Как рассчитать предохранитель по току?

Содержание

Калькулятор для расчета плавкой вставки предохранителя

Для защиты электрических цепей от аварийных режимов работы, таких как повышенное потребление мощности или короткое замыкание, используют плавкие вставки или предохранители. Они устроены таким образом, что при протекании тока до определенного уровня ничего не происходит, но, согласно закону Джоуля-Ленца при протекании электрического тока происходит выделение тепла на проводнике. Поэтому при определенной силе тока тепла выделяется такое количество, что проводник плавкой вставки просто перегорает.

В электронных схемах предохранители устанавливают на входе питания, он нужен для защиты трансформатора, дорожек платы и других узлов. Также используется для защиты электродвигателя – их часто устанавливают в щитах, к которым происходит подключение. К примеру, при заклинивании ротора электродвигателя в цепи статора (и ротора тоже, для ДПТ, и двигателей с фазным ротором) будет протекать повышенный ток, который сожжет предохранитель. Но если его номинал подобран чрезмерно большим, то сгорят обмотки электрической машины.

Кроме самого проводника предохранитель состоит из стеклянного или керамического корпуса, а для больших мощностей и напряжений корпус заполняется внутри диэлектрическим порошкообразным материалом – это нужно для гашения дуги, возникающей при перегорании плавкой вставки.

Казалось бы, простое устройство и принцип работы, но для его расчетов нужно использовать ряд формул, что значительно усложняет задачу. Хотя можно избежать их, если использовать наш онлайн калькулятор, который производит расчет плавкой вставки предохранителя:

Давайте разбираться, как рассчитать диаметр проволоки. Для начала определяют Iном потребления защищаемого устройства. Его можно узнать из технической документации, для электродвигателей – прочитать на шильдике или определить по мощности устройства. Если параметр не указан, определите его по формуле:

Iном=P/U

После этого проводят расчеты по току, умноженному на коэффициент запаса, который равен 1,2-2,0, в зависимости от типа нагрузки и её особенностей. При имеющейся тонкой проволоке определенного диаметра рассчитывают Iплавления:

При диаметрах проволоки от 0,02 до 0,2 мм:

От 0,2 мм и выше:

  • d – диаметр;
  • k или m – коэффициент, он приведен в таблице для различных металлов.

Чтобы определить диаметр провода зная ток I:

Для малых I – d от 0,02 до 0,2 мм:

Для больших I – диаметр провода от 0,2 мм и выше:

Если нужно узнать количество тепла, которое выделяется на плавкой вставке, то используйте формулу:

Время и количество теплоты для плавления:

  • m – масса проволоки;
  • Лямбда – удельное количество телпоты плавления, табличная величина характерная для каждого материала.

Масса круглой проволоки:

Для проверки правильности расчётов вы можете измерить сопротивление проводника по формуле:

Кстати, предохранители высоковольтных цепей обычно имеют высокое сопротивление (килоОмы). Для удобства можно воспользоваться таблицей:

Как вы можете убедиться, расчет плавкой вставки предохранителя достаточно объёмный, поэтому проще посчитать защитный предохранитель с помощью нашего онлайн калькулятора по току. Как уже было сказано, его вы можете определить, исходя из мощности.

Выбираем диаметр провода предохранителя – разбираем все тонкости вопроса

Самодельный предохранитель из медной проволоки может стать отличным временным способом заменить перегоревший предохранитель. Но если вы решились на такое, то крайне важно правильно подобрать сечение того самого проводника, который вы будете использовать. Почему это важно, каковы причины перегорания предохранителей и способы временного устранения этого неудобства мы и рассмотрим в нашей статье.

Причины перегорания предохранителей

Начнем с самого важного — с причин перегорания предохранителей. Ведь просто так нечего не происходит и прежде чем ставить «жучек», необходимо определиться с причинами поломки предохранителя.

Их может быть несколько:

Самая банальная и распространенная причина перегорания предохранителя – это короткое замыкание. В результате данного события ток резко возрастает, на что и реагирует плавкая вставка в предохранителе, перегорая.

Так же достаточно частым явлением является перегорание проводника при заклинивании приводного механизма питающей цепи. В этом случае предохранитель действует как защита от перегрузки.

Следующей возможной причиной того что вам потребуется искать провод для предохранителя может быть скачек напряжения. При резком и главное длительном снижении напряжения, ток, согласно закону Ома, пропорционально возрастает. Это может привести к перегоранию предохранителя. При непродолжительных по времени скачках такое происходит крайне редко.

Еще один возможный вариант, это частая работа предохранителя на грани срабатывания. Когда ток, протекающий через него, близок к номинальному, проволока для предохранителей сильно нагревается. Затем остывает, и опять нагревается. Такой режим изменяет структуру металла, из-за чего предохранитель может перегореть при значительно более низких значениях тока.

Именно для исключения таких случаев качественные предохранители выпускают из максимально чистых металлов. У них изменение структуры при частых перепадах температур минимизировано.

Выбор диаметра проволоки и ремонт предохранителя

Ну, а теперь давайте перейдет к основному вопросу нашей статьи – выбору диаметра и непосредственно ремонту. Начнем с первого.

Выбор диаметра проводника

Диаметр проводника в предохранителях четко рассчитан. Если вы выполняете замену, то должны установить проводник такого же диаметра. Иначе ваш предохранитель не будет выполнять свою функцию по защите электрической сети.

  • Сделать это можно несколькими способами. Наиболее простой взять сечение провода для предохранителя, и таблица стандартных значений позволит осуществить вам выбор. Для этого достаточно измерить диаметр провода.

  • Диаметр провода можно измерить с помощью штангенциркуля или даже обычной линейки. Если диаметр проволоки для предохранителя слишком мал, то измерения можно произвести следующим образом. Проволоку наматываем на любой небольшой предмет – зажигалку, карандаш, ручку.

  • Желательно сделать 10-20 витков, для большей точности измерения. Витки делаем максимально плотными, для исключения пространства межу ними. Затем измеряем диаметр всех витков. Полученное значение делим на количество витков. Вот вам и диаметр провода для предохранителя.

Обратите внимание! При данном способе измерения диаметра у вас наверняка будет небольшая погрешность, связанная с недостаточной плотностью витков. Поэтому полученное число округляем для ближайшего меньшего.

  • Расчет предохранителя из медной проволоки можно произвести и для значений, не указанных в таблице. Для этого нам необходимо знать требуемый ток плавкой вставки и материал проволоки.
  • Для того чтобы вычислить диаметр медной проволоки для предохранителя до 7А, нам следует воспользоваться приведенной ниже формулой. В этой формуле d – рассчитываемый диаметр, Iпл – требуемый ток плавкой вставки, k – коэффициент учитывающий материал проволоки. Для меди он составляет 0,034.
Читайте также:  Селектор входов и выходов умзч на микроконтроллере

  • Если вы хотите своими руками вычислить диаметр проволоки для вставки на номинал выше 7А, то вам следует воспользоваться формулой, приведенной ниже. В этой формуле m – коэффициент учитывающий материал проволоки. Для меди он равен 80.

  • Если толщина провода для предохранителя в результате расчета или выбора по таблице получилась таковой, какой нет в наличии. То можно добиться требуемого диаметра за счет соединения нескольких проволок разного сечения. Хотя этот вариант и несколько хуже.

Ремонт предохранителей

Установка вместо калиброванной плавкой вставки в предохранитель проволоки в простонародье называется установкой «жучка». Любой «жучек», согласно нормам ПУЭ, недопустим, так как не всегда способен качественно защитить электроустановку.

Тем не менее к такому способу ремонта предохранителей прибегают достаточно часто. Особенно когда под рукой нет запасного предохранителя.

  • Установка «жучка» вместо предохранителя зависит от его типа. Если это трубчатый предохранитель на большой номинальный ток, то такие изделия обычно имеют разборную конструкцию как на видео.

  • То есть, предохранитель можно раскрутить. Изъять перегоревшую плавкую вставку и вместо нее установить предохранитель из медного провода.
  • С изделиями меньших номиналов все немного сложнее. Обычно они изготавливаются неразборными, в связи с чем придётся повозиться.

  • Если перед вами трубчатый предохранитель стеклянного или керамического типа, то они обычно имеют металлические оконцовки. Для установки «жучка» их необходимо просверлить с двух сторон и в полученную полость вставить наш проводник. Отверстие вместе с проводником желательно затем запаять.
  • С ножевыми предохранителями выполнить ремонт своими руками несколько сложнее. Тут просверлить отверстие не получится, так как крепить провод необходимо к ножам, которые скрыты под корпусом. В этом случае сечение провода предохранителя на 10 А или другого номинала крепят непосредственно на ножи перед корпусом. А затем устанавливают предохранитель.

Обратите внимание! Такой способ намного опаснее. Так как при перегорании провода возможно его разбрызгивание по соседнему оборудованию. К пожару это может и не привести, но повредить оборудование может.

  • Именно, исходя из этих причин, наша инструкция не советует наматывать проволоку непосредственно на контакты-держатели предохранителей. Это же касается намотки провода поверху корпуса трубчатого предохранителя.

  • Отдельный вопрос — предохранители с наполнителем. Наполнитель необходим для более быстрого погасания электрической дуги. Обычно такие изделия имеют разборную конструкцию и для них необходима такая же толщина проволоки для предохранителя, как и для других трубчатых изделий. Песок же, который находится внутри изделия, сначала ссыпаем, а затем опять засыпаем в предохранитель.

Вывод

Диаметр провода для предохранителей зависит от номинального тока изделия и от материала используемого провода. Подобрать или рассчитать этот диаметр не так уж сложно. Но такая починка является лишь временной мерой.

ПУЭ не зря требует использования лишь калиброванных вставок, а что касается неразборных предохранителей с небольшим номинальным током, то их цена не столь высока, чтобы рисковать дорогостоящим оборудованием. Поэтому при первой возможности обязательно замените «жучок» на нормальный предохранитель или калиброванную вставку.

Выбор медной проволоки под предохранитель (калькулятор)

Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.

Как определить номинал предохранителя по корпусу и на плате

Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.

Расчет и подбор медной проволоки под плавкий предохранитель

Ну хорошо, с номиналом разобрались, теперь бы подобрать такую проволоку, которая могла бы заменить сгоревший предохранитель. Этот вариант приоритетен в тех случаях, когда просто нет под замену аналогичного плавкого предохранителя.
Для того чтобы подобрать проволоку нужного диаметра, необходимо обратиться к форме ниже. В этом случае вы сможете сориентироваться с тем током и диаметром проволоки, в зависимости от материала, что пойдет именно вам.

Ток защиты предохранителя, Ампер0,250.51.02.03.05.07.010.015.020.025.030.035.040.045.0
Диаметр проволоки, ммМедной0.020.030.050.090.110.160.200.250.330.400.460.520.580.630.68
Алюминиевой0.070.100.140.190.250.300.400.480.560.640.700.770.83
Стальной0.320.200.250.350.450.550.720.871.001.151.261.381.50
Оловянной0.180.280.380.530.660.851.021.331.561.771.952.142.30

Однако это все справочные материалы. А вот для того чтобы сделать подбор проволоки универсальным, можно воспользоваться формулой.

Читайте также:  Как правильно установить датчик света на улицу?

где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.

Обратите внимание, что она верна для меди! Если у вас нет такого диаметра, то придется собирать проводник из нескольких меньших. Здесь надо понимать, что каждый из проводников будет работать параллельно, а значит ток будет падать соизмеримо количеству взятых проводников. Чтобы было легче прикинуть ток, диаметр и количество проводников, можно воспользоваться калькулятором.

Онлайн калькулятор для расчета диаметра медной проволоки в зависимости от тока
Введите величину максимального тока, A:

Теперь же пару слов о типовых номиналах предохранителей и случае, если номинал предохранителя первоначально не удалось установить.

Номиналы предохранителей ориентировочные

Номинал предохранителя на микроволновке порядка 12 А (2 Квт)
Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.

В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя.
Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.

tihon635 › Blog › Питалово системы (Подбор сечения кабеля и предохранителя)

Подбор сечения силового кабеля.

Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в процессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.

1 Ом = 1 Вольт /1 Ампер

Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.

Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)

Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2

280 Вт. (максимальная мощность)

Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.

Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A

Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов. Плюсовой провод и заземление желательно тянуть от аккамулятора, если это невозможно по какой-то причине, заземлять ВСЕ компоненты системы нужно в одной точке, дабы исключить разность потенциалов между компонентами.
Расчет номинала предохранителя.
Расстояние от плюсовой клеммы аккумулятора до потребителя в основном превышает 40 сантиметров, поэтому устанавливаем защитный предохранитель, естественно не далее 40 сантиметров от аккумуляторной клеммы, а лучше устанавливать главный предохранитель возможно ближе к плюсовой клемме аккумулятора. Его назначение, защитить питающий кабель от возгорания, например в случае аварии автомобиля (ДТП). Повреждение автомобиля может быть пустяковым, но пережатый питающий кабель приведет к короткому замыканию, возгоранию и уничтожению автомобиля. Номинал главного предохранителя определяется МАКСИМАЛЬНО возможным номиналом предохранителя для данного сечения кабеля. Например для кабеля сечением 2 GA МАКСИМАЛЬНО возможный номинал предохранителя составляет 150 Ампер. А можно поставить предохранитель номиналом, допустим 100 Ампер, 80Ампер или 50 Ампер? Да можно! Можно поставить любой предохранитель, при одном условии, что он НЕ БУДЕТ превышать номинал 150 Ампер (иначе смысл этого предохранителя пропадает). Общий максимальный ток, который может быть потреблен к примеру двумя усилителями (моноблок 80А и двухканальник 30А), составляет 110 Ампер, так что если поставить главный предохранитель номиналом 100 Ампер, существует вероятность того, что он будет перегорать на пиках максимальной громкости. Исходя из вышеизложенного, я рекомендую выбрать предохранитель номиналом 150 Ампер, в случае нештатной ситуации он сработает.

Плавкие предохранители – их назначение, типы и виды, устройство и принцип действия

Плавкий предохранитель — элемент электросети, выполняющий защитную функцию. В отличие от автоматического выключателя после каждого срабатывания он нуждается в замене размыкающей цепь детали. Плавкая вставка, которая сгорает при превышении допустимого значения номинального тока, должна быть выбрана с учетом нагрузки на сеть.

Принцип работы и назначение плавких предохранителей

Внутри вставки предохранителя находится проводник из чистого металла (меди, цинка и пр.) или сплава (стали). Защита цепей основана на физическом свойстве металлов нагреваться при прохождении тока. Многие сплавы обладают и положительным коэффициентом термического сопротивления. Его эффект заключается в следующем:

  • когда ток ниже номинального значения, предусмотренного для проводника, металл равномерно нагревается, успевая рассеивать тепло, и не перегревается;
  • большая сила тока приведёт к нагреву проводника, при этом, рассчитанный на определённое значение силы тока предохранитель, разрушится.
Читайте также:  Как рассчитать электроемкость конденсатора?

На этом свойстве основана расплавление тонкой проволочины, помещенной в электрический предохранитель. В зависимости от сферы применения форма и сечение проводника могут быть разными: от тонкой проволоки в бытовых и автомобильных приборах до толстых пластин, рассчитанных на силу тока в несколько тысяч ампер (А).

Компактная деталь защищает электрическую цепь от перегрузки и короткого замыкания. При превышении допустимого для сети (т. е. номинального) тока происходит разрушение вставки и разрыв цепи. Восстановить её работу можно только после замены элемента. Когда есть дефект в подключенном оборудовании, предохранители сгорают сразу после включения неисправного прибора, позволяя сохранить целостность прибора и указать на наличие проблемы. Если в сети произошло короткое замыкание, защитное устройство срабатывает так же.

Условное графическое обозначение на схеме

Согласно Единой системе конструкторской документации России, на графических схемах электроцепей плавкие предохранители обозначают прямоугольником, внутри которого проходит прямая линия. Её концы соединяются с 2 частями цепи до и после защитного устройства.

В документации к приборам импортного производства можно встретить и другие обозначения:

  • прямоугольник с отделёнными частями в торцах (стандарт IEC);
  • волнистая линия (IEEE/ANSI).

Виды и типы плавких предохранителей

Для применения в электроцепях используют разные типы и разновидности ПП. Выпускаемые в России изделия отличаются по типу конструкции:

  • наполненные с маркировкой ПН-2; ППН, НПН и т. п.;
  • ненаполненные (ПР-2).

Понятие наполненности связано с наличием внутри отдельных видов вставок вещества, гасящего электродугу, возникающую в момент перегорания проводника. Цепь будет разомкнута только после её исчезновения. Поэтому в колбах, наполненных ПП, находится кварцевый песок. Ненаполненные способны выделять газы, гасящие дугу. Это происходит при нагреве материала корпуса вставки.

Кроме типов, различают виды ПП:

  1. Слаботочные применяют в маломощных бытовых приборах с потребляемым током силой до 6 А. Это цилиндрические вставки с контактами на торцах.
  2. Вилочные ПП часто ставят в автомобили. Название обусловлено внешним видом: контакты находятся на одной стороне корпуса и вставляются в разъемы, как вилка в розетку.
  3. Пробковые — распространенные в однофазных сетях электрические пробки для счетчика. Номинальный ток таких вставок составляет 63 А, они рассчитаны на единовременное включение нескольких бытовых приборов. Перегорающая вставка в таком предохранителе находится внутри керамического корпуса с патроном, снаружи остается 1 контакт, а другой соединяется с контактами пробки. При превышении нагрузки деталь сгорает, полностью обесточивая квартиру. Восстановить электроснабжение можно, заменив вставку на новую.
  4. Трубчатый ПП по строению напоминает вставку для пробок, но его крепление выполнено между 2 контактами. Тип такого предохранителя — ненаполненный, а корпус сделан из фибры, которая при сильном нагреве выделяет газ.
  5. Ножевые предохранители рассчитаны на величину тока 100-1250 А и применяются в сетях, где нужна высокая нагрузка (например, при подключении прибора с мощным двигателем).
  6. Кварцевые , с наполнением кварцевым песком, применяются в сетях с напряжением до 36 кВ.
  7. Газогенерирующие, разборные и неразборные. При сгорании разновидностей ПСН, ПВТ происходит мощное выделение газа, сопровождающееся хлопком. ПП применяют для сетей с напряжением 35-110 кВ. Номинальный ток такого ПП — до 100А.

В зависимости от общей нагрузки на сеть устанавливают разные виды ПП — более мощные ставят в специальных трансформаторных будках, они могут выдерживать ток, обеспечивающий потребности жилого массива иди предприятия. Маломощные монтируют в счетчиках: они защищают отдельные квартиры. В старых бытовых приборах тоже может быть установлен ПП (слаботочный), но современная техника содержит эти элементы редко.

Выбор плавкой вставки предохранителя

Выбор предохранителей производят с учетом их номиналов, времятоковой характеристики и общей нагрузки на сеть (суммарной мощности всех работающих элементов). Номинальным током ПП называют тот, который плавкая вставка сможет выдержать до разрушения. Эта величина указана на корпусе предохранителя (например, маркировка 63 А для пробковых бытовых предохранителей).

Пример расчета номинальных токов плавких вставок и выбора предохранителей

Последовательность расчета и выбора автоматических выключателей

6.8.1 Определяется номинальный ток электроприемника по формулам (6.6…6.11).

6.8.2 Для электрического двигателя с короткозамкнутым ротором определяется пусковой ток по формуле (6.12).

6.8. По номинальному току электроприемника выбирается автоматический выключатель (таблица 6.2) с соблюдением условий 6.3, 6.4 и 6.5.

Произвести расчет и выбрать плавкие предохранители для защиты электроприемников, изображенных на однолинейной электрической схеме сети рис.6.6.

– напряжение сети 380/220 В (линейное напряжение Uл =380 В, фазное напряжение U =220 В);

– электроприемник 1: трехфазный асинхронный электродвигатель с короткозамкнутым ротором и техническими характеристиками: P = 20 кВт;

– электроприемник 2: двухфазная нагревательная печь мощности P2 = 7 кВт; cosj2 = 1;

– электроприемник 3: однофазная осветительная установка общей мощностью P3 =1 кВт; cosj3 = 1.

6.9.1 Определяем номинальный ток электродвигателя по формуле (6.9):

А.

6.9.2 определяем номинальный ток нагревательной печи по формуле (6.9):

А.

6.9.3 Определяем номинальный ток осветительной установки по формуле (6.11):

А.

6.9.4 Определяем пусковой ток электродвигателя по формуле (6.12):

А.

6.9.5 Определяем требуемое значение номинального тока плавкой вставки для защиты электродвигателя по формуле (6.13):

А.

6.9.6 По требуемому значению номинального тока плавкой вставки для защиты электродвигателя с короткозамкнутым ротором и номинальным током остальных электроприемников по таблице 6.1 выбираем предохранители с ближайшими большими значениями номинальных токов плавких вставок:

Пр.1 – тип ПН2-100 с номинальным током плавкой вставки ;

Пр.2 – тип НПН 60М с номинальным током плавкой вставки ;

Пр.3 – тип НПИ 15 с номинальным током плавкой вставки .

6.9.7 Определяем требуемое значение номинального тока плавкой вставки для защиты группы электроприемников по формуле (6.15):

.

Для защиты группы электроприемников из табл. 6.1. выбираем предохранитель ПН-250 с номинальным током плавкой вставки . По формуле (6.16) проверяем выполнение условия селективности защиты: , , значит селективность защиты обеспечена.

Результаты расчета представлены в таблице 6.3

Таблица 6.3 – Результаты расчета и выбора плавких вставок предохранителей

Наименование электроприемникаНоминальный ток электроприемника, Iн, АПусковой ток электроприемника, Iпуск, АТребуемое значение номинального тока плавкой вставки, , АТип предохранителяНоминальный ток плавкой вставки, Iпл, А
Электродвигатель Нагревательная печь Осветительная установка38,2 18,4 4,5229,5 – –91,7 18,4 4,5ПН2-100 НПН 60М НПИ 15
Групповой предохранительПН2-250

Дата добавления: 2014-11-06 ; Просмотров: 3851 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector