Как рассчитать мощность трансформатора по нагрузке?

Как рассчитать мощность трансформатора по нагрузке?

Aleksei1410
Рейтинг: 1 / -2

samtakoi
Рейтинг: 2600 / -626

samtakoi
Рейтинг: 2600 / -626

Aleksei1410
Рейтинг: 1 / -2

samtakoi
Рейтинг: 2600 / -626

samtakoi
Рейтинг: 2600 / -626

Aleksei1410
Рейтинг: 1 / -2

Синтетик
Рейтинг: 1553 / -386

quote: Originally posted by Aleksei1410:

А почему умножаем именно 300А,а не 900А.Нам же нужна мощность общая

P.S. Можно конечно использовать формулу “старичка”. Но в заготовках у него такого сердечника не будет. У Вас сердечник уже есть? Вы думаете, что Ваша самоделка будет дешевле готового серийного образца?

P.S. Почему-то подумалось, что Вы собрались изготовить этот трансформатор, похоже Вам нужны просто расчеты.)

samtakoi
Рейтинг: 2600 / -626

quote: Изначально написано Aleksei1410:
А почему умножаем именно 300А,а не 900А.Нам же нужна мощность общая а не по одной фазе.

rip87
Рейтинг: 2497 / -4476

Если добавить ещё P=120кВт, при чисто активной нагрузке она же будет равна полной мощности S=120кВА

207+120 = 327кВА, ток будет в каждой фазе 474А по той же формуле

Тут ничего сложного нет, полную мощность специально и выдумали, для упрощения расчетов.

Сумма токов – абсолютно бесполезные данные. Нужны, как минимум, действующие значения токов по каждой фазе в отдельности.
Кстати P=120кВт – это что за нагрузка? Нагреватели, двигатели или что? Тип нагрузки то какой?

ПЗ-1636
Рейтинг: 8 / -5

Задача чисто теоретическая? Для потребителей не бывает таких трансов.Есть Звезда-Звезда с нулем.

Aleksei1410
Рейтинг: 1 / -2

quote: Изначально написано ПЗ-1636:
[b]. группа соединения звезда-звезда,

Задача чисто теоретическая? Для потребителей не бывает таких трансов.Есть Звезда-Звезда с нулем.[/B]

Aleksei1410
Рейтинг: 1 / -2

quote: Изначально написано rip87:
S=3*Uф*Iф=3*0,23*300=207кВ*А

Если добавить ещё P=120кВт, при чисто активной нагрузке она же будет равна полной мощности S=120кВА

207+120 = 327кВА, ток будет в каждой фазе 474А по той же формуле

Тут ничего сложного нет, полную мощность специально и выдумали, для упрощения расчетов.

Сумма токов – абсолютно бесполезные данные. Нужны, как минимум, действующие значения токов по каждой фазе в отдельности.
Кстати P=120кВт – это что за нагрузка? Нагреватели, двигатели или что? Тип нагрузки то какой?

Потребитель будет магазин (холодильник,печь и т.д) и у него в любом случае будет реактивная составляющая. Т.е. исходя из расчетов в любом случае надо будет трансформатор менять на 400кВА? На шильдике трансформатора указывается ток номинальный действующего значения?Исходя из этого формулу S=3*Uф*Iф=3*0,23*300=207кВ*А можно использовать для расчета загруженности трансформатора?250-207=43кВА- запас загрузки? По процентам получается 82,8 процента загружен?В каком случае вместо 0,23В ставить надо 0,38 судя по формуле?

Выбор трансформатора по мощности

Каждый радиолюбитель сталкивается с выбором трансформатора для питания различных схем и устройств, а также для создания блоков питания. С этой целью можно использовать уже готовые варианты или же рассчитать и сделать трансформатор своими руками. Необходимо понимать основное предназначение, принцип работы, а также ориентироваться и рассчитывать нужные параметры. Для выбора трансформатора используются несколько методов.

Основные понятия о трансформаторах

Основным предназначением трансформатора (Т) является преобразование переменного напряжения (U) в необходимые номиналы. Т получил широкое применение как простейший преобразователь переменного U, хотя преобразовывать можно и постоянный ток, но этот способ является экономически невыгодным. Т работает только от переменного U, и это связано с принципом его действия.

Трансформатор (Т) — преобразователь переменного входного U в необходимый номинал или номиналы для питания потребителей. Большинство потребителей питаются от постоянного тока, который получается при преобразовании переменного U в постоянное при помощи диодного моста или какого-либо другого выпрямителя. Этот преобразователь переменного U является примитивным по своему устройству, однако есть некоторые особенности конструктивного плана.

Т состоит из магнитопровода и катушек, на которые намотан медный изолированный провод. Магнитопровод изготавливается из спецстали, которая обладает ферромагнитными свойствами и называется ферромагнетиком. Основное отличие ферромагнетиков от обыкновенной стали заключается в наличии атомов, обладающих постоянными спиновыми и орбитальными моментами (СиОМ). СиОМ зависят от температуры и магнитного поля, и благодаря этому обмотки Т при работе не перегреваются из-за отсутствия токов Фуко. Специальная трансформаторная сталь с ферромагнитными свойствами сводит образование токов Фуко к минимуму, которого недостаточно для перегрева обмоток.

Самыми распространенными материалами для изготовления магнитопровода являются электротехническая трансформаторная сталь (ЭТС) и пермаллой. ЭТС отличается от обыкновенной стали и физико-химическими свойствами, так как содержит значительную массовую долю кремния (Si), который при помощи специальных технологий, предусмотренных на заводе изготовителе, соединяется с углеродом под действием высокой температуры и давления.

Эта технология изготовления ЭТС получила широкое распространение, так как используется практически во всех Т. Еще одним видом ферромагнетика для изготовления магнитопровода является пермаллой, который представляет собой соединение сплава никеля и железа, использующийся для изготовления Т небольшой мощности. Площадь магнитопровода влияет мощность (P) Т.

Обмотки являются катушками с намотанным изолированным проводом со специальным лаковым покрытием. Диаметр провода и количество витков зависит от U и тока (I), а также это влияет и на P трансформатора. Количество катушек должно быть не менее 2, однако допускается одна катушка при условии, что на нее намотаны 2 обмотки (одна из которых первичная).

Принцип работы

Принцип работы Т достаточно прост и основан на нахождении проводника с количеством витков n в переменном магнитном поле. Переменное магнитное поле (ПМП) – поле, значение и направление линий магнитного потока (Ф) которого изменяется по закону изменения значений переменного I, генерирующего его с течением времени. При прохождении тока по виткам катушки первичной обмотки (КПО) образуется Ф, пронизывающий и катушку вторичной обмотки (КВО).

Благодаря замкнутой структуре магнитопровода линии Ф являются замкнутыми. Для уменьшения потерь электрической энергии катушек обмотки располагают максимально близко друг другу. Оптимальным является использование одной катушки с 2 или более обмотками. Однако этот вариант недопустим в старых сварочных аппаратах. В этом случае катушки должны быть отдельно для повышения теплоотдачи при проведении сварочных работ. Кроме того, на силовых подстанциях используются Т с масляным охлаждением, но и у них обмотки конструктивно находятся на разных катушках.

В Т применяется закон электромагнитной индукции, при котором происходит изменение Ф и индуцирование электродвижущей силы (ЭДС) самоиндукции в КПО, а ЭДС, возникающая в КВО, называется ЭДС взаимоиндукции.

У Т существует 2 режима работы: холостой ход и активный (нагрузка). При холостом ходе происходит потребление I от 3 до 10% от номинального значения (Iн). При активном режиме происходит возникновение I в КВО, а следовательно, появляется магнитодвижущая сила (МДС). В этом случае возможно рассчитать основной параметр Т, который называется коэффициентом трансформации k: I1/I2 = w2/w1 = 1/k, где I1, I2 – I КПО и КВО соответственно, а w2 и w1 – количество витков КВО и КПО.

Из определения k следует еще одно соотношение взаимосвязи ЭДС обмоток (e1 и e2) и токов: e1 * I1 = e2 * I2 = 1. Исходя из этого соотношения можно сделать вывод о том, что мощность (P = e * I), которую потребляет КПО, равна мощности потребления КВО при нагрузке. Мощность Т измеряется в вольт-амперах и обозначается сокращенно «ВА».

Связь между ЭДС в обмотках прямо пропорционально зависит от количества витков. Исходя из закона Ленца, обмотки Т пронизываются одним и тем же Ф, а этот факт позволяет вычислить k еще одним способом. Основываясь на законе индукции для мгновенных значений ЭДС, получаются следующие равенства для КПО и КВО:

  1. e1 = – w1 * dФ/dt * E-8.
  2. e2 = – w2 * dФ/dt * E-8.

Соотношение dФ/dt — величина изменения Ф за единицу времени (по закону, описывающему переменное U). На основании выражений для мгновенных значений ЭДС выводится зависимость ЭДС для каждой обмотки от количества витков: e1/e2 = w1/w2. Это утверждение справедливо также и не для мгновенных показателей, отсюда следует, что e1 = U1, e2 = U2. Произведя замену величин, получаются следующие соотношения: e1/e2 = U1/U2 = w1/w2 = k.

По коэффициенту трансформации Т делятся на понижающие и повышающие. Для поиска k необходимо воспользоваться несколькими способами:

  1. По паспорту.
  2. Практическим путем.
  3. Применение моста Шеринга.
  4. Использование УИКТ.

Очень часто радиолюбители пользуются практическим определением этого параметра. Хотя он и не совсем точный. Для расчета блока питания этого способа вполне достаточно.

Паспорт к Т не всегда получается найти. Для определения k используются 2 вольтметра (1 для КПО, 2 – для КВО), затем измеряется несколько раз U на обмотках. После этого рассчитывается k при нескольких значения и берется среднее его значение.

Расчет мощности

Для выбора Т в качестве источника питания следует рассчитать допустимую мощность потребителя или группы потребителей. Существует 2 варианта побора Т: выбор по таблице и осуществление расчета. Узнать мощность трансформатора достаточно просто, необходимо воспользоваться формулой определения мощности: P = U * I. Наиболее точный вариант — выполнение расчета Т в качестве источника питания.

В наличии есть Т, полная мощность которого равна 180 ВА. Необходимо выяснить возможность его применения в качестве источника питания мощностью 160 ВА. Этот метод позволяет осуществить выбор трансформатора по мощности по таблице.

Коэффициент загрузки Т: kз = Sр/Sтр. Sр — полная расчетная мощность: Sp = P/cosф = 180/0,8 = 225 ВА. Коэффициент cosф принимается равным 0,8. Мощность силового Т Sтр = 160 ВА. Исходя из этого, kз = 225/160 = 1,4 (>1). Если взять Т мощностью 250 ВА, то kз = 225/250 = 0,9 ( S: 2000 > 1887,27 (выполняется, следовательно, магнитопровод подходит для Т).

Таким образом, выбор трансформатора по мощности для решения конкретной задачи можно сделать при помощи таблицы или рассчитать и изготовить его самостоятельно. Последний вариант позволяет более гибко и качественно подойти к выбору Т для какого-либо потребителя. Однако подход выбора уже готового Т значительно экономит время.

Почему мощность трансформатора измеряют в ква, а не в квт ?

Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.

Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА – киловольт-амперах.

Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.

Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.

В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы – нагрева, освещения, звучания, вращения и т.д.

Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:

Резистивная

Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

ТЭН – это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

Мощность, которая тратится на резистивной нагрузке называется – активной , как раз она то и измеряется в кВт – киловаттах.

Индуктивная

Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной .

Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные.

Ёмкостная

Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.

Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.

Смешанная

Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.

Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА – киловольт-амперах . Именно она чаще всего указана в характеристиках трансформатора.

Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.

Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.

Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:

S (полная мощность)= P (активная мощность)/ k (коэффициент мощности)

Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.

Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт – это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.

Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.

Если же у вас еще остались какие-то вопросы – обязательно оставляйте их в комментариях к статье, кроме того, если есть что добавить, нашли неточности или есть, что возразить – также пишите!

Как рассчитать мощность трансформатора по нагрузке?

В соответствии с «Правилами устройства электро­установок» все силовые трансформаторы должны иметь защиту от коротких замыканий и ненормаль­ных режимов [1]. Для выбора видов защиты и ра­счета их характеристик срабатывания необходимо прежде всего точно знать тип и параметры защищае­мого трансформатора.

Самые важные параметры трансформатора отра­жены в его условном обозначении, которое имеется и в паспорте, и на паспортной табличке, прикрепленной к трансформатору на видном месте. В соответствии с ГОСТ 11677—85 «Трансформаторы силовые» принята единая структурная схема условного обозначения трансформаторов. Буквы в начале обозначают одно­фазный (О) или трехфазный (Т) трансформатор, ука­зывают вид изолирующей и охлаждающей среды (на­пример, буква М соответствует масляному трансфор­матору с естественной циркуляцией воздуха и масла, буква С — сухому трансформатору), а также испол­нение трансформатора и вид переключения ответвле­ний: буква 3 — защитное исполнение, Г — герметич­ное, Н — возможность регулирования напряжения под нагрузкой.

