Измеритель яркости света

Содержание

Единица измерения света

p, blockquote 1,0,0,0,0 –>

Единица измерения света — Люмен.

Единицей измерения света является — Люмен. Это единица измерения потока света в системе единиц физических величин — СИ. 1 люмен = световой поток, который испускается от точечного изотропного источника. Сила света при этом должна равняться 1 Кандела. Полное свечение, исходящее от изотропного светильника, с силой света 1 Кандела равно 4 люменам.

1300 люменов содержится в стандартной лампе накаливания 100 Ватт .

1600 lm — в потоке света люминесцентного осветителя 26 Вт.

В солнце — 3.63х10 в 28 степени Люменов.

Люмен является полным потоком света от светильника. Несмотря на это, такая единица измерения не сильно распространена, потому что она не учитывает сосредотачивающую эффективность отражательного предмета или линзы. Люмен — не прямой параметр оценивания яркости или производительности фонарного свечения. Широкий световой луч может принимать те же значения, что и узконаправленный. Люмены не в состоянии определить интенсивность освещения, так как оценка в люменах предполагает учет всего рассеянного свечения, бесполезного в этом случае.

p, blockquote 2,0,0,0,0 –>

Единица измерения силы света — Кандела

Единица измерения силы света — Кандела. Обозначается как Кд или cd. Кандела равняется силе свечения, которое испускается в определенном векторе, заданном источником монохроматического излучателя частотой 540х10 в 12 степени Герц.

p, blockquote 6,0,0,0,0 –>

В системе СИ есть 7 главных единиц измерения, одной из которых является кандела. Кандела равняется силе свечения, которое испускается в определенном векторе, заданном источником монохроматического излучателя частотой 540х10 в 12 степени Герц. Его энергетическая сила света составляет 1/683 (Вт/ср). Ср — стерадиан, этим показателем измеряют телесные углы. В славянских странах его обозначают как Ср, однако международное обозначение sr.

p, blockquote 7,0,0,0,0 –>

Упомянутая частота соответствует зеленому спектру. Глаз человека более чувствителен к зеленому, чем к другим цветам. Для достижения того же значения силы света при излучении с другой частотой необходимы большие показатели энергетической интенсивности.

p, blockquote 8,0,0,0,0 –>

Ученые прошлых веков определяли Кандела как силу света, которая излучается черным предметом перпендикулярно плоскости площадью 1/60 квадратных сантиметров при температуре 2042.5К. При такой температуре расплавляется платина. Современная наука определила значение 1/683 так, чтобы нынешнее обозначение соответствовало предыдущему.

p, blockquote 9,0,0,0,0 –>

Пламя свечи излучает примерно одну канделу силы света. Из-за того, что в латинском языке свеча называется candela, а в английском — candle, раньше эту единицу измерения так и называли: свеча. Сейчас такое название не используется и считается архаизмом.

p, blockquote 10,0,1,0,0 –>

p, blockquote 11,0,0,0,0 –>

p, blockquote 12,0,0,0,0 –>

Единица измерения освещенности.

Единица измерения освещенности — отношение свечения к поверхности, которое оно освещает, принято называть освещенностью. Учитывается именно перпендикулярное падение света на определенную плоскость.

p, blockquote 13,0,0,0,0 –>

Единица измерения освещенности — Люкс (lux.)

p, blockquote 14,0,0,0,0 –>

1 люкс = отношение 1 люмена к 1 метру поверхности в квадрате.

p, blockquote 15,0,0,0,0 –>

Световой поток измеряется в люменах. Оба показателя занесены в международную систему единиц. В Великобритании и Соединенных Штатах уровень освещенности узнают в люменах на квадратный фут, также называемые футом-кандела. Яркость свечения — освещенность от источника силой в 1 канделу на расстоянии одного фута от освещаемой плоскости.

p, blockquote 16,0,0,0,0 –>

В европейских странах есть стандарт качества освещения в рабочих помещениях. Ниже представлены некоторые рекомендации из этого документа.

p, blockquote 17,0,0,0,0 –>

  • 300 люкс;
    Офис или другие помещения, где не нужно пристально рассматривать мелкие детали.
  • 500 люкс;
    Такой уровень свечения должен быть в комнатах, где люди длительное время работают за компьютером или читают. Это применимо и к учебным заведениям, и к переговорным пунктам, и к другим учреждениям.
  • 750 люкс.
    Если люди занимаются технической работой: изготавливают продукцию, создают точные чертежи и так далее, должен быть такой уровень освещенности.

Нужно ли, на самом деле, измерять степень освещенности и что такое единица измерения света?

Ученые доказали, что тусклый или, наоборот, слишком яркий свет разрушают сетчатку человеческого глаза, из-за чего ухудшается острота зрения. Из-за разрушения сетчатки скорость и качество функционирования мозга снижаются. Недостаточное количество яркости увеличивает в людях сонливость, понижает работоспособность и ухудшает настроение. Следует учесть, что мы не берем во внимание ситуации, в которых тусклое свечение украшает обстановку: романтическое свидание, просмотр фильма и так далее. Насыщенный световой поток прибавляет сил, энергии, желания работать, тем самым быстрее утомляя человека.

p, blockquote 18,0,0,0,0 –>

Единица измерения света установлена СанПиНом называют санитарные правила и нормы — данные, на которые нужно равняться при измерении освещенности. Замеры делаются для определения не только степени освещенности, но и уровня шума, пыли, загрязненности, вибрации. По мнению докторов, постоянный недостаток света на рабочем месте приводит к переутомлению сотрудников, ухудшению зрения и концентрации внимания. Рабочие становятся менее трудоспособными, что может вылиться в несчастный случай по невнимательности или другим причинам.

p, blockquote 19,0,0,0,0 –>

Помимо людей, от недостаточной освещенности страдают и другие живые организмы: растения, животные. Для быстрого развития и плодородного цветения растениям обязательно нужен мощный поток света. У животных из-за некачественного освещения могут появиться нарушения в росте и развитии, репродуктивной функции, наборе массы тела и может снизиться активность существа.

p, blockquote 20,0,0,0,0 –>

p, blockquote 21,1,0,0,0 –>

Каким бывает освещение

Освещение, как правило, бывает естественным и искусственным.

p, blockquote 22,0,0,0,0 –>

Естественные источники свечения:

p, blockquote 23,0,0,0,0 –>

  • солнце;
  • луна;
    На самом деле, луна не излучает свет, она просто отражает солнечные лучи.
  • рассеянный свет небосвода;
    Несмотря на такое красивое название, этот термин можно увидеть в официальных документах.
  • кометы;
  • полярные сияния;
  • электрические разряды в атмосфере;
  • звезды и другие небесные объекты.

p, blockquote 24,0,0,0,0 –>

  • разные осветительные формы и конструкции;
  • лампы;
  • светильники;
  • фонарики;
  • мониторы;
  • телевизоры;
  • мобильные телефоны и другие.

p, blockquote 25,0,0,0,0 –>

Интенсивность света

Единица измерения света интенсивность измеряется при обустройстве освещения в комнате либо при подготовке фотоаппарата к съемке. Опытные фотографы и светотехники-профессионалы, пользуются цифровыми экспонометрами, однако можно изготовить и простой прибор с похожим принципом работы своими руками.

p, blockquote 26,0,0,0,0 –>

Многие аппараты предназначены для отдельного типа освещения. Например, измеряя свечение натриевых ламп, вы добьетесь более точного результата, чем проводя расчеты над лампой накаливания.

p, blockquote 27,0,0,0,0 –>

Можете установить приложение на смартфон, которое определит интенсивность света. Какими бы хорошими ни были ваш телефон и выбранное приложение, результаты будут искаженными и неточными, поэтому лучше воспользоваться специализированным прибором.

p, blockquote 28,0,0,0,0 –>

Большинство устройств измеряют показатели освещенности в люксах, так как это общепринятая единица, однако некоторые настроены на отображение фут-кандел.

p, blockquote 29,0,0,0,0 –>

Если вам неудобен один из этих способов измерения, можете перевести люксы в канделы и наоборот на этом ресурсе:

p, blockquote 30,0,0,0,0 –>

p, blockquote 31,0,0,1,0 –>

Чем измеряют степень освещенности

Как мы уже выяснили, единица измерения освещенности — Люкс. Несложно догадаться, как называется прибор, которым измеряют уровень света. «Люкс» плюс «метр» (с древнегреческого переводится как «мера», «измеритель») равно люксметр. Принцип работы этого портативного устройства схож с работой фотометра.

p, blockquote 32,0,0,0,0 –>

p, blockquote 34,0,0,0,0 –>

Попадающий на элемент световой поток выпускает электроны в теле полупроводника, из-за чего электроток начинает проводиться фотоэлементом. Величина электрического тока прямо пропорциональна степени освещения фотоэлемента, который и отображается на шкале или на электронном дисплее, если это современная модель люксметра. Аналоговые аппараты снабжены специальной шкалой с градусами. По движению стрелки определяются окончательные результаты замеров.

p, blockquote 35,0,0,0,0 –>

Цифровые устройства.

На смену аналоговым люксметрам пришли цифровые — маленькие компьютеры. Параметры можно увидеть на небольшом жидкокристаллическом экране. Часть, с помощью которой измеряют свет, часто содержится во внешнем корпусе и соединяется с основным устройством гибким проводом. Из-за такой конструкции можно измерять освещение в любых местах, даже труднодоступных. Согласно ГОСТ, погрешность аппарата не должна превышать 10 процентов.

p, blockquote 36,0,0,0,0 –>

Важные моменты.

При расчете сравнительной световой интенсивности можете сделать замер интенсивности освещения аналоговым или цифровым устройством. Современные измерители отображают параметры в люксах, а устаревшие аналоговые — те, которые со стрелочкой, — в фут-канделах. 1 фут-кандела равняется 10.76 люкс.

p, blockquote 37,0,0,0,0 –>

Заключение.

Таким образом, мы разобрались, что значит освещенность, сила света, его интенсивность. Вы узнали какими бывают единицы измерения светового потока, измерительные приборы, ознакомились с нормами и рекомендациями СанПин и многим другим. Теперь вы имеете базовый багаж знаний об освещении и не растеряетесь, если услышите в разговоре слово «кандела» или «люксметр». Если интересно, можете приобрести измерительный аппарат и сделать несколько замеров освещенности своего рабочего места. После этого вы поймете, соответствует ли ваше освещение нормам или нет.

Люксометр: измерение освещенности

Комфорт современного человека определяется множеством параметров и факторов, одним из которых является наличие комфортного и соответствующего нормам освещения. В каждой стране, в том числе и в России, существуют определенные государственные стандарты к уровню освещённости для объектов и помещений всех типов.

Внешний вид карманного цифрового люксметра

Измерить освещенность того или иного места, где пребывает человек, можно с помощью специального оборудования.

Что такое люксметр

Многие часто слышат слово «люксметр» и задаются вопросом, что такое люксметр. Технические устройства, призванные замерять освещенность строений и помещений, называются люксметрами. Такие приборы применяются для различного рода исследований и проверочных мероприятий, например, определения соответствия уровня освещения на рабочем месте при осуществлении оценки условий труда специальной комиссией. Освещение люксметрами измеряется как внутри, так и снаружи помещений.

Читайте также:  Провод для соединения колонок между собой

Важно! Стоит помнить, что плохое освещение способствует нарушению общего состояния здоровья человека (появление сонливости и занижение концентрации внимания), уменьшает показатели трудовой производительности.

Процесс замера освещенности комнаты люксметром Flus ET-932

Современный люксметр отличается высокими показателями точности, компактностью, постоянно совершенствующимся дизайном, эргономичностью и многофункционалом.

Часто производители измерительного оборудования изготавливают универсальные приспособления, которые выполняют не только функцию люксметра, но ими можно также производить замеры яркости и пульсации света.

Устройство и принцип функционирования

Каждый люксметр, вне зависимости от производителя и конструкции, содержит главный компонент – фотодатчик, основанный на полупроводнике, в котором кванты света (фотоны) передают энергию электронам. Результат – электрический ток, сила которого непосредственно зависит от освещенности в измеряемом помещении.

Также люксметры оснащены индикатором, на который выводятся итоговые показатели замера. Индикаторы могут быть либо цифровыми с электронным дисплеем, либо аналоговые в виде шкалы со стрелкой.

Внешний вид отечественного люксметра Ю-116, находящийся в коробке от производителя

Аналоговые люксметры, или механические, выводят результат измерений посредством воздействия электротока на индикаторную стрелку, приводя ее в движение по шкале. Какой будет сила этого электротока, на том показателе освещенности и требуется остановить указатель.

Цифровые приборы, измеряющие освещение, выводят измерительные итоги на дисплей, трансформируя электронным конвертером аналоговый сигнал.

Типы и особенности

Измерители могут отличаться между собой по конструкции:

  1. Отдельный фотодатчик. Прибор соединяется с фотоэлементом посредством гибкого кабеля. Приспособления такого типа удобно использовать для измерения освещения с различных направлений в местах, доступ к которым ограничен. Часто инспекторы по оценке трудовых условий применяют именно такую конструкцию прибора;
  2. Моноблочный тип. Люксметр, имеющий единый с фотодатчиком корпус. Встречаются модели, в которых предусмотрен съем фотоэлемента. Быстрые измерения освещенности, меньшие габаритные размеры и эргономичность – главные преимущества этого типа приборов.

Внешний вид карманного люксметра Light Meter HS 1010 на батарейках

По типу индикаторной части, как было описано выше, измерители бывают двух видов:

  1. Стрелочные. Оборудование для измерения освещенности с аналоговым индикатором в виде отградуированной в люксах шкалы и стрелки-указателя, давно зарекомендовавшее себя за простоту и легкость в эксплуатации, а также низкую стоимость. Однако такие измерители имеют высокие погрешности измерений, например, у люксметра Ю 116 отклонения могут доходить до 10%;
  2. Цифровые. Измерители, выводящие результат замеров на дисплей, наиболее удобны и точны, однако стоят дороже.

По режимам и функционалу люксметры можно разделить на следующие категории:

  • простые измерители;
  • многофункциональные приборы;
  • профессиональные люксметры.

На индикаторе простых недорогих измерительных приспособлений выводится только показатель освещенности. Они в основном применяются для быстрых замеров. Более дорогие могут рассчитывать усредненный показатель по нескольким значениям освещенности и идеально подходят для санитарных и иных проверяющих служб, так как могут отследить неравномерность освещения.

Многофункциональные измерители обладают своей встроенной памятью, которая позволяет передавать полученную информацию на ПЭВМ для ее дальнейшей обработки, что создает ощутимый комфорт в управлении показателями.

Скриншот на компьютере программного обеспечения от профессионального люксметра АТЕ-1509

Профессиональные люксметры могут оснащаться дополнительными специальными фильтрующими элементами – это светофильтры, которые вплотную приближают значение чувствительности фотодатчика к особенностям глаза человека. Это позволяет замерять свойства световых потоков, выдаваемых различными по цветовым оттенкам источниками света.

Интересно знать. Комплектация приборов индивидуальна и зависит от производителя, модели устройства. Так, компания-изготовитель люксметра Ю 116 комплектует его различными светофильтрами, насадками, а также в него вложена инструкция по эксплуатации.

Правила измерительного процесса

Изначально пред самим процессом измерения требуется расположить люксметр на измеряемую поверхность так, чтобы чувствительный фотодатчик располагался параллельно ей.

Важно! Только после правильного расположения агрегата в помещении можно снимать результаты освещенности.

Следует отметить, что искусственное и естественное освещение замеряются отдельно. При замерной процедуре необходимо воспрепятствовать попаданию электромагнитных волн от иных устройств и светотени, так как это существенно снижает точность итогов.

Некоторые особенности в эксплуатации устройств, которые могут увеличить их точность:

  • перед началом замеров стрелка в механическом люксметре должна находиться на нуле;
  • измеряя освещенность, устройство должно находиться в неподвижном состоянии – любые колебании увеличат погрешность итогов;
  • если измерение освещенности совершается люксметром с насадками и фильтрами на фотодатчик, а показатель оказался меньше 30 люкс, то требуется совершать измерения без дополнительных аксессуаров;
  • при пользовании прибором нужно исключать возможность попадания на фотоэлемент света из различных устройств и источников света, которые не относятся к измеряемой поверхности.

Комплектация и внешний вид люксметра Ю-116

Как выбрать люксметр

Приобретая прибор для измерения света, необходимо учитывать нижеследующие рекомендации:

  1. Выбор приспособления должен быть основан на тех задачах, которые перед ним ставятся;
  2. Следует выбирать приборы с минимальной погрешностью и широким интервалом измерения освещенности, что даст более ясною картину по показателю;
  3. При нечастом использовании рекомендуется выбирать недорогие и простые устройства, которые удобно будет держать в руке;
  4. Стоит также обратить внимание на вид питания устройства. Если при замерах нужно постоянно передвигаться по помещениям, то рекомендуется выбирать мобильные люксметры на аккумуляторах или батарейках. Когда прибор питается от сети, то для замерных мероприятий может понадобиться удлинитель, что доставляет определенные неудобства;
  5. Для профессиональных целей лучше приобретать люксметр с программным обеспечением и памятью, который совместим с компьютером, так как обработка информации будет на более качественном уровне;
  6. Приобретая цифровое устройство, надо выбирать ту модель, которая имеет больший дисплей, так как считывать крупные символы гораздо приятнее;
  7. Если прибором часто приходиться пользоваться при низком уровне света, то нужно выбирать цифровые люксметры с подсветкой дисплея, что упростит весь измерительный процесс;
  8. Выбирая прибор для измерения освещенности, предпочтение следует отдать проверенным и надежным изготовителям, производство которых базируется на измерителях. Если выбирать из аналоговых люксметров, то стоит отдать предпочтение отечественному люксметру Ю 116. Модели цифровых устройств представлены на рынке достаточно широко как от отечественных, так и от зарубежных компаний.

Современный люксметр Delta OHM HD 2302 (комплектация и внешний вид)

Галилео Галилей однажды высказал одну знаменитую мысль: «Измеряй все доступное измерению и делай доступным все недоступное ему». Так вот, руководствуясь вышеописанными рекомендациями по использованию и выбору люксметра, работа с ним будет только в удовольствие, а измерения доступны и верны.

Видео

Современные люксметры – надежный контроль освещенности в любых условиях

Люксметры и принцип их работы

ЛЮКСМЕТРэто прибор для измерения освещенности в помещениях различного назначения, на рабочих местах, а также на открытом пространстве. Это сложная система, в состав которой входит фотодиод, усилитель сигнала с фотодиода, аналогово-цифровой преобразователь, а также косинусная насадка и световые фильтры. Работает люксметр на явлении внутреннего фотоэлектрического эффекта. Это процесс возникновения электропроводимости в полупроводниках под действием электромагнитного излучения (в отличие от внешнего фотоэффекта, когда происходит эмиссия электронов под действием света). Когда световой поток попадает на полупроводниковый фотоэлемент, происходит высвобождение электронов в объеме полупроводника и как следствие – через фотоэлемент проходит электрический ток. Причем сила этого тока прямо пропорциональна интенсивности света, то есть освещенности фотоэлемента, а кинетическая энергия фотоэлектронов прямо пропорциональна частоте света. Такие простые математические зависимости позволяют выразить величину освещенности количественно.

В первых аналоговых люксметр освещенность рассчитывалась по углу отклонения стрелки гальванометра. После изобретения селенового фотодиода и усовершенствования вакуумных фотоэлементов, электрическая фотометрия получила широкое применение как в бытовых, так и в промышленных масштабах. Современные люксметры – это портативные цифровые приборы, с жидкокристаллическим экраном, на котором отображается результат измерения, с высокой степенью защиты корпуса и чувствительного элемента, а также с набором дополнительных функций и возможностей.

В более дешевых моделях люксметров светочувствительный элемент может быть жестко закреплен на корпусе, что ограничивает возможности использования прибора. Гибкое соединение измерительной части с прибором обеспечивает возможности измерения в труднодоступных местах.

Селеновый фотодиод является чрезвычайно чувствительным не только к видимому излучению, но и к ультрафиолетовым и инфракрасным лучам, которые не воспринимаются человеческим глазом. Поэтому в современных люксметрах широко используются корректирующие светофильтры, которые отсекают эти области спектра и приближают чувствительность фотоэлемента к чувствительности человеческого глаза. С другой стороны, нужно учитывать и то, что каждый источник (лампа накаливания, люминесцентная лампа, диодный светильник и др.) имеет свой спектр излучения, поэтому для каждого люксметра нужно использовать свои коэффициенты для различных типов ламп. Например при измерении освещенности, создаваемой люминесцентными лампами, вводят поправочный коэффициент для ламп дневного света 0,88, а для ламп белого света – 1,15.

Для измерения пространственных характеристик освещенности тоже существуют свои средства – это насадки сферической и цилиндрической формы. Для повышения точности измерения освещенности при падении света под углом тоже можно использовать специальные насадки. В случае слабых источников света, а также, когда необходима особенно высокая точность, следует пользоваться вакуумными фотоэлементами.

Фотометрические параметры светового излучения и единицы их измерения

Раздел оптики, изучающий методы и приемы измерения световой энергии на основе зрительных ощущений называется фотометрия. В фотометрии принято описывать электромагнитное излучение с помощью параметров, учитывающих особенности восприятия света человеческим глазом.

И первая особенность заключается в том, что человек не видит излучение с длинами волн, менее 380 и более 780 нм (видимый диапазон электромагнитного излучения), поэтому любое излучение вне этого диапазона не влияет на яркость источника. Во-вторых, зрительная система человека имеет разную чувствительность к различным длинам волн. Например, зеленое излучение гораздо ярче для глаза, чем идентичное по мощности синее. Поэтому, такая физическая величина как мощность, не может быть характеристикой восприятия света человеческим глазом. Для решения проблемы, экспериментально построили зависимость, которая описывает чувствительность зрительной системы человека ко всем частот видимого диапазона спектра.

Эта зависимость носит название кривая спектральной световой эффективности (или «кривая видимости»).
Ее используют для расчета вклада каждой длины волны источника в его суммарную яркость. Кривая была принята в качестве международного стандарта в 1924 году Международной комиссией по освещению (CIE – Commission Internationale de l’Éclairage).
Разберемся теперь с определениями и единицами измерений.

СИЛА СВЕТА – это одна из основных фотометрических величин. Она характеризует величину световой энергии, переносимой в определенном направлении за единицу времени. Количественно сила света равна отношению светового потока, распространяющегося в определенном телесном угле, к величине этого угла. Единица силы света – кандела (Кд). Кандела (лат. candela — свеча) – одна из семи основных единиц измерения в системе СИ, равна силе света, излучаемого в заданном направлении монохроматическим источником с частотой 540 1012 Герц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср. Эта частота соответствует зеленой области спектра, к которой человеческий глаз наиболее чувствителен. Сила света, излучаемого одной свечой примерно равная одной кандела.

Читайте также:  Простая и надёжная gsm охрана

СВЕТЛОВОЙ ПОТОК – это физическая величина, численно равная количеству оцениваемой по зрительным ощущениям световой энергии, падающей на поверхность за единицу времени. Иными словами, это величина, позволяющая оценить мощность видимого излучения по его действию на роговицу глаза. Световой поток измеряется в люменах (Лм). Люмен – это световой поток, излучаемый точечным изотропным источником с силой света в одну кандела в телесный угол величиной в один стерадиан (1Лм = 1Кд * 1ср). Люмен – это полный поток от источника, который учитывает и рассеянный свет, поэтому люмен не может быть параметром оценки яркости, или полезной производительности луча от источника.

ЯРКОСТЬ – это отношение силы света, излучаемого поверхностью, к площади ее проекции на плоскость, перпендикулярную к оси наблюдения. Иными словами, яркость – это плотность светового потока (Кд/м2). Единицей измерения яркости является Стильб. 1 стильб = 104 Кд /м2. Из всех фотометрических величин, яркость непосредственно связана со зрительными ощущениями, поскольку освещенность изображения предмета на роговице глаза пропорциональна яркости предмета.

ОСВЕЩЕННОСТЬ (или интенсивность светового потока) – отношение мощности светового потока к площади освещаемой поверхности. Единица измерения освещенностиЛюкс. Люкс равен освещенности поверхности площадью 1м2 при световом потоке падающего на нее излучения 1 Люмен. В США и англии применяют единицу яркости Фут-кандела. Это освещенность от источника силой одна кандела, находящегося на расстоянии одного фута от освещаемой поверхни.1 Фут-кандела примерно равна 10,74 Люкс, то есть для грубого пересчета, чтобы получить значение освещенности в люксах, нужно значение в фут-канделах умножить на 10 . Интенсивность светового потока измеряют также в Вт/м2, или в таких экзотических для нас единицах как BTU (British thermal unit). Это количество тепла в калориях, необходимая для нагрева 1 англ. фунта воды на 1 °Ф.

В чем измеряется освещенность помещения?

В настоящее время при огромном разнообразии светотехнических приборов у населения нет единого понятия касательного того, в чем измеряется освещенность. Нередко возникает недоразумение с такими техническими характеристиками, как сила света и яркость, люмены и канделы. Приобретая осветительные приборы, часто обращают внимание на суммарный световой поток, не учитывая потери света и тепла.

Понятие освещенности

Световой поток измеряется в специальных лабораторных условиях и самопроизвольно его определить невозможно. Поэтому СНиП учитывает величину освещенности, которую, в отличие от светового потока, каждый может измерить самостоятельно. Она представляет собой показатель отношения светового потока, измеряемого в люменах, к площади поверхности, на которую попадают фотоны. Угол падения при этом должен равняться 90°. Единица измерения освещенности — люкс (lux).

Давно уже установлена зависимость психологического и физического состояний человека от света. Если при слабом освещении происходит угнетение мозговых процессов, то при ярком свете они возбуждаются. Но в любом случае сетчатка глаза и ресурсы организма изнашиваются. При проектировании осветительных приборов определяют коэффициент запаса (КЗ), который должен учитывать вероятный спад освещенности установки. Для искусственного света в показателе предусматривается уменьшение яркости по причине износа оптических компонентов устройства и их естественного загрязнения. Коэффициент естественной освещенности снижается вследствие изменения отражающих свойств окружающих предметов.

Измерение освещенности проводится на рабочих местах вместе с определением уровня загрязненности, звуковых колебаний, электромагнитного излучения, а на некоторых производствах и гамма излучения. Важность знания этих параметров трудно переоценить при создании оптимальных условий труда, и все они соответствуют санитарным правилам и нормам. Например, освещенность должна быть:

  • в рабочем кабинете — 300 лк;
  • в офисе для постоянной работы с компьютером — 500 лк;
  • для технических и конструкторских бюро — 750 лк.

При наличии в помещении естественной подсветки уровень искусственного фона можно снижать.

Приборы для определения уровня освещенности и методика его определения

Наименование прибора похоже на название величины, которую он устанавливает, — люксметр. Принцип работы малогабаритного переносного устройства напоминает работу фотометра. Поток излучения, падая на фоточувствительный элемент полупроводника, отрывает электроны, которые начинают упорядоченно двигаться. Таким образом, замыкается электрическая цепь. Причем величина тока прямо пропорциональна интенсивности освещения фотоэлемента, что имеет свое отражение на шкале аналогового люксметра. Сегодня приборы со стрелками практически исчезли, их заменили цифровые. Они оснащены жидкокристаллическими дисплеями, у которых сам фоточувствительный датчик расположен в отдельном корпусе, а с дисплеем он соединяется с помощью гибкого провода.

В ходе проведения эксперимента по измерению освещенности прибор устанавливается в горизонтальном положении. Причем в соответствии с требованиями ГОСТа их размещают в разных точках помещения, согласно определенной схеме. В 2012 г. Россия приняла новый стандарт измерения характеристики количества светового потока. В старом понятийном аппарате при измерениях использовались такие термины данной величины, как:

  • минимальная, средняя, максимальная, цилиндрическая;
  • естественная;
  • градиент запаса;
  • относительная эффективность когерентного лучевого потока.

В настоящее время к ним добавлены следующие типы освещения:

Стандарт подробно описывает все тонкости проведения измерительных исследований.

Замеры осуществляются отдельно по естественной и искусственной иллюминации. В ходе проведения эксперимента нельзя допустить, чтобы хоть малейшая тень падала на прибор, а вблизи был хотя бы 1 источник электромагнитных волн. Все они вносят помехи в работу устройства.

После выполнения необходимых замеров освещенности определяется искомая величина. Она сравнивается с нормативным значением. Затем подводятся итоги о достаточности освещенности территории или помещения. Каждый вид измерительных испытаний оформляется специальным оценочным протоколом, чего требует ГОСТ.

Измерение количества света для светодиодных устройств и примеры в природе

Светодиодные светильники стали очень востребованными благодаря уникальной энергоэффективности. Но светодиоды и их источники питания при освещении выделяют тепло, которое рассеивается с помощью теплопроводящих материалов (алюминий) и конструктивных особенностей (ребер, большой радиаторной площади). Несмотря на кажущееся отсутствие связи между потерями тепла и освещенностью, специалисты всегда учитывают ее при создании новых устройств.

Трудности с работой светодиодных светильников начинаются при эксплуатации в условии повышения температуры более +50°С. Почему измерение освещенности светодиодов и рекомендуют проводить после 2 часов их работы, т. е. после выхода на оптимальный режим. Для исключения появления погрешности проводятся неоднократные замеры в течение рабочей смены. Желательно эти исследования проводить как минимум 1 раз в год. Чтобы при проектировании исключить любые ошибки, закладывают коэффициент снижения освещенности, зависящий от физических характеристик объекта.

Обычно производители LED-устройств дают гарантию по их безупречной работе на 3 года. Все параметры функционирования таких светильников, в том числе, и освещенность, должны соответствовать заявленным значениям. Если условия работы устройств происходят при температуре наружного воздуха свыше 45°С, то измерения освещенности необходимо делать гораздо чаще. Иначе неправильное проектирование и полученные результаты приведут к быстрому падению показателей освещения.

Что касается примеров иллюминации в природе, то на орбите Земли и экваторе в полдень данная величина равняется 135 тыс. люкс. В солнечный день она составляет до 100 тыс. лк, в пасмурный — только 1 тыс. люкс, а вот от Луны всего лишь 0,2 лк. Измерение света на улице на широте Москвы в зимний период показало от 4 до 5 тыс. люкс. В безлунную ночь освещенность в тысячу раз меньше, чем в полнолуние, а при 10-бальной облачности — в 10 тыс. раз меньше. То, в чем измеряется освещенность в помещении и естественных условиях, относится к физическим величинам, входящим в Международную систему единиц.

Калькулятор люмены в канделы и канделы в люмены

Лю́мен (обозначение: лм, lm) — единица измерения светового потока в СИ.

Количество люмен указывает, сколько света испускает лампа во всех направлениях. Чем больше число люмен, тем больше света.

Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд × ср). Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен 4π люменам.

Канде́ла (обозначение: кд, cd) — единица измерения силы света в СИ (от латинского candela, свеча).

Количество кандел указывает, сколько света испускает лампа в одном направлении, в котором она светит наиболее интенсивно.

Одна кандела — сила света в данном направлении от источника монохроматического излучения с частотой 540*1012 Гц, (555 нм, зеленый цвет) имеющего интенсивность излучения в этом направлении равную 1 / 683 Вт в телесном угле равном одному стерадиану.

Калькулятор для перевода люмен в канделы

Пересчет ведется по формуле:
Fv=I*2π(1-cos(α)), где
Fv – световой поток
Iv – сила света
α – угол половинной яркости

Для расчета введите угол и силу света (световой поток). Учтите, результаты расчета зависят от оптических параметров светодиода и дают ориентировочный результат!

Канделы в люменЛюмен в канделы
Сила света,
мкд
Угол половинной
яркости
Cветовой поток,
млм
Угол половинной
яркости
Световой поток, млм:Сила света, мкд:

Световой поток типовых источников света

Приведены сравнительные параметры некоторых источников света, значения приблизительные, только для сравнительной оценки.

Тип источника светаСветовой поток (люмен)Сила света (кандел)лм/ватт
Лампа накаливания 40 Вт4153510
Лампа накаливания 100 Вт1550130015
Люминесцентная лампа 40 Вт2500220060
Газоразрядная лампа 35 Вт (ксенон с учетом оптики фары)30001500090
Светодиод Cree XLamp XP-L 6 Вт1226550200

Мощность излучения, взаимосвязь энергии света (Ватты) и светового потока (люмен)

Важным параметром для оценки энергоэффективности светодиодного излучателя считается соотношение между излучаемой мощностью и мощностью, выделяемой в виде тепла.

Излучаемый светодиодом свет, как известно, обладает определенной энергией и энергия света зависит от длины волны. Однако сила света не пропорциональна энергии светового излучения, а зависит от чувствительности человеческого глаза. Иначе говоря, сила света – это мощность светового излучения, которое доступно для восприятия человеческим глазом. Чтобы пересчитать излучаемую энергию (Ватты) в световой поток (люмены), нужно знать длину волны излучения и кривую чувствительности человеческого глаза. Нетрудно догадаться, что для монохромного излучения эта задача решается легко, а для светодиода белого цвета, необходимо еще знать спектр его излучения и выполнить довольно сложное интегрирование.

Цвет излученияФормула пересчета светового
потока в энергию излучения
Опт. мощность при
Fv = 100 люмен, Вт
Сила света при
P = 1 Вт, лм
зеленый 555 нмР = Fv/683 Вт/лм0.15683
красный 650 нмР= Fv/68,3 Вт/лм1.4668.3
красный 625 нмР= Fv/222 Вт/лм0.45222
синий 465 нмР= Fv/68,3 Вт/лм1.4668.3
белыйР= Fv/243 Вт/лм0.41243

Можно оценить, что белый светодиод мощностью 1 Вт с эффективностью 100 лм/Вт излучает в виде света 0,4 Вт и 0,6 Вт рассеивает в виде тепла, а лампа накаливания из потребляемых 100 Вт излучает в видимой области спектра только 6 Вт (0,06 Вт на 1 Вт).

Читайте также:  Соединение нагревательного и силового кабеля

Энергия, потребляемая источником света от сети питания, не полностью преобразуется в излучение. Особенно это актуально для светодиодных ламп. Кроме потерь энергии в самом светодиоде, мощность теряется в преобразователе питания, часть света задерживается оптикой – отражателями, рассеивателями, линзами. При использовании светодиода с эффективностью 100 lm/Вт, эффективность лампы редко достигает 80 lm/Вт, а для наиболее распространённых изделий бывает 60-70 lm/Вт. В итоге, современные лампы массового производства примерно в 10 раз эффективнее лампы накаливания.

Подключение фоторезистора к ардуино и работа с датчиком освещенности

Датчики освещенности (освещения), построенные на базе фоторезисторов, довольно часто используются в реальных ардуино проектах. Они относительно просты, не дороги, их легко найти и купить в любом интернет-магазине. Фоторезистор ардуино позволяет контролировать уровень освещенности и реагировать на его изменение. В этой статье мы рассмотрим, что такое фоторезистор, как работает датчик освещенности на его основе, как правильно подключить датчик в платам Arduino.

Фоторезистор ардуино и датчик освещенности

Фоторезистор, как следует из названия, имеет прямое отношение к резисторам, которые часто встречаются практически в любых электронных схемах. Основной характеристикой обычного резистора является величина его сопротивления. От него зависят напряжение и ток, с помощью резистора мы выставляем нужные режимы работы других компонентов. Как правило, значение сопротивления у резистора в одних и тех же условиях эксплуатации практически не меняется.

В отличие от обычного резистора, фоторезистор может менять свое сопротивление в зависимости от уровня окружающего освещения. Это означает, что в электронной схеме будут постоянно меняться параметры, в первую очередь нас интересует напряжение, падающее на фоторезисторе. Фиксируя эти изменения напряжения на аналоговых пинах ардуино, мы можем менять логику работы схемы, создавая тем самым адаптирующиеся под вешние условия устройства.

Фоторезисторы достаточно активно применяются в самых разнообразных системах. Самый распространенный вариант применения — фонари уличного освещения. Если на город опускается ночь или стало пасмурно, то огни включаются автоматически. Можно сделать из фоторезистора экономную лампочку для дома, включающуюся не по расписанию, а в зависимости от освещения. На базе датчика освещенности можно сделать даже охранную систему, которая будет срабатывать сразу после того, как закрытый шкаф или сейф открыли и осветили. Как всегда, сфера применения любых датчиков ардуино ограничена лишь нашей фантазией.

Какие фоторезисторы можно купить в интернет-магазинах

Самый популярный и доступный вариант датчика на рынке – это модели массового выпуска китайских компаний, клоны изделий производителя VT. Там не всегда можно разораться, кто и что именно производит тот или иной поставщик, но для начала работы с фоторезисторами вполне подойдет самый простой вариант.

Начинающему ардуинщику можно посоветовать купить готовый фотомодуль, который выглядит вот так:

На этом модуле уже есть все необходимые элементы для простого подключения фоторезистора к плате ардуино. В некоторых модулях реализована схема с компаратором и доступен цифровой выход и подстроечный резистор для управления.

Российскому радиолюбителю можно посоветовать обратить на российский датчик ФР. Встречающиеся в продаже ФР1-3, ФР1-4 и т.п. — выпускались ещё в союзовские времена. Но, несмотря на это, ФР1-3 – более точная деталь. Из этого следует и разница в цене За ФР просят не более 400 рублей. ФР1-3 будет стоить больше тысячи рублей за штуку.

Маркировка фоторезистора

Современная маркировка моделей, выпускаемых в России, довольно простая. Первые две буквы — ФотоРезистор, цифры после чёрточки обозначают номер разработки. ФР -765 — фоторезистор, разработка 765. Обычно маркируется прямо на корпусе детали

У датчика VT в схеме маркировке указаны диапазон сопротивлений. Например:

  • VT83N1 — 12-100кОм (12K – освещенный, 100K – в темноте)
  • VT93N2 — 48-500кОм (48K – освещенный, 100K – в темноте).

Иногда для уточнения информации о моделях продавец предоставляет специальный документ от производителя. Кроме параметров работы там же указывается точность детали. У всех моделей диапазон чувствительности расположен в видимой части спектра. Собирая датчик света нужно понимать, что точность срабатывания — понятие условное. Даже у моделей одного производителя, одной партии, одной закупки отличаться она может на 50% и более.

На заводе детали настраиваются на длину волны от красного до зелёного света. Большинство при этом «видит» и инфракрасное излучение. Особо точные детали могут улавливать даже ультрафиолет.

Достоинства и недостатки датчика

Основным недостатком фоторезисторов является чувствительность к спектру. В зависимости от типа падающего света сопротивление может меняется на несколько порядков. К минусам также относится низкая скорость реакции на изменение освещённости. Если свет мигает — датчик не успевает отреагировать. Если же частота изменения довольно велика — резистор вообще перестанет «видеть», что освещённость меняется.

К плюсам можно отнести простоту и доступность. Прямое изменение сопротивления в зависимости от попадающего на неё света позволяет упростить электрическую схему подключения. Сам фоторезистор очень дешев, входит в состав многочисленных наборов и конструкторов ардуино, поэтому доступен практически любому начинающему ардуинщику.

Подключение фоторезистора к ардуино

В проектах arduino фоторезистор используется как датчик освещения. Получая от него информацию, плата может включать или выключать реле, запускать двигатели, отсылать сообщения. Естественно, при этом мы должны правильно подключить датчик.

Схема подключения датчика освещенности к ардуино довольна проста. Если мы используем фоторезистор, то в схеме подключения датчик реализован как делитель напряжения. Одно плечо меняется от уровня освещённости, второе – подаёт напряжение на аналоговый вход. В микросхеме контроллера это напряжение преобразуется в цифровые данные через АЦП. Т.к. сопротивление датчика при попадании на него света уменьшается, то и значение падающего на нем напряжения будет уменьшаться.

В зависимости от того, в каком плече делителя мы поставили фоторезистор, на аналоговый вход будет подаваться или повышенное или уменьшенное напряжение. В том случае, если одна нога фоторезистора подключена к земле, то максимальное значение напряжения будет соответствовать темноте (сопротивление фоторезистора максимальное, почти все напряжение падает на нем), а минимальное – хорошему освещению (сопротивление близко к нулю, напряжение минимальное). Если мы подключим плечо фоторезистора к питанию, то поведение будет противоположным.

Сам монтаж платы не должен вызывать трудностей. Так как фоторезистор не имеет полярности, подключить можно любой стороной, к плате его можно припаять, подсоединить проводами с помощью монтажной платы или использовать обычные клипсы (крокодилы) для соединения. Источником питания в схеме является сам ардуино. Фоторезистор подсоединяется одной ногой к земле, другая подключается к АЦП платы (в нашем примере – АО). К этой же ноге подключаем резистор 10 кОм. Естественно, подключать фоторезистор можно не только на аналоговый пин A0, но и на любой другой.

Несколько слов относительно дополнительного резистора на 10 К. У него в нашей схеме две функции: ограничивать ток в цепи и формировать нужное напряжение в схеме с делителем. Ограничение тока нужно в ситуации, когда полностью освещенный фоторезистор резко уменьшает свое сопротивление. А формирование напряжения – для предсказуемых значений на аналоговом порту. На самом деле для нормальной работы с нашими фоторезисторами хватит и сопротивления 1К.

Меняя значение резистора мы можем “сдвигать” уровень чувствительности в “темную” и “светлую” сторону. Так, 10 К даст быстрое переключение наступления света. В случае 1К датчик света будет более точно определять высокий уровень освещенности.

Если вы используете готовый модуль датчика света, то подключение будет еще более простым. Соединяем выход модуля VCC с разъемом 5В на плате, GND – c землей. Оставшиеся выводы соединяем с разъемами ардуино.

Если на плате представлен цифровой выход, то отправляем его на цифровые пины. Если аналоговый – то на аналоговые. В первом случае мы получим сигнал срабатывания – превышения уровня освещенности (порог срабатывания может быть настроен с помощью резистора подстройки). С аналоговых же пинов мы сможем получать величину напряжения, пропорциональную реальному уровню освещенности.

Пример скетча датчика освещенности на фоторезисторе

Мы подключили схему с фоторезистором к ардуино, убедились, что все сделали правильно. Теперь осталось запрограммировать контроллер.

Написать скетч для датчика освещенности довольно просто. Нам нужно только снять текущее значение напряжения с того аналогового пина, к которому подключен датчик. Делается это с помощью известной нам всем функции analogRead(). Затем мы можем выполнять какие-то действия, в зависимости от уровня освещенности.

Давайте напишем скетч для датчика освещенности, включающего или выключающего светодиод, подключенный по следующей схеме.

Алгоритм работы таков:

  • Определяем уровень сигнала с аналогового пина.
  • Сравниваем уровень с пороговым значением. Максимально значение будет соответствовать темноте, минимальное – максимальной освещенности. Пороговое значение выберем равное 300.
  • Если уровень меньше порогового – темно, нужно включать светодиод.
  • Иначе – выключаем светодиод.

Прикрывая фоторезистор (руками или светонепроницаемым предметом), можем наблюдать включение и выключение светодиода. Изменяя в коде пороговый параметр, можем заставлять включать/выключать лампочку при разном уровне освещения.

При монтаже постарайтесь расположить фоторезистор и светодиод максимально далеко друг от друга, чтобы на датчик освещенности попадало меньше света от яркого светодиода.

Датчик освещенности и плавное изменение яркости подсветки

Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:

  • Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
  • Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().

В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:

Схема датчика освещения на фоторезисторе и реле

Примеры скетча для работы с реле приведены в статье, посвященной программированию реле в ардуино. В данном случае, нам не нужно делать сложных телодвижений: после определения «темноты» мы просто включаем реле, подавай на его пин соответствующее значение.

Заключение

Проекты с применением датчика освещенности на базе фоторезистора достаточно просты и эффектны. Вы можете реализовать множество интересных проектов, при этом стоимость оборудования будет не высока. Подключение фоторезистора осуществляется по схеме делителя напряжения с дополнительным сопротивлением. Датчик подключается к аналоговому порту для измерения различных значений уровня освещенности или к цифровому, если нам важен лишь факт наступления темноты. В скетче мы просто считываем данные с аналогового (или цифрового) порта и принимаем решение, как реагировать на изменения. Будем надеяться, что теперь в ваших проектах появятся и такие вот простейшие «глаза».

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector