с повышенной влажностью требует класса защиты не менее IP65 (пылезащищен, защита от струй воды).

А. Б.

(А) Герметичный алюминиевый блок питания IP67 и (Б) блок питания в защитном кожухе IP20.

В условии использования на улице нужно предусматривать степень защиты IP67, такая степень обеспечивает защиту от струй воды под давлением во всех направлениях, возможно даже кратковременное погружение в воду до 1 м. Если необходима работа в погруженном режиме, то тогда используется максимальная защита IP68 или IP69 (при большом давлении воды).

При подборе мощный источников напряжения для светодиодных лент необходимо учитывать, что на блоках питания без защиты от влаги и пыли стоят вентиляторы. Данные вентиляторы сильно шумят при работе и могут создавать дискомфорт. Поэтому в дорогих проектах мы рекомендуем использовать источники напряжения в алюминиевом корпусе с пассивным охлаждением.

4. Габаритные размеры

Также следует обращать внимание на габаритные размеры блоков, в зависимости от того, куда Вы хотите его установить, мощные блоки питания могут достигать достаточно больших размеров, и спрятать такие будет затруднительно, к тому же часто они имеют вентилятор. Поэтому если требуется подключить длинный участок ленты, то можно пересмотреть схему подключения ленты и использовать несколько меньших по мощности блоков.

Читайте также:  3х фазный двигатель

Также при выборе места установки следует учитывать то, что чем мощнее блок питания, тем больше он нагревается, поэтому рекомендуется обеспечивать достаточно места для теплоотвода, чтобы блок не перегревался.

Пример подбора источника напряжения для светодиодной ленты:

Рассмотрим следующий пример: нужно сделать декоративную светодиодную подсветку в ванной комнате по периметру потолка общей длиной 8 м.

Выбираем подходящую светодиодную ленту с защитой IP65, например, лента Arlight RTW 2-5000SE 24V White 2X (5060,300 LED,LUX), мощность 72 Вт на 5 м.

Основные параметры ленты:

PБП = 8m*14,4W/m*1,3 = 149,8 W

Что такое PFC в характеристиках трансформаторов(блоков питания)?

Иногда в маркировке блока питания можно увидеть буквы PFC, это аббревиатура PowerFactorCorrection или коррекция коэффициента мощности (коррекция реактивной мощности).

Не углубляясь в технические особенности, это означает, что блок питания выполнен в определенном схемотехническом решении, которое позволяет уменьшить потребление реактивной мощности (мощность имеет активную и реактивную составляющие, на показания счетчика обычно влияет только активная составляющая, но на общее потребление энергоресурсов влияют обе составляющие).

Такие блоки питания имеют высокое значение коэффициента эффективной мощности (Λ)>0,9, что позволяет отнести их к блокам питания высокого класса, низкий пусковой ток, они позволяют сократить нагрузки на токопередающие линии, уменьшить требования к толщине подающего питание провода. При большом количестве используемых блоков не требуется применять специальные пусковые автоматы.

Блоки питания с корректором мощности более экологичны, т.к. эффективнее расходуют электроэнергию.

Как вычислить и подобрать диаметр(или сечение) кабеля между светодиодной лентой и блоком питания?

Расчет сечения и диаметра кабеля для исключения падения напряжения(вольтажа):

При использовании светодиодной ленты важно, чтобы свечение было равномерным по всей длине, для этого падения напряжения на конце линии обычно не должно превышать 0.5 В, при условии, что длинные участки ленты запрещается подключать последовательно.

При расположении блока питания в непосредственной близости от ленты, проблемы, как правило, не возникает, но при удаленном расположении блока необходимо увеличивать толщину жилы для компенсации падения напряжения.

Ниже представлен алгоритм вычисления для блока питания(источника напряжения для светодиодных изделий) максимальной выдаваемой мощностью 150 Вт, выдаваемому напряжению 24 В, падение напряжения не более 0.5 В, расстояние от блока до ленты 10м:

Допустимое падение напряжение делим на максимальный ток, ток вычисляется как мощность/напряжение:

Общее сопротивление линии R = 0,5V / (150W/24V) = 0,08 Om.

Длину линии умножаем на удельное сопротивление материала (для меди 0,018 Ом*мм2/м), делим на сопротивление R.

Сечение жилы S = (10m*0,018 Om*mm2/m )/ 0,08 Om = 2,25 mm2.

Используем формулу площади круга: радиус равен корню из частного площади и Πи.

Диаметр жилы: D= 2 х √(2,25 mm2/ 3,14) = 1,75 mm.

Таким образом, получаем, что для 10 метрового кабеля от блока питания до истока света (led ленты) падение напряжения составит 0,5В при использовании провода сечением 2,25mm2 (что соответствует диаметру 1,7 мм).

Также из приведенных вычислений видно, что компенсировать падение напряжения можно, используя ленту с большим рабочим напряжением, 24 В или 36 В.

Выбор сечения и диаметра кабеля для исключения потерь мощности при нагревании кабеля:

Если подключать блок питания и светодиодную ленты на большом расстоянии друг от друга, то необходимо не только исключать падение напряжения питания на соединяющем кабеле, но закладывать потери мощности, которые может создавать данный кабель.

Важно: чем больше сечение кабеля, тем меньше потерь мощности при этом сопровождается. При сложным проектах — необходимо довериться профессионалам для расчета потерь мощности на кабелях. При больших расстояниях подбор максимальной выдаваемой мощности блока питания будет сопровождаться с большим запасом и кабель с большим сечением жилы.

Выбираем блок питания для светодиодной ленты

Общие вопросы выбора блока питания

Для правильного подбора блока питания (БП) для системы светодиодной подсветки необходимо знать параметры подключаемой светодиодной ленты и параметры предлагаемых блоков питания.

Первый параметр ленты, влияющий на выбор БП – напряжение питания ленты. Чаще всего это 12 или 24 вольта. На какое напряжение рассчитана лента, на такое же напряжение выбирается и блок питания.

Второй параметр ленты, требующийся нам для расчета блока питания – потребляемая мощность на 1 метр ленты. Этот параметр обязательно приводится добросовестным производителем в характеристиках ленты и обычно обозначается на упаковке ленты. Мощность светодиодных лент, имеющихся в нашем ассортименте, варьируется в диапазоне от 4.2 до 31 Вт/м. Обычно, чем выше потребляемая мощность ленты, тем она ярче светит. Правда, тут вносит неоднозначность такой показатель как КПД, но на приводимый расчет блока питания он не влияет, поэтому принимать во внимание сейчас мы его не будем.

Следующий показатель – длина подключаемой к БП ленты. Тут все просто. Длина – есть длина. Измеряется в метрах.

С лентой разобрались, теперь разбираемся с блоками питания. Основные характеристики БП – выходное напряжение, максимально допустимый ток, который может длительное время отдавать блок питания в нагрузку, и выходная мощность блока питания.

С выходным напряжением все просто. Лента 12-ти вольтовая, и блок питания нужен на 12 вольт, лента на 24 вольта – блок питания берем на 24 вольта.

Следующий параметр — максимальный ток, отдаваемый блоком питания – параметр очень важный, но в стандартных расчетах для систем со светодиодной лентой используется редко. Хотя, зная его всегда можно определить выходную мощность блока питания. Нужно просто перемножить выходное напряжение в вольтах на максимальный ток в амперах и получим мощность в ваттах. Например, блок питания с выходным напряжением 12 вольт и максимальным током 5 ампер имеет выходную мощность 60 ватт.

А выходная мощность блока питания – это как раз тот параметр, который нужен для наших расчетов.

Для наглядности, давайте рассмотрим расчет требуемого БП на примере.

1. Имеем комнату со сторонами 5х4 м. Хотим расположить ленту за карнизом по периметру комнаты. Длина периметра в таком случае составит 18 м. Соответственно, такой же длины у нас будет и лента.

2. Выбираем ленту не самую слабую, но и не самую яркую, например, ленту с артикулом 010346, модель RT 2-5000 24V Warm 2x (3528, 600 LED, LUX).

3. Из обозначения видно, что это лента длиной 5 метров, с питанием 24 вольта, теплого белого цвета, двойной плотности (но не двухрядная), светодиоды 3528 (размер SMD корпуса светодиода 3.5х2.8мм), 600 светодиодов на 5 метров (или 120 светодиодов на метр).

4. Из характеристик, имеющихся на сайте или указанных на упаковке, узнаем, что потребляемая мощность этой ленты – 48 ватт на 5 метров (9.6 Вт/м)

5. Умножаем длину ленты на потребляемую мощность 18*9.6 = 172.8 Вт.

6. Добавляем минимум 10-ти процентный запас по мощности, получаем 182.8 Вт.

7. Выбираем ближайший по мощности блок питания с округлением в большую сторону. Это блок питания мощностью 200 Ватт с выходным напряжением 24 вольта (как мы помним лента у нас с питанием 24 вольта).

8. Смотрим на сайте габариты блока питания. Артикул 013138, модель ARPV-24200 (24V, 8.3A, 200W) — 238x130x60 мм.

9. Далее возможны варианты:

a) нормально, габариты устраивают – оставляем как есть;

b) ого! куда же я его такой здоровый дену? – делим ленту на два участка, выбираем два блока питания меньшего размера и, соответственно, меньшей мощности — по 100 ватт каждый — и подключаем к каждому блоку питания по 9 метров ленты;

c) опять не помещается — делим ленту на четыре фрагмента, ставим четыре блока питания по 50 ватт.

Удобнее всего монтировать оборудование, когда один блок питания устанавливается на каждые 5 или 10 метров ленты.

В рассмотренном примере мы использовали герметичный блок питания. Вы можете спросить, зачем в обычной комнате ставить герметичный блок. Ведь есть же блоки в защитном кожухе, они дешевле. Да, есть. Да, дешевле. Но они незащищены не только от влаги, но и от пыли, от попадания в них мелких предметов, домашних «животных», наконец. Все это неблагоприятно сказывается на надежности системы в целом. Кроме того, на сегодняшний момент все блоки питания для светодиодной ленты это импульсные преобразователи напряжения. Поэтому от открытых блоков питания, как бы качественно они не были сделаны, в полной тишине может быть слышен слабый «комариный» писк. Правда блоки питания в защитном кожухе бывают большей мощности, чем герметичные блоки, но и здесь есть свои подводные камни. Негерметичные блоки с мощностью более 200 ватт требуют принудительного охлаждения и снабжаются встроенными вентиляторами. Как гудит куллер системного блока компьютера у Вас под столом, слышали? Хочется Вам по ночам, при включении подсветки слышать аналогичное жужжание? В общем, делайте свой выбор.

И еще одна важная рекомендация. Монтаж блоков питания необходимо осуществлять таким образом, чтобы обеспечить циркуляцию воздуха для охлаждения блоков, а также предусмотреть возможность доступа к БП для их обслуживания или замены. Надежность применяемых блоков питания достаточно высока, но в нашей реальной жизни не исключены случаи, при которых в сети может появиться опасное для БП напряжение или пульсации, приводящие к выходу их из строя.

Особенности выбора блока питания для системы с регулировкой яркости или системы с многоцветной лентой.

Если в результате описанного выше расчета получилось, что мы вполне обходимся одним блоком питания и размер его нас устраивает, то никаких особенность в подборе блока для системы подсветки с управлением лентой нет. Дальше эту статью можно не читать.

Во всех остальных случаях, нужно решить еще одну задачу. Задача заключается в следующем. Если мы хотим управлять лентой – будь то изменение яркости или изменение цвета – мы должны установить между блоком питания и лентой соответствующее устройство управления – диммер или RGB контроллер. Следовательно, если мы делим мощность на два блока питания, то должны поставить два устройства управления. Делим на четыре блока, должны поставить четыре устройства. И т.д. И все это должно срабатывать одновременно, от одного регулятора или от одного пульта. Но вопросы синхронизации – это отдельная тема и сейчас она нас не интересует. Сейчас мы занимаемся электропитанием. Можно, конечно, оставить все как есть, и поставить на каждый блок питания по отдельной управляющей коробочке, но наша цель (точнее, Ваша цель) уменьшить количество коробочек и дополнительных проводков в системе (а соответственно, уменьшить стоимость оборудования и монтажных работ).

Если мы используем 24-х вольтовую ленту, то можно прибегнуть к одной хитрости. Мы можем взять два одинаковых блока питания на напряжение 12 вольт, соединить их последовательно и получить на выходе такой системы напряжение 24 вольта и удвоенную мощность. Схема подобного соединения приведена на рисунке.

При таком включении необходимо учесть особенности конструкции блоков питания. Некоторые БП выполнены таким образом, что их металлический корпус соединен с минусовым выходом. При использовании подобных блоков в рассматриваемой схеме требуется изолировать корпуса БП друг от друга и от любых металлических поверхностей.

Некоторые «умельцы» предлагают для увеличения мощности соединять выходы блоков питания параллельно. Подавляющее большинство БП не допускают такого соединения. Это связанно с тем, что двух идеальных блоков питания с абсолютно одинаковыми выходными напряжениями не бывает. Как бы ни старался производитель, но хоть на сотые доли вольта оно будет отличаться. Напряжение на выходе блока стабилизируется специальной электронной схемой, которая постоянно следит за выходным напряжением и в случае его отклонения от нормы, старается вернуть его в заданный диапазон. В случае соединения в параллель двух блоков с разными напряжениями, каждый из них начнет «перетягивать одеяло» на себя. Рано или поздно это закончится выходом БП из строя. Кроме того, в момент включения такой системы один блок может мешать запуститься другому. В результате, могут появиться периодические моргания ленты при включении подсветки. Ради справедливости, следует заметить, что существуют блоки питания, допускающие параллельное соединение, но это отдельный, довольно редко встречающийся класс. Возможность такого соединения обязательно указывается в документации на блок питания.

Как подобрать блок питания для светодиодной ленты по техническим характеристикам, расчёт мощности

Декоративное или основное освещение при помощи светодиодных лент в последнее время получило широкое распространение. Так как для питания таких лент используется постоянное напряжение 12В (реже 24В), то для долговечной и правильной работы такого освещения важно правильно подобрать понижающий трансформатор или, как его ещё называют, блок питания. В этой статье мы рассмотрим основные критерии выбора такого устройства.

Основные технические параметры блока питания светодиодной ленты

Блок питания светодиодной ленты – понижающий трансформатор, который преобразует переменное напряжение 220 вольт в постоянное со значениями 12 или 24 вольта. Блоки питания для таких осветительных приборов выпускают импульсного исполнения, в основе работы которых лежит трансформация входного напряжения в импульсы высокой частоты, для того чтобы напряжение постоянного тока на выходе имело качественное выпрямление. Такие приборы имеют достаточно высокий КПД, компактные размеры и хорошие технические характеристики.

Выходное напряжение БП

Из-за особенности конструкции, производители светодиодных лент выпускают устройства с напряжением питания 12 или 24 вольта постоянного тока. Иногда, для очень мощных лент используют напряжение 36 вольт, но это, скорее, исключение. Важное правило при выборе трансформатора заключается в том, что напряжение на выходе из него должно соответствовать напряжению светодиодной ленты.

Как рассчитать мощность блока питания для светодиодной ленты

Самой главной характеристикой, после напряжения, для подбора трансформатора к определенной светоизлучающей ленте является мощность. Этот параметр блока питания должен быть выше мощности светодиодной ленты, как минимум на 20 процентов. Обычно, мощность электроприборов указывается на его корпусе. Светодиодные ленты и трансформаторы не исключение. Но бывает так, что на светодиодной ленте не указана эта характеристика и, в связи с этим, может возникнуть сложность при расчете требуемого блока питания.

Важно понимать, что мощность светодиодной ленты напрямую зависит от типа светодиодов, плотности их монтажа на ленте и её длины.

Разные типы матриц имеют различные значения мощности, которые могут существенно различаться. Например, популярные светодиоды имеют следующие мощности:

Светодиод35285630505028355730
Мощность светодиода, Вт0,110,50,30,20,5

Обратите внимание! Цифры в марке светодиода указывают на его размер в миллиметрах, например, 3528 – 35 мм на 28 мм.

Зная (или посчитав) количество диодов на 1 метре ленты, можно рассчитать мощность для всей её длины. Для удобства уже давно посчитаны и находятся в свободном доступе таблицы с мощностью лент каждого типа, ориентируясь на эти таблицы можно правильно и легко подобрать блок питания для светодиодной ленты.

Тип лентыПлотность светодиодов на 1 метрМощность 1 метра лентыМощность 5 метров ленты
SMD301460 шт6,0 Вт30 Вт
120 шт12,0 Вт60 Вт
240 шт24,0 Вт120 Вт
SMD352830 шт.2,4 Вт12 Вт
60 шт4,8 Вт24 Вт
120 шт9,6 Вт48 Вт
SMD505030 шт.7,2 Вт36 Вт
60 шт14,4 Вт72 Вт
SMD563030 шт.6,0 Вт30 Вт
60 шт12,0 Вт60 Вт

Закрепляя вышесказанное, определяем следующую последовательность расчета и выбора трансформатора для светодиодной ленты:

  1. Выбрать светоизлучающую ленту и рассчитать необходимую длину;
  2. Выяснить матрицу светодиодов (визуально или исходя из руководства пользователя) и плотность их установки на ленте;
  3. Рассчитать мощность метровой ленты;
  4. Умножить полученную мощность 1 метра на итоговое значение длины ленты;
  5. Получить номинальное значение мощности трансформатора.
  6. Учесть коэффициент запаса мощности (об этом ниже), умножить на номинальную мощность и получить искомое значение необходимой мощности устройства.

Например, имеем светодиодную ленту на 12 В, длиной 3 метра, со светодиодами SMD 5050, количество светодиодов на 1 метре – 60 шт. Потребляемая мощность 1 метра такой ленты примерно 15 Вт, то есть 1 м = 15 Вт. Тогда 3 м = 15 Вт * 3 = 45 Вт. Умножаем на коэффициент запаса 20 % и получаем, что нам нужен блок питания на 45 Вт * 1,2 = 54 Вт. При этом потребляемый ток такой светодиодной ленты будет равен 54 Вт / 12 В = 4,5 А.

Коэффициент запаса мощности

Для правильного расчета блока питания нужно учесть еще один фактор. Если выбрать БП с мощностью, равной светодиодной ленте, то он будет нагреваться и это может не только сократить срок службы, но и, в случае некачественной сборки, привести к пожару. Поэтому, покупая трансформатор для светодиодной ленты необходимо учесть запас мощности для прибора. Обычно выбирают устройство с мощностью на 20 % выше, чем потребляемая мощность светодиодной ленты. Запас мощности гарантированно защитит вас от перегрева устройства и позволит долго и без проблем эксплуатировать блок питания.

Габаритные размеры

Блоки питания выпускают различных форм и размеров. Чаще всего мощность прибора определяет его габаритные размеры. Чем выше мощность, тем больше прибор. Также мощные приборы имеют вентилятор для охлаждения устройства в процессе работы, а это значительно увеличивает размер и требования к установке.

Для того чтобы скрыто подключить несколько участков ленты, лучше всего выбрать несколько небольших блоков питания, чем один большой. Это выйдет немного дороже, но так можно будет спокойно скрыть блоки питания в конструкциях и распределить нагрузку на несколько приборов.

Степень защиты от проникновения влаги и пыли

Блоки питания, как и светодиодные ленты, производятся в исполнениях для различных условий эксплуатации и имеют разную степень защиты от влаги и пыли. При выборе трансформатора необходимо учитывать влияние внешней среды на прибор. Например, при эксплуатации в жилых помещениях с нормальной влажностью достаточно защиты IP20 – IP40. Если планируется монтаж блока питания на улице, для защиты от осадков следует приобретать прибор с IP67. Классификация по качеству защиты от влаги и пыли одинакова для всех электрических приборов и устройств, поэтому найти её не составит труда.

Если мощность блока питания достаточно высокая, то в приборах без защиты от влаги и пыли, для охлаждения будет использоваться вентилятор. При работе он вырабатывает определенный уровень шума. Если шум прибора неприемлем для поставленных задач, то лучше выбрать влагозащищенное устройство, которое будет иметь пассивное охлаждение.

Наличие охлаждения

При правильном расчете блока питания по мощности подключаемых светодиодных лент, он не нагреется, и будет стабильно и безопасно функционировать. Но все же, если мощности слишком высокие, то перегрев возможен. Чтобы исключить отрицательное воздействие повышенной температуры на прибор в его конструкции предусматривается система охлаждения. Она бывает активной или пассивной.

При активном охлаждении в корпусе устройства монтируется вентилятор, при этом такие блоки питания не могут быть выполнены во влагозащитном исполнении из-за необходимости циркуляции воздуха внутри прибора и обмена с окружающей средой. Такие трансформаторы издают шум от работы вентилятора и имеют повышенное энергопотребление, что является отрицательными качествами. Но стоит заметить, что активное охлаждение – наиболее эффективный способ понижения температуры прибора.

Пассивное охлаждение конструктивно выполняется в виде специальных металлических радиаторов, которые устанавливаются в места, где происходит наибольший нагрев платы прибора. Также пассивное охлаждение происходит благодаря металлическому корпусу приборов, как во влагозащищенном, так и в обычном исполнении.

Дополнительные функции

Коррекция коэффициента мощности

В характеристиках блоков питания иногда указывают наличие коррекции реактивной мощности. В документации на прибор она обозначается PFC или Power Factor Correction. Это означает, что блок питания имеет высокие технические характеристики по части энергосбережения и полезного использования потребляемого питания. Более того, такие трансформаторы позволяют группировать их без специальных пусковых автоматов и экологичны, ввиду высокого КПД.

Материал корпуса

Корпус прибора может быть выполнен из пластика, алюминия или другого металла. Алюминиевый корпус применяют не только для уменьшения веса прибора и защиты от повреждений, но и для пассивного охлаждения блока питания. Металлический корпус также защищает от механических воздействий и охлаждает прибор, но весит значительно больше алюминиевого. Пластиковый материал для корпуса применяют у приборов, которые будут эксплуатироваться с маломощными светодиодными лентами и без вероятности повреждения.

Наличие RGB-контроллера

Для подключения и использования RGB и RGBW лент недостаточно приобрести только понижающий блок питания. В этом случае необходим еще контроллер RGB ленты, который позволит менять оттенок освещения ленты при помощи различных устройств управления (пульт, дисплей и прочее). Некоторые блоки питания комплектуются такими контроллерами и предназначаются исключительно для многоцветных лент. Они стоят дороже обычных трансформаторов. Для одноцветных вариантов светодиодных лент использование контроллера не требуется.

Рейтинг
( Пока оценок нет )
Загрузка ...