Законы фарадея в химии и физике – краткое объяснение простыми словами

Содержание

Законы Фарадея в химии и физике — краткое объяснение простыми словами

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны). На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или буравчика, мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m=k*Q

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t, тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

Ну и напоследок рекомендуем просмотреть подробное объяснение закона Фарадея для электролиза:

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

Закон фарадея формула физика

Измеряя величины и можно определить электрохимические эквиваленты различных веществ. Убедиться в справедливости закона Фарадея можно на опыте. Соберем установку, показанную на рисунке Все три электролитические ванны заполнены одним и тем же раствором электролита, но токи, проходящие через них, различны. Обозначим силы токов через Тогда выделившихся на электродах веществ в разных ваннах, можно убедиться, что они пропорциональны соответствующим силам тока Постоянная Фарадея.

Читайте также:  Сборка электрического щита своими руками

I — сила тока; t — время. Электрохимический эквивалент — это масса вещества, образованная при прохождении через электролит тока в 1 А за одну секунду. Это электрический заряд, измеряемый в кулонах один ампер к одной секунде. Электрический заряд отражает способность тела быть источником электромагнитного поля и принимать участие в электромагнитном взаимодействии.

Закон Фарадея для электролиза

I — сила тока; t — время. Электрохимический эквивалент — это масса вещества, образованная при прохождении через электролит тока в 1 А за одну секунду. Это электрический заряд, измеряемый в кулонах один ампер к одной секунде. Электрический заряд отражает способность тела быть источником электромагнитного поля и принимать участие в электромагнитном взаимодействии. Первый закон Фарадея. Первый закон электролиза Фарадея: масса вещества, выделившегося при электролизе, прямо пропорциональна количеству электрического тока, пропущенного через электролит.

Второй закон Фарадей, пропуская электрический ток одинаковой силы через различные электролиты, заметил, что массы веществ на электродах неодинаковы. Взвесив выделившиеся вещества, Фарадей сделал вывод, что вес зависит от химической природы вещества. Например, на каждый грамм выделенного водорода приходилось ,9 г серебра, 31,8 г меди, 29,35 г никеля. На основе полученных данных Фарадей вывел второй закон электролиза: для определённого количества электричества масса химического элемента, образовавшегося на электроде, прямо пропорциональна эквивалентной массе элемента.

Это число называется числом Фарадея и обозначается буквой F. Второй закон Фарадея. Что мы узнали? Фарадей, проводя реакцию электролиза разных веществ, вывел два закона.

Электрохимический эквивалент — количество выделившегося вещества при прохождении единицы электричества. Эквивалентная масса — количество вещества, реагирующее с 1 молем водорода. Тест по теме Средняя оценка: 4.

Всего получено оценок: А какая ваша оценка? Будь в числе первых на доске почета Понравилась статья? Помоги проекту — жми на кнопку и расскажи друзьям: Не понравилось?

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Урок 298. Электрический ток в жидкостях. Закон Фарадея для электролиза

Первый закон Фарадея описывает взаимосвязь между массой выделяющегося то справедлив Первый Закон Фарадея: масса выделившегося вещества прямо Второй закон ФарадеяЭлектролиз Формулы по физикеДлина. В г. М. Фарадей установил: Масса вещества, которое выделяется при прохождении электрического тока в электролитах на аноде или катоде.

Электролиз История открытия Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше — в году. В своих демонстрационных экспериментах в августе г. На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре. Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины. Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник — металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку. Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея. В г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества. Электродинамика Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов трансформаторов, двигателей и пр. Закон Фарадея гласит: Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Образовака Физика 11 класс Закон электромагнитной индукции Фарадея В году мир впервые узнал о понятии электромагнитной индукции.

Законы Фарадея Законы электролиза При прохождении электрического тока через электролиты происходит процесс разложения вещества, который называют электролизом. При этом проводники, которые погружены в раствор, называют анодом положительный электрод и катодом отрицательный электрод.

Законы Фарадея в химии и физике — краткое объяснение простыми словами

Оно явилось основополагающим для развития технического применения этого явления. История В е годы го века датчанин Эрстед наблюдал за отклонением магнитной стрелки при расположении ее рядом с проводником, по которому протекал электроток. Это явление захотел исследовать ближе Майкл Фарадей. С большим упорством он преследовал свою цель — преобразовать магнетизм в электричество. Первые опыты Фарадея принесли ему ряд неудач, так как он изначально считал, что значительный постоянный ток в одном контуре может сгенерировать ток в рядом находящемся контуре при условии отсутствия электрической связи между ними.

Закон электромагнитной индукции Фарадея

Второй закон Фарадея. Ландсберг Г. От каких же свойств вещества зависит его электрохимический эквивалент? Ответ на этот вопрос дает следующий важный закон, также установленный Фарадеем на опыте второй закон Фарадея : электрохимические эквиваленты различных веществ пропорциональны их молярным массам и обратно пропорциональны числам, выражающим их химическую валентность. Для уяснения этого закона рассмотрим конкретный пример. Поэтому по второму закону Фарадея электрохимические эквиваленты серебра и цинка должны относиться, как. Согласно табл. Величина называется постоянной Фарадея.

Законы Фарадея для электролиза Когда ионы электролита доходят до электродов, соединенных с полюсами источника постоянного тока, то положительные ионы получают недостающие электроны от отрицательного электрода и в процессе реакции восстановления превращаются в нейтральные атомы молекулы ; отрицательные ионы отдают электроны положительному электроду и в процессе реакции окисления превращаются в нейтральные атомы. Явление выделения вещества на электродах в процессе окислительно-восстановительной реакции при прохождении тока через электролит называется электролизом.

Законы электролиза Фарадея

Законы электролиза Фарадея представляют собой количественные соотношения, основанные на электрохимических исследованиях Майкла Фарадея, которые он опубликовал в 1836 году.

Майкл Фарадей (1791 — 1867)

Данные законы определяют связь между количеством веществ, выделяющихся при электролизе и количеством электричества, которое прошло при этом через электролит. Законов Фарадея два. В научной литературе и в учебниках встречаются различные формулировки данных законов.

Первый закон электролиза Фарадея

Масса вещества, которое осядет на электроде при электролизе, прямо пропорциональна количеству электричества, переданного к этому электроду (прошедшего через электролит). Под количеством электричества понимается количество электрического заряда, который обычно измеряется в кулонах.

Второй закон электролиза Фарадея

Для определенного количества электричества (электрического заряда) масса химического элемента, который осядет на электроде при электролизе, прямо пропорциональна эквивалентной массе данного элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

Одно и то же количество электричества приводит к выделению на электродах при электролизе эквивалентных масс различных веществ. Для выделения одного моля эквивалента любого вещества необходимо затратить одно и то же количество электричества, а именно 96485 Кл. Данная электрохимическая константа называется числом Фарадея.

Законы Фарадея в математической форме

m – масса вещества, осевшего на электроде ;

Q – величина полного электрического заряда в кулонах, который прошел при электролизе ;

F = 96485,33(83) Кл/моль — число Фарадея ;

M- молярная масса элемента в г/моль ;

z – валентное число ионов вещества (электронов на ион) ;

M/z – эквивалентная масса осевшего на электроде вещества .

Применительно к первому закону электролиза Фарадея, M, F и z – константы, поэтому чем больше будет Q, тем больше окажется и m.

Читайте также:  Прокладка кабеля в деревянном доме

Применительно ко второму закону электролиза Фарадея, Q, F и z – константы, поэтому чем больше будет M/z, тем больше окажется m.

Для постоянного тока имеем

n – количество молей (количество вещества), выделенного на электроде: n = m/M.

t – время прохождения постоянного тока через электролит Для переменного тока суммируется полный заряд за время .

t – полное время электролиза.

Пример применения законов Фарадея

Необходимо записать уравнение электрохимических процессов на катоде и аноде при электролизе водного раствора сульфата натрия при инертном аноде. Решение задачи будет таким. В растворе сульфат натрия станет диссоциировать по такой схеме:

Стандартный электродный потенциал в данной системе таков:

Это значительно более отрицательный уровень потенциала нежели для водородного электрода в нейтральной среде (-0,41 В). Поэтому на отрицательном электроде (катоде) начнет протекать электрохимическая диссоциация воды с выделением водорода и гидроксид-иона по следующей схеме:

А положительно заряженные ионы натрия, подходящие к отрицательно заряженному катоду, станут скапливаться возле катода, в прилегающей к нему части раствора.

На положительном электроде (аноде) будет протекать электрохимическое окисление воды, что приведет к выделению кислорода, по следующей схеме:

В данной системе стандартный электродный потенциал +1,23 В, что сильно ниже стандартного электродного потенциала, характерного для следующей системы:

Отрицательно заряженные сульфат-ионы, бегущие к положительно заряженному аноду, станут скапливаться в пространстве возле анода.

Электрохимия. Законы Фарадея.

Электрохимия — это раздел физической химии, в котором изучают физико-химические свойства ионных систем, а также процессы и явления на границах раздела фаз с участием заряженных частиц.

Проводники электрического тока делятся на электронные (проводники первого рода) и ионные (проводники второго рода).

Проводники первого рода — металлы в твердом и расплавленном состоянии. В них электрический ток осуществляется движением электронов электронного газа. При этом прохождение электрического тока в проводниках первого рода не сопровождается химическими изменениями их материала.

Проводники второго рода — некоторые растворы солей, кислот и оснований, а также некоторые вещества, главным образом соли, в расплавленном состоянии. Электрический ток в них осуществляется движением ионов (как положительных, так и отрицательных).

Электролиты — это химические соединения, которые в растворе (полностью или частично) диссоциируют на ионы. Диссоциация приводит к разъединению, отрыву ионов от молекулы или кристалла в результате взаимодействия ионов с молекулами растворителя.

Молекулы растворителей, обладающих хорошей диссоциирующей способностью, являются сильно полярными, и, следовательно, такие растворители имеют высокую диэлектрическую проницаемость.

Под действием электрических полей, создаваемых ионами электролита, полярные молекулы растворителя притягиваются ионами, ориентируются около них и в свою очередь, притягивая ионы к себе, ослабляют связь между ионами.

Подобным же образом они действуют и на ионы, составляющие решетку, например, ионного кристалла. Число ионов каждого знака определяется стехиометрическими коэффициентами в формуле электролита при соблюдении закона электронейтральности — сумма положительных зарядов равна сумме отрицательных. Таким образом, несмотря на наличие ионов, раствор электролита остается электронейтральным.

Электростатическое взаимодействие иона электролита с молекулами растворителя — сольватация — приводит к образованию вокруг иона молекулярного комплекса — сольвата. Совокупность молекул растворителя, окружающих ион, представляет собой сольватную оболочку. Сольватацию в водных растворах называют гидратацией.

Различают сильные и слабые электролиты.

Сильные электролиты диссоциируют в растворе почти полностью. В водных растворах сильными электролитами являются многие минеральные кислоты (HN03, НС1, НС104 и др.), основания (щелочи), большинство солей.

Слабые электролиты диссоциируют в растворе только частично. К слабым электролитам в водных растворах относятся почти все органические кислоты и основания.

Сильные и слабые электролиты являются двумя различными состояниями химических соединений (электролитов) в зависимости от природы растворителя. В одном растворителе данный электролит может быть сильным электролитом, в другом — слабым.

Процесс диссоциации слабых электролитов является обратимым, поскольку ионы противоположного знака, встречаясь в растворе, могут вновь соединяться в молекулы.

Рассмотрим простейший случай слабого сильно разбавленного бинарного одно-одновалентного электролита, диссоциирующего по схеме

Важные характеристики электролита:

— степень диссоциации α — доля продиссоциировавших молекул из числа первоначально взятых

— константа диссоциации Kd, которую, для данного случая можно представить (используя закон действующих масс — при постоянной температуре скорость данной реакции прямо пропорциональна произведению концентраций реагирующих веществ, причем каждая из концентраций участвует в степени, в простейших случаях равной коэффициенту перед формулой данного вещества в уравнении реакции) в виде

Например,

Если , то , при малых значениях a

2. граница между электролитами обозначается двумя вертикальными линиями.

Элемент Даниэля-Якоби состоит из цинкового и медного электродов, опущенных соответственно в растворы сульфатов цинка и меди, разделенных пористой диафрагмой во избежание их перемешивания.

Правило записи схем электрохимических элементов.

ЭДС электрохимического элемента считается положительной, если электрохимическая цепь записана так, что катионы при работе элемента проходят в растворе от левого электрода к правому и в том же направлении движутся электроны во внешней цепи. Схема элемента Даниэля-Якоби

При погружении металла в раствор ионы металла под действием сильно полярных молекул воды начинают переходить в слой воды, прилегающий к поверхности металла.

При этом приповерхностный слой металла обедняется катионами, приобретает избыточный отрицательный заряд, и между ним и катионами в растворе возникает разность потенциалов, препятствующая дальнейшему выходу катионов из металла — устанавливается равновесие.

В элементе Даниэля-Якоби цинковый электрод, обладающий более высокой способностью выделять ионы в раствор, чем медь, приобретает более высокий отрицательный заряд. Если соединить электроды металлическим проводником, то избыточные электроны будут переходить с цинковой пластинки на медную.

Это нарушает равновесие на поверхности каждого из электродов. На цинковом электроде (отрицательном полюсе элемента — аноде) продолжается окисление цинка Zn = Zn 2+ + 2е

На медном электроде (положительном полюсе элемента — катоде) продолжается восстановление меди Си 2+ + 2е

Таким образом реализуется самопроизвольно протекающий процесс, в котором цинковая пластинка растворяется, на медной выделяется металлическая медь, а во внешней цепи протекает электрический ток. Суммарная окислительно-восстановительная реакция:

Cu 2+ + Zn —> Си + Zn 2+

С другой стороны, если при протекании химической реакции на каждом электроде выделяется или растворяется z моль-эквивалентов вещества (согласно закону Фарадея, во внешней цепи протекает zF Кл электричества), то максимальная работа, которую совершает гальванический элемент по перенесению заряда zF между электродами с разностью потенциалов Е равна zFE.

Электродвижущей силой (ЭДС) элемента Е называется разность потенциалов между полюсами обратимого электрохимического элемента.

Очень часто необходимо рассчитать потенциал в нестандартных условиях в этом случае используют уравнение Нернста, которое описывает зависимость потенциала от концентрации вещества и температуры.

,

где R – газовая постоянная,

F – число Фарадея (96 500 Кл/моль),

Т- абсолютная температура,

n – число электронов участвующих в процессе.

При температуре 298 К данное уравнение принимает следующий вид:

.

где Е — условный стандартный электродный потенциал по водородной шкале.

Для определения равновесного электродного потенциала по водородной шкале составляют элемент из этого электрода и стандартного водородного электрода. Который представляет собой платиновую нить, погруженную в

электролит, вдоль которой пропускается газообразный водород, H + |H2,Pt) с

активностью водородных ионов в растворе равной единице и давлением водорода равном 1 атм. Его потенциал при любой температуре условно принят равным нулю.

При этом: стандартный водородный электрод располагают слева.

Например, для определения потенциала цинкового электрода составляют электрохимическую цепь

Электродная реакция записывается как реакция восстановления, т.е.

присоединения электронов: в данном примере на водородном (левом)

электроде 2H + +2e

=H2, на цинковом (правом) электроде Zn 2+ +2е

=Zn. Общая реакция записывается как разность между реакциями на правом и левом элементах

Н2 + Zn 2+ = 2Н + + Zn

Читайте также:  Как найти силу тока в цепи

Стандартный электродный потенциал считается положительным, если электрод заряжен более положительно, чем стандартный водородный электрод. В этом случае электрический ток будет течь внутри элемента слева направо и ЭДС элемента будет положительной.

Стандартный электродный потенциал считается отрицательным, если электрод заряжен более отрицательно, чем стандартный водородный электрод. В этом случае электрический ток будет течь внутри элемента справа налево и ЭДС элемента будет отрицательной.

В рассматриваемом примере Н2 + Zn 2+ = 2Н + + Zn ток в элементе будет течь от цинкового электрода к водородному (справа налево) и ЭДС элемента так же, как и равный ей потенциал цинка, будет иметь отрицательный знак.

Стандартные электродные потенциалы, определенные по водородной шкале при 25 С (298 К) обычно располагают в ряд. Например

ЭлектродLi + |LiZn 2+ |ZnH + |H2,PtCu 2+ |CuF + |F2,Pt
Е°, В-3,04-0,7630,00+0,337+2,87
Стандартный потенциал, расположенный правее в электрохимическом ряду, является более электроположительным по сравнению с потенциалом, расположенным левее.

|следующая лекция ==>
Суставной синдром в практике ВОП. Остеопороз. Нарушение функции суставов|Стрелочные переводы

Дата добавления: 2015-12-08 ; просмотров: 1898 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Закон электромагнитной индукции Фарадея

В статье расскажем что такое электромагнитная индукция, подробно опишем закон Фарадея и правило Ленца, а так же немного затронем тему уравнений Максвелла.

Электромагнитная индукция

Суть электромагнитной индукции заключается в том, что изменение магнитного поля, покрывающего электрическую цепь, вызывает возникновение электродвижущей силы в этой цепи, которая в случае замкнутой цепи вызывает протекание электрического тока. Если цепь, в которой мы должны генерировать электродвижущую силу, состоит из катушки и прикрепленного к ней амперметра, то источник изменяющегося магнитного поля, который включает в себя катушку, может быть адекватно перемещен постоянным магнитом или движущимся электромагнитом, в котором мы меняем ток питания. В каждом из этих случаев магнитное поле, которое пронизывает катушку, изменяется со временем.

В общем, изменение магнитного потока в цепи амперметра вызывает электрический ток в этой цепи.

Источником индуктивных явлений снова является сила Лоренца F, которая возникает, когда заряд q движется со скоростью v в магнитном поле B

F = q * v * B

Когда направляющая перемещается в поле B, подвижные носители нагрузки будут смещаться под действием силы Лоренца до тех пор, пока в проводнике не появится электрическое поле E, а сила, действующая на носители, F = q * E, уравнивает силу Лоренца. Когда линейный проводник длины l движется с постоянной скоростью v в однородном магнитном поле B, направленном перпендикулярно оси проводника и вектору скорости v , как на чертеже:

тогда мы сохраним условие баланса между силой Лоренца и силой отталкивания между зарядами в виде уравнения:

v*B = E = V / l ,

где V — разность потенциалов на концах проводника длиной l. Следовательно, значение этой разности потенциалов:

Если вектор v не перпендикулярен полю B , но образует с ним угол N , то разность потенциалов на концах направляющей будет:

V = v * B * l * sin θ

Это означает, что перемещение проводника вдоль направления поля B не будет генерировать в нем электродвижущую силу. Нетрудно доказать, что в случае направляющей любой формы разность потенциалов между точками а и b направляющей равна:

Когда прямоугольная рамка со сторонами a и b вращается в однородном магнитном поле B с постоянной угловой скоростью T

это электродвижущая сила V, генерируемая с обеих сторон рамы:

Магнитные силы, действующие в двух других сторонах петли, перпендикулярны этим сторонам и не влияют на электродвижущую силу. Посредством соответствующего способа получения генерируемого напряжения можно реализовать простейшие модели генераторов переменного тока (а) и постоянного тока (b), как показано на рисунке:

В природе и технике существует огромное количество явлений, вызванных электромагнитной индукцией, то есть генерацией электродвижущей силы в пространстве, где существует изменяющееся магнитное поле. Все эти явления описываются одним замечательным, компактным уравнением, являющимся содержанием закона Фарадея.

Формулы и объяснение закона Фарадея

Большое открытие Майкла Фарадея (1791 — 1867) состояло в том, что он нашел правило, управляющие электромагнитной индукцией. В результате многолетних экспериментов Фарадей заявил, что электродвижущая сила E появляется в проводнике при изменении магнитного поля, окружающего этот проводник, величина генерируемой электродвижущей силы пропорциональна скорости магнитного поля, и что направление индуцированной электродвижущей силы зависит от направления, в котором изменяется магнитное поле. Все эти факты содержатся только в одном уравнении:

где B — элементарный поток магнитного поля

В общем случае, даже когда проводников нет, электродвижущая сила равна циркуляции электрического поля E вдоль замкнутого контура:

Таким образом , закон Фарадея может быть записан в обобщенной форме:

Обратите внимание, сколько факторов может изменить значение потока:

1. Изменение значения вектора B ;

2. Изменение значения площади поверхности d A ;

3. Путем изменения угла между B и d А ;

4. Одновременное изменение B и d А ;

5. Одновременное изменение В и угла ;

6. Одновременное изменение d A и угла.

Нельзя не заметить появившийся здесь знак минус! Этот знак минус в законе Фарадея был назван правилом Ленца, который можно понимать как правило неповиновения в электродинамике.

Правило Ленца

Правило Ленца (знак минуса в законе Фарадея) определяет, что индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока.

Закон индукции Фарадея вместе с правилом Ленца представляет собой анимацию, в которой движение постоянного магнита вызывает создание электродвижущей силы в катушке, покрытой полем магнита.

Индукционный ток может создаваться не только в обмотках, но и в сплошных металлических блоках, помещенных в изменяющиеся магнитные поля.

Пример: так называемый вихревой ток, схематически показанный на рисунке:

Когда постоянное магнитное поле приложено к вращающейся алюминиевой мишени, то в мишени создаются два семейства противоположно направленных токов. Магнитное поле вихревых токов направлено так, что часть диска, которая выходит из поля, будет втянута обратно в поле, а часть диска, которая входит в область поля, будет вытеснена из этого поля.

Вихревые токи часто нежелательны, например, в сердечниках трансформатора, где они вызывают потери тепла. Для ограничения вихревых токов сердечники трансформатора выполнены в виде стопок из листового металла.

Уравнения Максвелла в интегральной форме

Закон Фарадея содержит: обобщенный закон Ампера, закон Гаусса для электрического поля и закон Гаусса для магнитного поля в системе из четырех уравнений Максвелла. Эти уравнения были представлены применительно к макроскопическим контурам и замкнутым поверхностям. По этой причине мы говорим, что это уравнения Максвелла в интегральной форме. Давайте посмотрим на эти уравнения еще раз.

Закон Фарадея

Обобщенный закон Ампера

Закон Гаусса для электрического поля

Закон Гаусса для магнитного поля

Интегральные уравнения Максвелла описывают электрические и магнитные явления в макроскопическом масштабе. Ведь для их формулировки нужны контуры, замкнутые поверхности, токи и потоки полей. Однако чрезвычайно важно знать, что происходит с электрическими и магнитными полями в отдельных точках, то есть в микроскопическом масштабе. Тогда можно будет описать такие явления как электромагнитные волны.

Для микроскопического описания электрических и магнитных явлений используются уравнения Максвелла в дифференциальной форме. Чтобы получить их, мы применим две математические теоремы к уравнениям в интегральной форме: теорема Гаусса-Остроградского и теорема Стокса.

Следует отметить, что преобразование уравнений Максвелла между целочисленной и дифференциальной формами получается в результате только математических операций. Это означает физическую эквивалентность этих двух форм уравнений Максвелла.

Теорема Гаусса-Остроградского и теорема Стокса, несмотря на их кажущуюся сложность, концептуально совершенно просты и легко интуитивно принимаются. Обе эти тему будут представлены в следующей статье.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Рейтинг
( Пока оценок нет )
Загрузка ...