После буквенной части обозначения через тире указывается номинальная мощность трансформатора в киловольт-амперах (кВ-А), затем через дробь — класс напряжения стороны высшего напряжения (ВН) в киловольтах (кВ) и далее через тире — кли­матическое исполнение и категория размещения обору­дования по ГОСТ 15150—69. Согласно этому стандар­ту буквой У обозначают исполнение для умеренного климата, ХЛ — холодного, Т — тропического. Ка­тегории размещения обозначаются цифрами: 1—для работы на открытом воздухе, 2 — для работы в поме­щениях, где температура и влажность такие же, как на открытом воздухе, 3 — для закрытых помещений с естественной вентиляцией, 4 — для работы в поме­щениях с искусственным регулированием климата, 5 — для работы в помещениях с повышенной влаж­ностью.

Например, условное обозначение трансформатора трехфазного масляного с охлаждением при естествен­ной циркуляции воздуха и масла, двухобмоточного, мощностью 250 кВ-А, класса напряжения 10 кВ, ис­полнения У категории 3 (для умеренного климата и закрытых помещений) имеет следующий вид:

Трансформатор трехфазный сухой с естественным воздушным охлаждением при защищенном испол­нении, двухобмоточный, мощностью 400 кВ-А, класса напряжения 10 кВ, исполнения У категории 3 имеет такое условное обозначение:

В паспортной табличке указываются и другие па­раметры трансформатора, необходимые для выбора его защиты:

номинальные напряжения трансформатора (сторон ВН и НН для двухобмоточных трансформаторов);

номинальные токи обмоток ВН и НН;

условное обозначение схемы и группы соединения обмоток;

напряжение короткого замыкания ик (в процен­тах) на основном ответвлении обмотки ВН (для трехобмоточных трансформаторов указывают напряжение короткого замыкания всех пар обмоток).

Номинальные напряжения трансформатора. Транс­форматоры с высшим номинальным напряжением 10 кВ, которым посвящена эта книга, выпускаются с номинальным напряжением стороны низшего напря­жения, равным 0,4 или 0,69 кВ, — для питания элек­троприемников, а также 3,15 или 6,3 кВ, или 10,5 кВ — для связи питающих электрических сетей разных на­пряжений, а иногда и для питания крупных электро­двигателей напряжением выше 1000 В. Например, на подстанции 110/10кВ электродвигатели напряжением 6 кВ могут работать только через трансформаторы 10/6,3 кВ. Однако большинство трансформаторов 10 кВ выпускается с низшим напряжением 0,4 кВ для питания электроприемников напряжением 380 и 220 В.

В обмотке ВН трансформаторов 10 кВ, как масля­ных, так и сухих, предусматривается возможность из­менения напряжения ВН в диапазоне ±5 % номи­нального ступенями по 2,5%. Изменяют напряжения переключением ответвлений обмотки ВН, что произво­дится обязательно при отключении всех обмоток трансформатора от сети. Вид, диапазон и число сту­пеней регулирования напряжения на стороне ВН условно обозначаются буквами и цифрами: ПБВ ± ±2X2,5 %, где ПБВ означает переключение без воз­буждения (в отличие от РПН — регулирования под напряжением, которое выполняется на трансформато­рах более высоких классов напряжения, начиная с 35 кВ).

Номинальные значения мощности и тока. Номи­нальные мощности трансформаторов должны соответ­ствовать ГОСТ 9680—77. Трансформаторы масляные 10 кВ для питания электроприёмников выпускаются с номинальной мощностью до 2,5 MB -А, а для связи между электросетями разных напряжений — до 6,3 МВ-А: например, 25, 40, 63, 100, 160, 250, 400, 630 кВ-А, а также 1; 1,6 и 2,5 МВ-А. Трансформато­ры сухие (ТСЗ) выпускаются с номинальной мощ­ностью 160, 250, 400, 630 кВ-А, а также 1 и 1,6 МВ-А.

Мощность (в вольт-амперах) трехфазного транс­форматора при равномерной нагрузке фаз определя­ется выражением

где U номинальное междуфазное напряжение, В; / — ток в фазе, А.

Из выражения (1) по известным из паспортных данных номинальным значениям мощности и напря­жений сторон ВН и НН могут быть определены зна­чения номинальных токов (в амперах) обмоток ВН и НН трансформатора

где S ном. указывается в киловольт-амперах (кВ-А), а U ном — в киловольтах (кВ),

Например, для трансформатора мощностью 400 кВ-А с напряжением стороны ВН, равным 10 кВ, и стороны НН, равным 0,4 кВ, номинальные токи об­моток:

Как правило, во время работы трансформаторы не должны перегружаться, т. е. значения рабочих токов в обмотках трансформатора не должны превышать поминальные. Однако допускаются в определенных пределах кратковременные и длительные перегрузки (§ 2).

Схемы и группы соединения обмоток. Трансфор­маторы 10 кВ выпускаются со следующими схемами и группами соединения обмоток:

звезда — звезда с выведенной нейтралью Y / Y -0; треугольник — звезда с выведенной нейтралью ∆/ Y -11; звезда с выведенной нейтралью — треу­гольник Y /∆-11; звезда—зигзаг Y / Y

Трансформаторы 10/0,4 кВ со схемой соединения обмоток Y / Y -0 подключаются к питающей трехфаз­ной сети 10 кВ, работающей с изолированной ней­тралью, и питают трехфазную четырех проводную сеть с наглухо заземленной нейтралью, в которой номи­нальное напряжение между линейными проводами равно 0,38 кВ, а между каждым линейным и нулевым проводом (нейтралью трансформатора)—0,22 кВ. При симметричной нагрузке всех фаз ток в нулевом проводе (нейтрали) невелик и называется током не­баланса. Значение тока небаланса у трансформаторов Y / Y не должно превышать 0,25 номинального тока обмотки НН во избежание перегрева и повреждения трансформатора (ГОСТ 11677—85). На практике не всегда удается выполнить это условие. По этой и не­которым другим причинам (см. § 4 и 9) трансформа­торы со схемой соединения обмоток Y / Y не должны применяться начиная с мощности 400 кВ-А и более.

Трансформаторы со схемой и группой соединения обмоток ∆/ Y -11 подключаются таким же образом, как и трансформаторы Y / Y -0. Особенность схемы и группы соединения ∆/ Y -11 состоит в том, что между векторами напряжений и токов на сторонах НН и ВН существует фазовый сдвиг на угол 30°, Поэтому трансформаторы ∆/ Y -11 не могут работать параллельно с трансформаторами Y / Y -0, у которых нет фазового сдвига между этими векторами. При ошибочном включении их на параллельную работу фазовый сдвиг на угол 30° между векторами вторичных напряжений этих трансформаторов вызовет уравнительный ток между трансформаторами одинаковой мощности, при­мерно в 5 раз превышающий номинальный ток каж­дого из них.

Благодаря соединению обмотки ВН в треугольник для этих трансформаторов допускается продолжи­тельная несимметрия нагрузки и ток в нейтрали об­мотки НН до 0,75 номинального тока в обмотке НН (ГОСТ 11677—85). Соединение обмотки ВН в тре­угольник обеспечивает также значительно большие значения токов при однофазных КЗ на землю в сети НН, работающей с заземленной нейтралью, чем при питании сети НН через трансформатор с такими же параметрами, но со схемой соединения Y / Y -0. Это способствует падежной работе устройств релейной защиты от однофазных КЗ (§ 3). Поэтому начиная с мощности 400 кВ-А должны применяться трансфор­маторы 10/0,4 кВ со схемой соединения обмоток ∆/ Y -11 (как сухие, так и масляные). Трансформато­ры с этой схемой соединения обмоток могут выпус­каться также с номинальным напряжением обмотки НН, равным 0,69 кВ.

Для связи между сетями разных напряжений и для питания крупных электродвигателей выше 1000 В выпускаются трансформаторы 10/3,15, 10/6,3 и 10/10,5 кВ со схемой и группой соединения обмоток Y /∆-11; некоторые трансформаторы для специального назначения могут иметь схемы соединения Y / Y -0, ∆/∆-0, а также Y /∆-11 (обмотки ВН с выведенной нейтралью применяются в трансформаторах, например для включения дугогасящего реактора в сети 10 кВ с компенсированной нейтралью). Особую группу со­ставляют трансформаторы для собственных нужд электростанций, релейная защита которых в этой книге не рассматривается.

Трансформаторы 10 кВ небольшой мощности для сельских электросетей могут выпускаться с особой схемой соединения обмотки НН, называемой зигзаг. Обмотка ВН при этом соединяется в звезду: Y / Y . Соединение вторичной обмотки понижающего транс­форматора в зигзаг обеспечивает более равномерное распределение несимметричной нагрузки НН между фазами первичной сети ВН. При этом обеспечиваются наиболее благоприятные условия работы трансформа­тора. Для выполнения схемы зигзаг вторичная об­мотка каждой фазы составляется из двух половин, одна из которых расположена на одном стержне магнитопровода, вторая — на другом. Выполнение трансформаторов со схемой соединения обмотки НН в зигзаг обходится дороже, чем со схемой соединения обмотки НН в звезду ( Y / Y ), так как соединение в зигзаг требует большего (на 15%) числа витков об­мотки НН. Это объясняется тем, что ЭДС обмоток, расположенных на разных стержнях, складываются геометрически под углом 120° и их суммарное значе­ние на 15% меньше, чем при алгебраическом сложе­нии ЭДС двух обмоток, расположенных на одном стержне магнитопровода. Чтобы получить ЭДС одного и того же значения при соединении в зигзаг, нужно на 15 % больше витков, чем при соединении обмотки НН в звезду. Из-за большей сложности изготовления и более высокой стоимости трансформаторы звезда — зигзаг применяются редко.

Напряжение короткого замыкания. Этот важней­ший параметр трансформатора необходим для расче­тов токов КЗ на выводах вторичной обмотки НН трансформатора и в питаемой сети НН. Напряжение короткого замыкания соответствует значению между­фазного напряжения, которое надо приложить к вы­водам обмотки ВН трансформатора для того, чтобы при трехфазном замыкании на выводах НН через трансформатор прошел ток КЗ, равный его номиналь­ному значению. Напряжение короткого замыкания обозначается U k и выражается в процентах номиналь­ного значения напряжения обмотки ВН. Если, напри­мер, U k = 5 %, это означает, что к обмотке ВН транс­форматора 10 кВ при закороченной обмотке НН надо приложить напряжение 0,5 кВ, чтобы ток трансфор­матора был равен номинальному.

По значению напряжения короткого замыкания, как следует из определения этого параметра, можно вычислить максимальное значение тока при трехфаз­ном КЗ на стороне НН трансформатора, причем как без учета сопротивления питающей энергосистемы до шин 10 кВ, где включен трансформатор, так и с уче­том этого сопротивления. По значению U k вычисля­ется и полное сопротивление трансформатора Z тр (§ 3). Значения U k приводятся в стандартах, а также в паспортах и на паспортных табличках каждого трансформатора (по результатам заводских испыта­ний). Средние значения U k для масляных трансфор­маторов 10 кВ равны примерно 4,5 % —при мощности до 400 кВ-А, 5,5% — при мощности 630 кВ-А и 1 MB -А и 6,5 % — при мощности более 1 МВ-А. У су­хих трансформаторов мощностью от 160 кВ-А до 1,6 MB -А значения напряжения короткого замыкания равны примерно 5,5 %.

Выбор силовых трансформаторов

Выбор числа и мощности силовых трансформаторов для главных понизительных подстанций (ГПП) промышленных предприятий должен быть технически и экономически обоснован, так как это оказывает существенное влияние на рациональное построение схем промышленного электроснабжения. При выборе числа и мощности силовых трансформаторов используют методику технико-экономических расчетов, а также учитывают такие показатели, как надежность электроснабжения потребителей, расход цветного металла и потребная трансформаторная мощность. Для удобства эксплуатации систем промышленного электроснабжения стремятся к применению не более двух-трех стандартных мощностей трансформаторов, что ведет к сокращению складского резерва и облегчает взаимозаменяемость трансформаторов. Желательна установка трансформаторов одинаковой мощности, но такое решение не всегда выполнимо. Выбор трансформаторов следует производить с учетом схем электрических соединений подстанций, которые оказывают существенное влияние на капитальные вложения и ежегодные издержки по системе электроснабжения в целом, определяют ее эксплуатационные и режимные характеристики.
В целях удешевления подстанций (ГПП или ГРП) напряжением 35 — 220 кВ широко применяют схемы без установки выключателей на стороне высшего напряжения (по схеме блока линия — трансформатор), приведенные на рис. 1. Цеховые трансформаторы, как правило, не должны иметь распределительного устройства на стороне высшего напряжения (рис. 2). Следует широко применять непосредственное (глухое) присоединение питающего кабеля к трансформатору при радиальных схемах питания трансформатора (рис. 2, а) или присоединение через разъединитель или выключатель нагрузки при магистральных схемах питания (рис. 2,6, в, г). При магистральной схеме питания трансформатора мощностью 1000 кВ А и выше вместо разъединителя устанавливают выключатель нагрузки, так как при напряжении 6 — 20 кВ разъединителем можно отключать XX трансформатора мощностью не более 630 кВ А. В настоящее время вновь сооружаемые цеховые трансформаторные подстанции выполняют комплектными (КТП), полностью изготовленными на заводах и крупными блоками монтируемыми на промышленных предприятиях.

Конструктивно цеховые трансформаторные подстанции (ТП) подразделяют на внутрицеховые, которые размещают в многопролетных цехах; встроенные в контур цеха, но имеющие выкатку трансформаторов наружу; пристроенные к зданию; отдельно расположенные на территории предприятий, которые применяют при невозможности размещения внутрицеховых, встроенных или пристроенных подстанций по условиям производства.


Рис. 2. Основные схемы подключения цеховых ТП с высшим напряжением 6 — 20 кВ:
а — глухое присоединение; б, в, г — присоединение ТП через коммутационные аппараты (ВН — выключатель нагрузки, Р — разъединитель, ВНП — выключатель нагрузки с предохранителем)
Выбор числа трансформаторов связан с режимом работы станции или подстанции. График нагрузки может быть таким, при котором по экономическим соображениям необходимо установить не один, а два трансформатора. Такие случаи, как правило, имеют место при плохом коэффициенте заполнения графика нагрузки (0,5 и ниже). В этом случае установка отключающих аппаратов необходима для оперативных действий (производящихся дежурным персоналом или происходящих автоматически) с силовыми трансформаторами при соблюдении экономически целесообразного режима их работы. Важными факторами, наиболее существенно влияющими на выбор номинальной мощности трансформатора и, следовательно, на его экономически целесообразный режим работы, являются температура охлаждающей среды в месте его установки и график нагрузки потребителя (изменения нагрузки в течение суток, недели, месяца, сезона и года).

Выбор типа трансформаторов

Выбор типа трансформаторов производят с учетом условий их установки, температуры окружающей среды и т. п. Основное применение на промышленных предприятиях находят двухобмоточные трансформаторы. Трехобмоточные трансформаторы 110/35/6 — 20 кВ на ГПП применяют лишь при наличии удаленных потребителей средней мощности, относящихся к данному предприятию. Трансформаторы с расщепленными обмотками 110/10—10 кВ или 110/6—10 кВ применяют на предприятиях с напряжениями 6 и 10 кВ при необходимости снижения тока КЗ и выделения питания ударных нагрузок.

Рис. 1. Однолинейные схемы электрических соединений ГПП с двумя трансформаторами без выключателей на стороне высшего напряжения: а —с короткозамыкателями и отделителями; б — только с короткозамыкателями; в —с разъединителями и предохранителями типа ПСН
Трансформаторы ГПП напряжением 35 — 220 кВ изготовляют только с масляным охлаждением и обычно устанавливают на открытом воздухе. Для цеховых ТП с высшим напряжением 6 — 20 кВ применяют масляные трансформаторы типов ТМ, ТМН, ТМЗ, сухие трансформаторы типа ТСЗ (с естественным воздушным охлаждением) и трансформаторы типа ТНЗ с негорючей жидкостью (совтол). Масляные трансформаторы цеховых ТП мощностью SHOM.T «S alex пишет:

Хорошая статья, все просто и понятно, но ГОСТ 14209 — 69* не актуален, взамен ГОСТ 14209 — 85*, а на сегодняшний день ГОСТ 14209 — 97

Как рассчитать мощность трансформатора по нагрузке?

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.
В этих случаях следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт .

Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
Рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

Для освещения таких поме щений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт , нет ничего страшного — подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт

Где:
Р_2 – мощность на выходе трансформатора, нами задана 60 ватт ;

U _2 — напряжение на выходе трансформатора, нами задано 36 вольт ;

I _2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт .

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1 , мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:
S — площадь в квадратных сантиметрах,

P _1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков ,

округляем до 173 витка .

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера .

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм .

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где : d — диаметр провода .

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм² .

Округлим до 1,0 мм².

Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм . и площадью по 0,5 мм² .

Или два провода:
– первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Электрический аппарат – трансформатор используется для преобразования поступающего переменного напряжения в другое – исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Расчет ш-образного трансформатора

  1. Рассмотрим на примере процесс расчета обычного Ш-образного трансформатора. Предположим, даны параметры: сила тока нагрузки i2=0,5А, выходное напряжение (напряжение вторичной обмотки) U2=12В, напряжение в сети U1=220В.
  2. Первым показателем определяется мощность на выходе: P2=U2ˣi2=12ˣ0,5=6 (Вт). Это значит, что подобная мощность предусматривает использование магнитопровода сечением порядка 4 см² (S=4).
  3. Потом определяют количество витков, необходимых для одного вольта. Формула для данного вида трансформатора такая: К=50/S=50/4=12,5 (витков/вольт).
  4. Затем, определяют количество витков в первичной обмотке: W1=U1ˣK=220ˣ12,5=2750 (витков). А затем количество витков, расположенных во вторичной обмотке: W2=U2ˣK=12ˣ12,5=150.
  5. Силу тока, возникающую в первичной обмотке, рассчитайте так: i1=(1,1×P2)/U1=(1,1×6)/220=30мА.Это позволит рассчитать размер диаметра провода, заложенного в первичную обмотку и не оснащенного изоляцией. Известно, что максимальная сила тока для провода из меди равна 5-ти амперам на мм², из чего следует, что: d1=5А/(1/i1)=5A/(1/0,03А)=0,15 (мм).
  6. Последним действием будет расчет диаметра провода вторичной обмотки с использованием формулы d2=0,025ˣ√i2 , причем значение i2 используется в миллиамперах (мА): d2=0,025ˣ22,4=0,56 (мм).

Как рассчитать мощность трансформатора

  1. Напряжение, имеющееся на вторичной обмотке, и max ток нагрузки узнайте заранее. Затем умножьте коэффициент 1,5 на ток максимальной нагрузки (измеряемый в амперах). Так вы определите обмотку второго трансформатора (также в амперах).
  2. Определите мощность, которую расходует выпрямитель от вторичной обмотки рассчитываемого трансформатора: умножьте максимальный ток, проходящий через нее на напряжение вторичной обмотки.
  3. Подсчитайте мощность трансформатора посредством умножения максимальной мощности на вторичной обмотке на 1,25.

Если вам необходимо определить мощность трансформатора, который потребуется для конкретных целей, то нужно суммировать мощность установленных энергопотребляющих приборов с 20%-ми, для того, чтобы он имел запас. Например, если у вас имеется 10м светодиодной полосы, потребляющей 48 ватт, то вам необходимо к этому числу прибавить 20%. Получится 58 ватт – минимальная мощность трансформатора, который нужно будет установить.

Как рассчитать трансформатор тока

Основной характеризующей чертой трансформатора является коэффициент трансформации, который указывает, насколько изменятся основные параметры тока, вследствие его прохождения через это устройство.

Если коэффициент трансформации превышает 1, значит, трансформатор является понижающим, а если меньше этого показателя, то повышающим.

  1. Обычный трансформатор образован из двух катушек. Определитесь с количеством витков катушек N1 и N2, которые соединены магнитопроводом. Узнайте коэффициент трансформации k посредством деления количества витков первичной катушки N1, подключенной к источнику тока, на число витков катушки N2, к которой подключена нагрузка: k=N1/N2.
  2. Проведите измерение электродвижущей силы (ЭДС) на обоих трансфорсматорных обмотках ε1 и ε2, если отсутствует возможность узнать число витков в них. Сделать это можно так: к источнику тока подключите первичную обмотку. Получится так называемый холостой ход. Используя тестер, определите напряжение на каждой обмотке. Оно будет соответствовать ЭДС измеряемой обмотки. Не забывайте, что возникающие потери энергии из-за сопротивления обмоток настолько малы, что ими можно пренебречь. Коэффициент трансформации рассчитывается через отношение ЭДС первичной обмотки к ЭДС вторичной: k= ε1/ε2.
  3. Узнайте коэффициент трансформации находящегося в работе трансформатора, когда потребитель присоединен к вторичной обмотке. Определите его путем деления тока в первичной I1 обмотке, на возникший ток во вторичной I2 обмотке. Измерьте ток посредством последовательного присоединения тестера (переключенного в режим работы амперметра) к обмоткам: k=I1/I2.
Читайте также:  Соединение проводов в распределительной коробке согласно ПУЭ
Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector