Как рассчитать ток холостого хода трансформатора?

Содержание

Что такое холостой ход трансформаторов, формулы и схемы

Трансформатор электрического тока является устройством преобразования энергии. Ток холостого хода трансформатора характеризует потери при отсутствии подключенной нагрузки. Величина данного параметра зависит от нескольких факторов:

  1. Конструктивного исполнения.
  2. Материала сердечника.
  3. Качества намотки.

При изготовлении преобразователей стремятся к максимально возможному снижению потерь холостого хода с целью повышения КПД, снижения нагрева, а также уменьшения паразитного поля магнитного рассеивания.

Общая конструкция и принцип работы трансформатора

Конструктивно трансформатор состоит из следующих основных частей:

  1. Замкнутый сердечник из ферромагнитного материала.
  2. Обмотки.

Обмотки могут быть намотаны на жестком каркасе или иметь бескаркасное исполнение. В качестве сердечников трансформаторов напряжения промышленной частоты используется специальным образом обработанная сталь. В некоторых случаях встречаются устройства без сердечника, но они используются только в области высокочастотной схемотехники и в рамках данной темы рассматриваться не будут.

Принцип действия рассматриваемой конструкции заключается в следующем:

  1. При подключении первичной обмотки к источнику переменного напряжения она формирует переменное электромагнитное поле.
  2. Под воздействием данного поля в сердечнике формируется магнитное поля.
  3. Магнитное поле сердечника, в силу электромагнитной индукции, создает во всех обмотках ЭДС индукции.

ЭДС индукции создается, в том числе, в первичной обмотке. Ее направление противоположно подключенному напряжению, поэтому они взаимно компенсируются и ток через обмотку при отсутствии нагрузки равен нулю. Соответственно, потребляемая мощность при отсутствии нагрузки равна нулю.

Понятие холостого хода

Приведенные выше рассуждения справедливы для идеального трансформатора. Реальные конструкции обладают следующими потерями (недостатками) на:

  • намагничивание сердечника;
  • магнитное поле рассеивания сердечника;
  • электромагнитное рассеивание обмотки;
  • междувитковую емкость проводов обмотки.

В результате, в реальных конструкциях трансформатора наводимая ЭДС индукции отличается от номинального напряжения первичной обмотки и не в состоянии его полностью скомпенсировать. В обмотке возникает некоторый ток холостого хода. При подключении нагрузки данное значение суммируется с номинальным током и характеризует общие потери в электрической цепи.

Потери снижают общий КПД трансформатора, в результате чего растет потребление мощности.

Меры по снижению тока холостого хода

Основным источником возникновения тока холостого хода является конструкция магнитопровода. В ферромагнитном материале, помещенном в переменное электрическое поле, наводятся вихревые токи электромагнитной индукции – токи Фуко, которые нагревают материал сердечника.

Для снижения вихревых потерь материал сердечника изготавливают из тонких пластин, отделенных друг от друга изолирующим слоем, которую выполняет оксидная пленка на поверхности. Сам материал производится по специальной технологии, с целью улучшения магнитных свойств (увеличения значения магнитного насыщения, магнитной проницаемости, снижения потерь на гистерезис).

Обратная сторона использования большого количества пластин состоит в том, что в местах стыков происходит разрыв магнитного потока, в результате чего возникает поле рассеивания. Поэтому для наборных сердечников важна тщательная подгонка отдельных пластин друг к другу. В ленточных разрезных магнитопроводах отдельные части подгоняются друг к другу при помощи шлифовки, поэтому при сборке конструкции нельзя менять местами части сердечника.

От указанных недостатков свободны О-образные магнитопроводы. Магнитное поле рассеивания у них стремится к нулю.

Поле рассеивания обмотки и междувитковую емкость снижают путем изменения конструкции обмоток и пространственного размещения их частей относительно друг друга.

Снижение потерь также достигается при возможно более полном заполнении свободного окна сердечника. При этом масса и габариты устройства стремятся к оптимальным показателям.

Как проводится опыт холостого хода

Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.

Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.

Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.

Коэффициент трансформации

Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:

Данное отношение справедливо для всех обмоток трансформатора.

Однофазные трансформаторы

В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.

Трехфазные

Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:

  • амперметры для измерения тока в каждой фазе;
  • вольтметры для измерения междуфазных напряжений первичной обмотки;
  • вольтметры для измерения междуфазных напряжений вторичной обмотки.

При проведении опыта холостого хода производятся следующие вычисления:

  • рассчитывается среднее значение тока по показаниям амперметра;
  • среднее значение напряжения первичной и вторичной обмоток.

Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.

Измерение тока

При измерении тока можно определить только величину электрических потерь. Более полно определить параметры конструкции позволяет более сложная схема измерений.

Применение ваттметра

Подключив в первичную цепь ваттметр, можно определить мощность потерь трансформатора в режиме холостого хода. Суммируясь с мощностью нагрузки, найденная величина определяет габаритную мощность трансформатора.

Измерение потерь

При измерениях тока холостого хода и мощности потребления, можно сделать выводы о общих потерях холостого хода, которые приводят к следующему:

  1. Нагрев проводов обмоток.
  2. Нагрев сердечника.
  3. Снижение КПД.
  4. Появление магнитного поля рассеивания.

Схема замещения в режиме трансформатора

Прямой электрический расчет трансформатора сложен по той причине, что он представляет собой две электрических цепи, связанных между собой магнитной цепью.

Для упрощения расчетов удобнее пользоваться упрощенной эквивалентной схемой. В схеме замещения вместо обмоток используются комплексные сопротивления:

  • для первичной обмотки комплексное сопротивление включается последовательно в цепь;
  • для вторичной обмотки параллельно нагрузке.

Каждое комплексное сопротивление состоит из последовательно соединенного активного сопротивления и индуктивности.

Активное сопротивление – это сопротивление проводов обмотки.

От чего зависит магнитный поток взаимоиндукции в режиме ХХ

Магнитный поток взаимоиндукции в трансформаторе зависит от способа размещения обмоток на сердечнике и их конструктивного исполнения.

Важную роль играет коэффициент заполнения окна магнитопровода, который показывает отношение общего пространства, к месту, занятому обмоткой.

Чем ближе данный коэффициент к единице, тем выше будет взаимоиндукция обмоток и меньше потери в трансформаторе.

Примеры расчетов и измерений в режиме ХХ

Измеряя ток, напряжение и мощность трансформатора в опыте холостого хода, можно рассчитать следующие дополнительные данные:

  • активное сопротивление первичной цепи r1=Pхх/U 2 ;
  • полное сопротивление первичной цепи z1=U/Iхх;
  • индуктивное сопротивлении е x1=√(z 2 -r 2 ).

Найти ток холостого хода без применения амперметра можно по показаниям вольтметра и ваттметра:

Определение холостого хода трансформатора

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.
Читайте также:  Как рассчитать крутящий момент электродвигателя?

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение тока

При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.

Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

Применение ваттметра

Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:

Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.

Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.

Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.

Интересное видео: Описание основ работы трансформатора.

Тема: Как определить ток трансформатора ?

Обратные ссылки
  • URL обратной ссылки
  • Подробнее про обратные ссылки
  • Закладки & Поделиться
  • Отправить тему форума в Digg!
  • Добавить тему форума в del.icio.us
  • Разместить в Technorati
  • Разместить в ВКонтакте
  • разместить в Facebook
  • Разместить в MySpace
  • Разместить в Twitter
  • Разместить в ЖЖ
  • Разместить в Google
  • Разместить в Yahoo
  • Разместить в Яндекс.Закладках
  • Разместить в Ссылки@Mail.Ru
  • Reddit!
  • Опции темы

    Уважаемый читайте внимательно. Разговор о справочнике относится к расчету ХХ тока трансформатора. А если лень все прочитать, тогда получается , что один про Фому другой про Ерему!

    • Поделиться
      • Поделиться этим сообщением через
      • Digg
      • Del.icio.us
      • Technorati
      • Разместить в ВКонтакте
      • Разместить в Facebook
      • Разместить в MySpace
      • Разместить в Twitter
      • Разместить в ЖЖ
      • Разместить в Google
      • Разместить в Yahoo
      • Разместить в Яндекс.Закладках
      • Разместить в Ссылки@Mail.Ru
      • Reddit!

    На холостом ходу трансформатор является ИНДУКТИВНОСТЬЮ , его ток чисто РЕАКТИВНЫЙ . Никаких обсуждений здесь быть не может по определению. Значение можно рассчитать по формуле
    I’ = U’/(2*Pi*fсети*Lпервичной обмотки).

    Амперметр (обычный , без наворотов) показывает модуль среднеквадратичного значения комплексного тока .

    Добавлено через 8 минут

    Многовато , но не радикально . Это соответствует соs фи под полной нагрузкой 0.868 . Если Вы измерите тестером сопротивление обмотки (например , 2 ома) , то получите , что в нагрев на ХХ уйдет только 3 Вт . А под нагрузкой потери на нагрев составят 23 вт .

    Добавлено через 7 минут

    Я не знаю , где Вы нашли справочник , в котором у индуктивности активный ток . Но место ему в местах общего пользования типа “сортир” для общедоступного употребления .

    Последний раз редактировалось KulibinV; 28.03.2010 в 13:44 . Причина: Добавлено сообщение

    • Поделиться
      • Поделиться этим сообщением через
      • Digg
      • Del.icio.us
      • Technorati
      • Разместить в ВКонтакте
      • Разместить в Facebook
      • Разместить в MySpace
      • Разместить в Twitter
      • Разместить в ЖЖ
      • Разместить в Google
      • Разместить в Yahoo
      • Разместить в Яндекс.Закладках
      • Разместить в Ссылки@Mail.Ru
      • Reddit!

    Какой должен быть ток холостого хода трансформатора?

    Есть распространенное мнение, что чем меньше ток ХХ тем лучше. Я не помню уж всей теории, но качественно ситуация выглядит так : слишком малый ток ХХ приводит к большой “просадке” напряжения под нагрузкой и к невозможности получить от трансформатора габаритной мощности. Мы просто не реализуем возможности железа по допустимой индукции в железе. Тратим напрасно медь. Хорошее железо держит 1.8 Тесла плохое насыщается пр 1 Тл.
    Слишком большой ток ХХ ведет к перегреву трансформатора. На холостом ходу контролируют осциллографом форму тока в первичной обмотке. Она не должна напоминать “шапку буденовку”. Когда изготовитель трансформатора определяет ток холостого хода как 10%, то берем 2500Вт делим на 220 В получаем 11.36 А. 10% от этой величины 1.13 А. Табличку со справочника для трансформаторов ОСМ-1 я приводил выше.
    Для расчетов задаются допустимым падение напряжения под полной нагрузкой и допустимым перегревом. Хотя имеются методы расчета минимизирующие вес, габариты, стоимость, поле рассеяния трансформатора.
    Так кажется?

    Последний раз редактировалось UA2FP; 28.03.2010 в 14:32 .

    Режим холостого хода трансформатора

    Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

    Читайте также:  Измеритель частоты импульса приборы

    Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

    Принцип работы трансформатора

    Что такое режим холостого хода

    Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

    Режим короткого замыкания

    В процессе эксперимента можно найти:

    • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
    • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
    • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
    • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

    Как проводится опыт холостого хода

    При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

    • коэффициент трансформации;
    • мощность потерь в стали;
    • параметры намагничивающей ветви в замещающей схеме.

    Для опыта на устройство подаётся номинальная нагрузка.

    При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

    В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

    Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

    Для однофазного трансформатора

    Опыт холостого хода для однофазного трансформатора проводится с подключением:

    • вольтметров на первичной и вторичной катушках;
    • ваттметра на первичной обмотке;
    • амперметра на входе.

    Приборы подключаются по следующей схеме:

    Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

    Iо% = I0×100/I10.

    Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

    Коэффициент рассчитывается по формуле:

    K = w1/w2 = U1н/ U2О.

    Величина потерь составляет сумму из электрической и магнитной составляющих:

    P0 = I02×r1 + I02×r0.

    Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

    Потери холостого хода для трансформаторов мощностью 30-2500 кВА

    Для трёхфазного трансформатора

    Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

    При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

    Применяется следующая схема:

    Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

    В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

    Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

    Для сварочного трансформатора

    Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

    После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

    Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

    Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

    Видео: измерение тока холостого хода

    Меры по снижению тока холостого хода

    Ток при нахождении трансформатора в режиме холостого хода возникает, благодаря конструктивным особенностям сердечника. Для ферромагнитного материала, попавшего в электрическое поле переменного тока, характерно наведение вихревых индуктивных токов Фуко, вызывающих нагревание данного элемента.

    Чтобы снизить вихревые токи, сердечник изготавливают не в виде цельной детали, а набирают из пакета пластин небольшой толщины. Между собой пластины изолируются. Дополнительная мера – изменение свойств самого материала, позволяющее увеличить порог магнитного насыщения.

    Чтобы не допустить разрыва магнитного потока с возникновением поля рассеивания, пластины тщательно подгоняют в процессе набора. Отдельные элементы шлифуют, с получением гладкой, идеально прилегающей поверхности.

    Также потери снижаются за счёт более полного заполнения окна магнитопровода. Это позволяет обеспечить оптимальные показатели массы и габаритов агрегата.

    Холостой ход трансформатора – режим, при котором можно рассчитать важные характеристики. Это проводится для оборудования, находящегося в эксплуатации и на стадии проектирования.

    УМЕНЬШЕНИЕ ТОКА ХОЛОСТОГО ХОДА ТРАНСФОРМАТОРА

    Нет любителя электроники, которого хотя бы раз не упрекнули в том, что он не изучает теорию, а его творческий метод на практике есть ни что иное как «метод тыка». Между тем в познании теории есть свои нюансы. Перемотка трансформаторов дело хорошее, в смысле если владеешь этим умением (хотя бы работой со вторичной обмоткой), то сбережешь не только деньги, но и время. Бонусом будет хорошее настроение от осознания своей творческой мощи. Однако суть процесса заключается не только в сматывании и наматывании витков провода на трансформаторную катушку и разборке – сборке магнитопровода. Есть моменты, основанные на знаниях. Пополняя их прочитал как-то про ток холостого хода трансформаторов и не вникая в подробности уяснил, что это плохо. Да ещё вдобавок ко всему научился его измерять.

    Холостым ходом трансформатора называется такой режим его работы, при котором к первичной обмотке подведено напряжение, а вторичная обмотка разомкнута и ток в ней равен нулю.

    В работе в это время как раз находился трансформатор питания ТП-60-15.

    Домотал его вторичную обмотку до выходного напряжения 12 вольт с током гораздо более 1 ампера. И тут не упустив случая, использовал вновь приобретённые знания – замерил ток холостого хода. А в наличии аж 125 мА – норма для силового трансформатора ТС-270. Тогда не долго думая смотал всю вторичную обмотку и добавил первичной ( для устранения обнаруженного недостатка), ток холостого хода стал 40 мА. Правда места под первичную обмотку стало меньше и хватило намотать провода только до напряжения 10,5 вольт, но и это вполне устраивало.

    Не устроило только то, что уже первые сто миллиампер поглощенные нагрузкой вызвали падение напряжения на один вольт – максимальную норму допуска падения в таких случаях. А увеличение нагрузки до токопотребления в 0,5 ампера заставили стрелку вольтметра упасть уже до 9 вольт. Чтобы понять причину много времени не потребовалось, естественно всё дело было в действиях по снижению тока холостого хода. Улучшая, хотел лучшего, а получилось всё именно так как обычно и бывает в таких случаях. Недаром же существует не писаный постулат, гласящий о неприкосновенности первичной обмотки трансформатора заводского изготовления.

    Читайте также:  Диммер для регулировки света

    Пришлось смотать сделанную прибавку к первичной обмотке. Как видно на фото её было не мало (провод, намотанный на катушку от видеокассеты). На трансформаторной катушке осталась заводская намотка сопротивлением в 50 Ом. На место вторичной обмотки вернул тот же провод диаметром 1 мм и в том же количестве, что смотал ранее.

    Трансформатор, восстановленный до заводского исполнения, опять стал выдавать хороший выходной ток. При первоначальном напряжении в 10,5 В, оно снизилось только на 0,5 вольта и значит ещё можно добавлять нагрузку, а на амперметре уже более 1 ампера. Да и лампочки кончились.

    От чего зависит ток холостого хода

    Что касается тока холостого хода, то его последствием являются электрические потери в первичной обмотке трансформатора. Они в трансформаторах радиолюбительской практики весьма малы, можно даже сказать, ничтожны и ими обычно пренебрегают. Помимо числа витков первичной обмотки ток холостого хода так же зависит от целого ряда причин и условий:

    • величины поданного напряжения
    • наличия короткозамкнутых витков
    • качества изоляции обмоток
    • толщины пластин и их изоляции
    • наличия воздушного зазора в магнитопроводе
    • силы сжатия пластин
    • и так далее.

    Производя сборку трансформаторных магнитопроводов, соединяющихся встык, уже не в первый раз применяю способ, при котором соединяемые торцы магнитопровода смазываю клеем, который используют для установки потолочных пенопластовых плиток (подробнее читайте здесь). При высыхании он практически не даёт усадки и прекрасно справляется с ролью специализированного компаунда, который применяют для этих целей в более ответственных случаях, а держит соединённые половинки так, что при разборке необходим резкий удар небольшого молотка. Но самое главное звук сопровождающий работу трансформатора, пресловутое «гудение» отсутствует полностью, трансформатор «нем как рыба». В планах подобрать наполнитель, пылеобразный порошок – магнитный диэлектрик.

    Видео

    Всем до встречи на страницах сайта “Электрические схемы”. Автор Babay iz Barnaula.

    Ток холостого хода трансформатора

    Ни один трансформатор не может работать без потерь мощности. Мощность, поступающая на первичную обмотку из сети, не вся доходит до потребителя. Часть ее расходуется на бесполезный нагрев деталей агрегата: обмоток, магнитопровода. Для того, чтобы оценить потери мощности, оценивают ток холостого хода трансформатора (ХХ) и напряжение в режиме короткого замыкания.

    Для измерения этих величин проводят опыт холостого хода и короткого замыкания для трансформатора. Рассмотрим подробнее, как это делается.

    Методика и теоретические основы проведения опыта

    Режим холостого хода трансформатора достигается сравнительно просто. Для этого достаточно отключить нагрузку от всех его обмоток, оставив их разомкнутыми, а затем – включить его в сеть. Для точности эксперимента желательно, чтобы напряжение в сети было равно номинальному для данного агрегата.

    Через первичную обмотку протекает ток Io, называемый током ХХ. Его величина не превышает 3-10 % от номинального. Напомним, никакой нагрузки на вторичной обмотке нет, поэтому стоит пояснить процессы, проходящие внутри, чтобы понять: откуда берется этот ток.

    Ток ХХ создает магнитный поток Фо в магнитопроводе, пересекающий витки первичной и вторичной обмоток. За счет него на первичной обмотке возникает эдс самоиндукции Е1, во вторичной появляется эдс взаимоиндукции Е2.

    Эдс самоиндукции Е1 на первичное напряжение U1 влияет незначительно. Если подключить к ней вольтметр, то он измерит величину U1. А эдс Е2 можно практически считать напряжением U2, поскольку ток ее нагрузки отсутствует. К примеру, напряжение холостого хода сварочного трансформатора порядка 60В, это – эдс Е2. При возникновении дуги Е2 резко снижается до десятка вольт – это величина под нагрузкой U2.

    Потери полезной мощности в трансформаторе при его эксплуатации делятся на две составляющие: потери в меди и потери в стали. Под потерями в меди подразумевают мощность, рассеиваемую в качестве тепла в обмотках. При проведении опыта ХХ ток через первичную обмотку достаточно мал, и потерями в меди можно пренебречь.

    Работа трансформатора в режиме холостого хода сопровождается расходом мощности на создание замкнутого магнитного потока в его магнитопроводе. Ее и называют мощностью потерь в стали. Она уходит на нагревание пластин магнитопровода. Он собран из отдельных тонких листов специального сплава, изолированных друг от друга лаком. При сборке не используется сварка, только болтовые соединения. Это сделано для минимизации вихревых токов, возникающих из-за того, что магнитный поток переменный.

    Если изоляция между пластинами нарушается, то возникающие между ними вихревые токи нагревают магнитопровод. Это приводит к дальнейшему разрушению лакового слоя. Мощность потерь в стали при этом увеличивается, что увеличит потери холостого хода трансформатора.

    Коэффициент трансформации

    Для трансформатора существует понятие коэффициента трансформации, формула которого:

    В итоге напряжение, которое будет на выводах вторичной обмотки, определяется соотношением количества витков обмоток. Это свойство используется для корректировки его величины на выходе.

    Для этого в конструкцию входит регулирующее устройство, ступенчато переключающее число витков первичной обмотки. Положений для регулировки у него бывает от 3 до 5, при этом выходное напряжение с каждым шагом регулирования изменяется на 5% выше или ниже номинального. Переключающее устройство называют анцапфой.

    Опыт ХХ проводят на среднем положении анцапфы, соответствующем номинальному значению.

    При проведении опыта ХХ коэффициент трансформации измеряется. Для этого используются два вольтметра. Один из них подключается к первичной обмотке и измеряет U1. Второй подключается к вторичной обмотке, он измеряет эдс ХХ. Входное сопротивление вольтметра при этом должно быть достаточно большим, чтобы не влиять на измеряемую величину. Деление показаний вольтметров дает величину коэффициента трансформации.

    Трансформатор – может работать как повышающий, так и понижающий. Поэтому при проведении ремонтных работ на нем используется подача не только высокого напряжения на обмотку ВН, но и низкого на НН. Даже, если это измерительный трансформатор, имеющий небольшое вторичное напряжение, составляющее 100 В.

    Мы рассмотрели холостой ход однофазного трансформатора. Для трехфазных устройств измеряется коэффициент трансформации на всех трех фазах, для чего используются либо одновременно 6 вольтметров, включенных на линейные напряжения трехфазной системы, либо один, подключаемый к точкам измерений поочередно.

    Если номинальное напряжение питания первичной обмотки велико (6 кВ и выше), то на первичную обмотку подают 380 В. Для высоковольтных измерений невозможно применить приборы, обладающие соответствующим классом точности. К тому же процесс измерений на низком напряжении питания безопаснее.

    Коэффициент должен измеряться на всех позициях анцапфы.

    Коэффициент трансформации – показатель, свидетельствующий о том, есть ли в обмотках витковое замыкание. Разброс показаний по фазам более 2% или снижение их по сравнению с предыдущими данными дает основания полагать, что изоляция проводников обмоток где-то нарушена. Подозрение потребует подтверждения другими методами испытаний, например, измерением сопротивления. Также причиной увеличения разброса коэффициента трансформации может быть и повышенное сопротивление между контактами переключающего устройства – анцапфы. Что чаще всего и происходит, особенно если ею часто пользуются.

    Измерение тока холостого хода

    Для проверки тока холостого хода применяются амперметры прямого включения, присоединяемые последовательно с первичной обмоткой. Такое измерение тока производят при напряжении обмотки, равном номинальному.

    У эксплуатируемых или вводимых в эксплуатацию трехфазных силовых трансформаторов замеры производятся для трех фаз одновременно или поочередно. Испытанию подлежат агрегаты, мощность которых 1000 кВА и выше.

    Измерение мощности потерь в стали

    Измерение потерь в магнитопроводе производят также только у мощных агрегатов. Для этого измеряют мощность, которая потребляется первичной обмоткой на холостом ходу. Можно использовать пониженное напряжение, подключаемое к обмотке через ваттметр. Это прибор, способный напрямую измерять мощность. Использование амперметра и вольтметра (косвенный метод измерения) подразумевает затем вычисление мощности путем умножения их показаний друг на друга. Рассчитанный результат получается искаженным, так как не учитывается коэффициент мощности – косинус угла между током и напряжением. Холостой ход трансформатора приводит к появлению угла порядка 90 градусов, что весьма существенно.

    Ваттметр производит измерение уже с учетом коэффициента мощности, поэтому дорабатывать его показания нет необходимости. Измерение параметров напрямую всегда точнее, чем использование косвенного метода измерений. При наличии амперметра, вольтметра и ваттметра можно рассчитать по их показаниям коэффициент мощности трансформатора:

    Производится вычисление из косинуса угла между напряжением и током. Теперь может быть построена векторная диаграмма. Расчет потерь производится по каждой фазе отдельно, для чего используется таблица.

    Для измерений обязательно использование именно той схемы, которая применялась на заводе изготовителе (если о ней что-нибудь известно). Полученные значения не нормируются, но обязательно сравниваются с данными предыдущей проверки. Эта характеристика важна: если потери год за годом повышаются, это означает, что качество изоляции стальных пластин магнитопровода трансформатора ухудшается. Процесс этот необратим, повреждение будет развиваться в процессе эксплуатации, и скоро потребуется ремонт. Лучше выполнить его в плановом порядке.

  • Рейтинг
    ( Пока оценок нет )
    Загрузка ...
    Adblock
    detector