Как рассчитать защиту электродвигателя?

Как выбрать магнитный пускатель и автоматический выключатель для асинхронного двигателя

Для пуска, реверсирования, принудительной остановки противотоком асинхронных электродвигателей электрики используются контакторы и магнитные пускатели. От правильности выбора коммутационной аппаратуры зависит, как и безотказность системы в целом, так и электробезопасность обслуживающего персонала.

Выбор пускателя и избыточным коммутируемым током ведет к большим финансовым затратам, при его коммутации слышны шлепки большей громкости, чем те что издают маленькие пускатели. Недостаточные по коммутируемой мощности пускатели долго не прослужат, будут греться, и подгорать клеммники и контакты. В результате переходное сопротивление контакта будет расти до тех пор, пока контакт не исчезнет полностью, что приведет к преждевременной замене аппарата.

Автоматические выключатели также должны быть правильно подобраны, особенно при тяжелом пуске двигателя. Слишком чувствительный автомат будет выбивать при пуске, а если он наоборот взят с излишним запасом по току, то в аварийной ситуации может и не отреагировать, что приведет к повреждению кабеля, обмотки двигателя вплоть до возгорания.

Пуск для электродвигателя сопровождается повышенным током в период разгона его до номинальных оборотов, в случае перегрузки и нехватки мощности двигателя для вращения исполнительных механизмов возможно пониженное число оборотов с повышенными токами, в плоть до того, что он вообще не начнет раскручиваться. И наоборот если мощность двигателя избыточна, то потребляемый им ток будет ниже номинального.

Из-за вышеперечисленных причин и появляется необходимость правильного подбора пусковой и защитной аппаратуры в виде магнитных пускателей, контакторов, тепловых реле и автоматических выключателей.

Автоматические выключатели устанавливаются до магнитного пускателя, чтобы в случае необходимости полностью обесточить систему, как силовую цепь, так и цепь управления (питания катушки).

Вместо автоматических выключателей могут использоваться плавкие вставки или предохранители, но в последнее время такие решения встречаются реже, чем раньше. Это усложняет обслуживание и вызывает необходимость иметь в запасе хотя бы комплект предохранителей.

Выбор магнитного пускателя

Магнитные пускатели выпускаются на определенный номинальный ток, из ряда: 6.3 – 10 – 25 – 40 – 63 – 100 – 160 – 250

Часто их разделяют не по токам, а по величинам от 0 до 7, чем больше ток (или величина пускателя) тем больше его габариты и площадь контактов. Опытный электромонтер может отличить по размеру корпуса, конструкции дугогасителя и габаритам контактных площадок примерный коммутируемые ток и напряжение.

Однако если номинальный ток пускателя соответствует току двигателя, это еще не значит, что их можно использовать в паре. Если такое понятие как категория применения, она характеризует режим работы коммутируемой аппаратуры, частоту и условия коммутации. Иначе говоря – это способность переносить пусковые токи. Пусковые токи асинхронного двигателя могут превышать номинальные и в 10 раз, это зависит от условий пуска, напряжения в сети и прочих факторов.

Категории применения обозначаются: «АС-номеркатегории». Сводная таблица величин и категорий применения для магнитных пускателей расположена ниже.

Из неё нас интересует строка «АС-3 – управления двигателями с короткозамкнутым ротором (пуск, отключение без предварительной остановки)». Из этого очевидно, что коммутационные аппараты с такой категорией созданы для того, что бы включать и отключать электродвигателя. Они выдерживают прямой пуск.

Далее нужно определиться с номинальным током пускателя. Для этого нам нужно знать технические характеристики коммутируемого двигателя, а именно:

cos Ф – коэффициент мощности,

P – мощность двигателя номинальная;

U – рабочее напряжение (коммутируемое);

Тогда номинальный ток пускателя равен:

Для быстрых расчетов иногда применяют другую методику, когда мощность двигателя умножают на 2 и получают номинальный ток (приблизительно).

Далее нужно определить пусковой ток, в справочниках это указывается либо как «k» либо как «Iп/Iн». Это кратность или соотношение пускового тока к номинальному. Показывает, насколько ток в момент пуска превышает номинальную величину.

Пускатель с категорией применения АС-3 может коммутировать ток в 5-7 раз больше чем номинальный, для чего это сказано я покажу при расчетах ниже.

Выбираем пускатель

Допустим, у нас есть асинхронный двигатель с мощностью 2.2 кВт типа 4АМ100L6У3. На его шильдике написано, что кпд 81.0%, коэффициент мощности – 0.73, в интернете я нашел его технические данные, чтобы узнать кратность пускового тока, она оказалась – 5.5

1. Быстрый способ: IН=2.2*2 = 4.4А

2. Сложный способ: IНОМ=2200/(380*0.81*0.73*1.73)=5.6А

Результаты такого расчета дали больший ток.

Теперь считаем пусковой ток: IП=5.6*5.5=30.8А

Подбираем пускатель, с номинальным током более чем 5.6 А, с категорией применения АС-3. В результате обзора рынка, нам подходит пускатель ПМЕ 111 на 10А с тепловым реле.

Выбор автоматического выключателя

Автомат может сработать при пуске или затяжном пуске электродвигателя, когда потребляемый ток значительно превышает максимальный. В автоматическом выключателе за защиту отвечают два узла:

1. Электромагнитный расцепитель. Срабатывает при пиковом токе перегрузке. Этот ток зависит от типа автомата.

2. Тепловой расцепитель. Срабатывает при незначительном но длительном превышении номинального тока.

Номинальный ток двигателя у нас 5.6 А, значит нам нужен автомат не меньше этого значения. Типы автоматов куказывают на доустипое превышение по току в пике:

тип D – 10-50 раз.

Так как у нас пусковой ток в 5.5 раз больше чем номинальный, это значит что нам подходит автомат типа С и D. Например, автоматический разъединитель EZ9F34306 Schneider Easy9, рассчитан на 6 А и его тип C, позволит выдержать пусковые токи до 60 А.

Но такой автомат будет работать на пределе да и реальная уставка по току может быть ниже 5.5, т.к. тип С находится в пределах 5-10, нужен запас по току хотя бы в 20%.

Поэтому лучше установить автоматический выключатель на тот же ток или немного больший, но типа D, например ИЭК 6-8А ВА47-29

Или на ток 10А с типом C, например PL4-C10/3 Moeller / Eaton

Требования к автомату заключаются в том, чтобы он стабильно выдерживал номинальный ток, и его не выбило при пуске. Если планируется режим работы двигателя с частыми включения и выключениями лучше использовать автомат типа D, он менее чувствителен к всплескам тока.

Читайте также:  Как рассчитать сечение провода по киловаттам?

Заключение

Автоматический выключатель нужен для защиты питающего кабеля и дополнительной защиты двигателя, в случае затяжного пуска или заклинивания вала, дополнительно лучше использовать тепловую защиту. Магнитный пускатель должен выдерживать как напряжение, так и ток, который он будет коммутировать.

Электродвигатель должен быть исправен, отсутствовать витковые замыкания, а его вал должен свободно вращаться. В случае пуска двигателя под нагрузкой лучше брать коммутационную аппаратуру с запасом до 2-х раз для уменьшения вероятности преждевременного подгорания контактов и ложных срабатываний автоматического выключателя.

Питающий кабель должен соответствовать номинальному току, с учетом пусковых токов, как и способ соединения кабеля (использование гильз, наконечников, клеммников и прочего). Состояние всех соединений должно быть в норме – отсутствовать окислы, нагар и прочие механические дефекты, которые могут уменьшить площадь прилягания контакта.

Расчет уставок защит электродвигателя

Расчет токовой отсечки

Первичный ток срабатывания токовой отсечки выбирается по условию отстройки пускового тока двигателя. В момент включения двигателя по его обмотке будет протекать бросок тока намагничивания, содержащий апериодическую составляющую и в 1,6-1,8 раза превышающий по амплитуде установившийся пусковой ток, который учитывается увеличенным коэффициентом отстройки в расчетной формуле для определения тока срабатывания защиты:

где kотс– коэффициент отстройки, учитывающий погрешности реле и наличиеапериодической составляющей, принимается равным kотс=1,8-2 для защит с временем срабатывания 0,05с и менее; kотс=1,4-1,5 для защит с реле РТ-40; Iпуск – пусковой ток двигателя при номинальном напряжении сети.

Пусковой ток электродвигателя определяется по номинальному току и кратности пускового тока, значение которых указывают в паспорте двигателя и в каталоге, по выражению:

где kп – кратность пускового тока двигателя.

Для микропроцессорных защит рекомендуется применять kотс=1,5 и время срабатывания равным 0,08 – 0,1с.

Однако, если желательно иметь время срабатывания защиты минимальное (0,04с), то коэффициент отстройки kотс следует принять равным 1,8 – 2[ ]

Чувствительность токовой отсечки проверяется при двухфазном КЗ на выводах электродвигателя в минимальном режиме питающей сети и оценивается коэффициентом чувствительности по выражению:

kч= ; (3.2)

где IКЗmin (2) – ток двухфазного короткого замыкания в минимальном режиме питающей сети.

Коэффициент чувствительности отсечки должен быть не менее 2,0.

Раньше токовую отсечку для двигателей мощностью до 2000кВт выполняли (согласно ПУЭ) по простой и дешевой схеме с включением одного реле на разность токов фаз. Для этой схемы ток срабатывания реле следует выбирать с учетом коэффициента схемы.

Ic.р= ; (3.3)

где КI– коэффициент трансформации трансформаторов тока; kcx= для схемы на разность токов двух фаз и kcx=1 для двухрелейной схемы (звезда и неполная звезда).

Тогда коэффициент чувствительности вычисляется по:

Kч= (3.4)

Ток срабатывания реле токовой отсечки, выполненной по однорелейной схеме, в больше, чем по схеме звезда и чувствительность защиты будет в раз меньше.

Расчет защиты от замыканий на землю в обмотке статора электродвигателя.

Высоковольтные электродвигатели напряжением 6 – 10кВ, как правило, работают в сетях с малыми токами замыкания на землю, поэтому защиты от замыканий на землю в обмотке статора выполняются в виде токовых защит нулевой последовательности, которые подключаются к кабельным трансформаторам тока нулевой последовательности.

Первичный ток срабатывания защиты рассчитывается независимо от аппаратного исполнения защиты.

Первичный ток срабатывания защиты от замыканий на землю в обмотке статора отстраивается от броска собственного емкостного тока присоединения при внешнем замыкании на землю

где kотс=1,2 – коэффициент отстройки; IC – утроенное значение собственного емкостного тока присоединения; Kб – коэффициент, учитывающий бросок собственного емкостного тока в начальный момент внешнего замыкания на землю.

Для сети с изолированной нейтралью

kб=2 – 3 для реле РТЗ – 51;

kб=3 – 4 для реле РТЗ-50 и РТ-40/0,2;

kб=1,5 – 2 для микропроцессорных защит.

Значение собственного емкостного тока присоединения равно:

Где IС.дв – собственный емкостной ток электродвигателя;

ICw– собственный емкостной ток кабельной линии от КРУ до двигателя.

Собственный емкостной ток двигателя может быть определен по формуле для двигателя с номинальным напряжением Uном = 6кВ

Для двигателя с Uном=10 кВ

Где Sном.дв– полная мощность двигателя в МВт

Sном.дв=

Собственный емкостной ток кабельной линии, входящей в зону защиты, равен:

где IС.уд – собственный емкостной ток одного километра линии 6 или 10 кВ (табл.1);

l – длина линии, км;

m–число кабелей в линии.

Сечение кабеля, мм 2
Емкостный ток IC.уд , А/км при Uном= 6 кВ0,580,680,80,91,01,181,251,45
Емкостный ток IC.уд, А/км при Uном= 10кВт0,720,80,921,041,161,31,471,7

В сетях с изолированной нейтралью чувствительность земляной защиты можно не рассчитывать, однако необходимо проверить наличае условия для ее срабатывания:

гдеI суммарный емкостной ток замыкания на землю всей сети, к которой подключен двигатель, в нормальном режиме работы сети.

Расчет защиты электродвигателя от перегрузки.

Защита от перегрузки может выполняться с помощью электромеханических и полупроводниковых реле (РТ-40, РТ-80, РСТ-11,13).

В соответствии с ПУЭ [1] в качестве защит от перегрузки применяются защиты с одним токовым реле, отстроенным от номинального тока двигателя, а по времени – от времени пуска или самозапуска. При таком выполнении защиты не используются перегрузочные возможности двигателя, а использование реле в одной фазе не позволяет выявить опасную перегрузку двигателя в неполнофазном режиме. Кроме того, согласно ПУЭ, защита от перегрузки устанавливается только на двигателях, подверженных технологическим перегрузкам, и на двигателях с тяжелыми условиями пуска. Защита от перегрузки должна действовать на сигнал или автоматическую разгрузку, а при отсутствии дежурного персонала или невозможности разгрузки на отключение.

Однако в последнее время указанное положение ПУЭ подвергается пересмотру и считается, что особенно в системе собственных нужд тепловых и атомных электростанций, защиту от перегрузки с действием на отключение желательно устанавливать в ячейках всех электродвигателей.

Первичный ток срабатывания защиты от перегрузки выбирается по условию отстройки от номинального тока электродвигателя:

Читайте также:  Перестал моргать светодиод сигнализации

Iс.з= (3.7)

где kотс– коэффициент отстройки, равный 1,05 при действии защиты на сигнал и 1,1 – 1,2 при действии на отключение;kв – коэффициент возврата реле , равный 0,8 для РТ-40 и РТ-80 и 0,9 для РСТ-11,13; Iдлит.дв – длительно допустимый ток двигателя

В соответствии с ПУЭ номинальная мощность двигателя должна сохраняться при отключении напряжения до , поэтому

Тогда защиты с реле РТ-40

Iс.з= ·Iном.дв= 1,5

Выдержка времени защиты выбирается по условию надежной отстройки защиты от времени пуска и самозапуска:

где kотс – коэффициент отстройки принимается равным 1,3;

tпуск – время пуска или самозапуска.

Дата добавления: 2015-05-08 ; Просмотров: 9449 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Как выбрать защиту для электродвигателя?

В электродвигателе, как и в многих других электротехнических устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Наибольшее распространение получили асинхронные электродвигатели. Можно выделить 5 основных видов аварий в асинхронных двигателях:

  • обрыв фазы ОФ статорной обмотки двигателя (вероятность возникновения 40-50%);
  • заторможение ротора ЗР (20-25%);
  • технологические перегрузки ТП (8-10%);
  • понижение сопротивления изоляции обмотки ПС (10-15%);
  • нарушение охлаждения двигателя НО (8-10%).

Любой из этих видов аварий может повлечь выход из строя электродвигателя, а короткое замыкание в двигателе, опасно для питающей сети.

Такие аварийные режимы как ОФ, ЗР, ТП и НО, способны вызвать перегрузку по току в статорной обмотке. В результате этого ток возрастает до 7 Iном и более в течение довольно большого промежутка времени.

Короткое замыкание в электродвигателе может привести к росту тока более чем в 12 Iном в течение очень короткого отрезка времени (около 10 мс).

Учитывая возможные повреждения, и подбирают требуемую защиту.

Защита двигателя от перегрузки. Основные типы.

Тепловая защита – осуществляется путем нагрева током обмотки нагревательного элемента и воздействия его на биметаллическую пластину, которая в свою очередь размыкает контакт в цепи управления контактора или пускателя. Тепловая защита осуществляется с помощь тепловых реле.

Температурная защита — реагирует на увеличение температуры наиболее нагретых частей двигателя с помощью встроенных температурных датчиков (например, позисторов). Через устройства температурной защиты (УВТЗ) воздействует на цепь управления контактора или пускателя и отключает двигатель.

Максимально токовая защита – реагирует на рост тока в статорной обмотке и при его достижении тока уставки отключат цепь управления контактора или пускателя. Осуществляется с помощью максимально токовых реле.

Минимально токовая защита — реагирует на исчезновение тока в статорной обмотке двигателя, например, при обрыве цепи. После чего, подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью минимально токовых реле.

Фазочувствительная защита – реагирует на изменение угла сдвига фаз между токами в трехфазной цепи статорной обмотки двигателя. При изменении угла сдвига фаз в пределах уставки (например, при обрыве фаз угол увеличивается до 180º) подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью фазочувствительных реле типа ФУЗ.

Таблица эффективности применения защит от перегрузки:

Тип защиты от перегрузкиНадежность защиты
надежноменее надежноне надежно
1Тепловая защитаТПОФ; ЗРНО; ПС
2Температурная защитаТП; НООФ; ЗРПС
3Максимально токовая защитаЗРТПОФ; НО; ПС
4Минимально токовая защитаОФНО; ПС; ТП; ЗР
5Фазочувствительная защитаТП; ОФ; ЗРНО; ПС

Одним из эффективных средств защиты двигателя является автоматический выключатель.

Автоматический выключатель, обладая максимально токовой защитой, что позволит защитить двигатель от чрезмерного роста тока в цепи статорной обмотки, например при обрыве фазы, или повреждении изоляции. При этом он защитит питающую цепь от короткого замыкания в двигателе.

Автоматический выключатель, имеющий в своем составе тепловой расцепитель, расцепитель минимального напряжения, способен защитить двигатель и от других нештатных режимов.

В настоящее время, это одно из наиболее эффективных защитных устройств асинхронных двигателей и цепей, в которых они работают.

Общие правила выбора защиты асинхронных двигателей.

Все двигатели необходимо защищать от короткого замыкания, а электродвигатели, работающие в режиме S1, должны иметь защиту от перегрузки по току.

Электродвигатели, обмотки которых при запуске переключаются с «треугольника» на «звезду», желательно защищать трехполюсными тепловыми реле с ускоренным срабатыванием в неполнофазных режимах. Для электродвигателей, работающих в повторно-кратковременных режимах, рекомендуется предусматривать встроенную температурную защиту. Двигатели, работающие в кратковременном режиме S2 с возможным заторможением ротора без технологического ущерба, следует оснащать тепловой защитой. В случае, если заторможение ротора влечет за собой технологический ущерб, следует применять температурную защиту.

Тепловые реле предназначены в основном для защиты двигателей в режиме S1. Допустимо применение их и для режима S2, если исключено увеличение длительности рабочего периода. Для режима S3 применение тепловых реле допускается в исключительных случаях при коэффициенте загрузки двигателя не более 0,7.

Для защиты обмоток электродвигателя, соединенных в «звезду», могут применяться однополюсные реле (два реле), двухполюсные и трехполюсные реле. Защита обмоток, соединенных в «треугольник», должна осуществляться трехполюсными реле с ускоренным срабатыванием в неполнофазных режимах.

На многоскоростные двигатели нужно предусматривать отдельные реле на каждой ступени скорости при необходимости полного использования мощности на каждой ступени или одно реле с уставкой, выбранной по току ступени наибольшей скорости для двигателей с вентиляторной нагрузкой.

Номинальный ток тепловых элементов реле должен выбираться по номинальному току двигателя так, чтобы номинальный ток двигателя находился между минимальной и максимальной уставками реле по току.

На электротехническом рынке можно найти и другие специализированные устройства защиты электродвигателей, разумеется, цена у них будет значительно отличаться от автоматических выключателей. У себя в проектах я применяю лишь автоматы, контакторы с тепловым реле, устройства плавного пуска и частотные преобразователи, которые имеют встроенную защиту электродвигателей.

Токовая защита однофазных и трехфазных асинхронных электродвигателей

Устройство было разработано для защиты однофазных и трехфазных асинхронных электродвигателей. Но возможно использовать и для отслеживания любой нагрузки.

Читайте также:  Датчик света для шкафа купе

Токовая защита способна контролировать потребляющий ток по двум фазам с отображением текущего тока на индикаторе. Отображение осуществляется поочередно. Сначала индицируется первая фаза затем другая. Ток, при котором сработает защита, задается в меню настроек от 1А до 39A. С шагом в 1А.

Когда двигатель не запущен естественно тока он не потребляет. Вследствие чего токовая защита переходит в дежурный режим и ожидает появления начального тока. Дежурный режим осуществлен не просто так, а для фиксирования пускового тока (пусковой ток превышает рабочий ток в семь раз). И для того чтобы токовая защита не срабатывала на пусковые токи, в ней реализована возможность регулирования времени от 0 до 5.9сек, c шагом 0.1сек. (при установленном значении “0 “пусковой ток не отслеживается). При фиксации пускового тока на индикаторе отображается отсчет времени в обратной последовательности. И как только время выйдет, токовая защита будет отслеживать, и отображать текущий ток. Как только произойдет отключение электродвигателя, токовая защита автоматически перейдет в дежурный режим.

Также в токовой защите предусмотрена возможность не сразу отключения электродвигателя при превышении заданного тока. К заданному току прибавляется 10% и если ток не превышает то электродвигатель может проработать, то время, которое задал пользователь в меню установок от 0 до 9.9сек. (при установленном значении “0 “защита сработает сразу, как только зафиксирует превышение заданного тока). При превышении тока и 10% токовая защита сработает моментально.

Зафиксировав превышение заданного тока, токовая защита отключит электродвигатель и перейдет в режим аварии. На индикаторе будут периодически мигать три прочерка. Вывести из аварийного состояния можно только одновременным нажатием двух кнопок. Отключением питания вывести из аварийного состояния не удастся, токовая защита запоминает свое состояние. Мне нужно было именно так, чтобы кто попало, не включал его обратно. А дожидался электрика, а он уже в свою очередь определял причину.

В процессе эксплуатации на производстве был замечен некоторый нюанс. После затяжного тяжелого пуска электродвигателя (рабочий ток 25А, пусковое время пришлось делать не менее 15 сек.) что-то происходило с токовым датчиком ACS756. Когда тока не было датчик фиксировал маленький ток. Я подозреваю это связано с самим токовым датчиком ACS756 он на 50А надо было ставить на 100А. При замере токовыми клещами пусковой ток превышал 140А. Я не стал выяснять причину ,на других объектах токовые защиты работали нормально. Там не было такого длительного пуска.

Немного о сборке

Токовые датчики размещены отдельно в своем корпусе (G1906 Корпус). Разъем соединяется четырех жильным экранированным кабелем. В моем случае длина 40см, но можно и больше. К сожалению сами датчики не имеют подходящих выводов, а лишь загнутые медные шинки. Потому припаивал медные провода сечением шесть миллиметров квадратных, сто ватным паяльником. Особых осложнений это не вызвало хотя опасения перегреть датчики были. Для надежного крепления самих датчиков на печатную плату размещены четыре квадратных пятака. Непосредственно на них и припаивается с одной стороны сами датчики.

Корпус для основного устройства был выбран под дин рейку (D4MG Корпус). Габаритные размеры составляют: по длине 71мм, по ширине 90.2мм и по высоте 57.5мм. Можно применить и более дешевый корпус Z100K. Но D4MG имеет более качественный пластик и самое важное он состоит из четырех съемных частей, что очень удобно при сборке. Нижняя плата закрепляется впереди на двух металлических стойках TFF-10мм.M3, а сзади на двух болтах с гайками. Верхняя плата фиксируется на термоклее.

Если понадобится вывести в ноль по току. Настройка осуществляется подбором резисторами R12,R13 (резисторы должны быть как минимум 1%). Устройство содержит симисторный выход, который управляет пускателем (для электродвигателей). При печати платы ток(верх) выставляйте инвертировать.

Расчёт защиты высоковольтного двигателя Д

2. Расчёт защиты высоковольтного двигателя Д

Для защиты асинхронных электродвигателей напряжением выше 1000 В предусматриваются следующие защиты:

1) продольная дифференциальная токовая защита;

2) защита от перегруза — МТЗ с выдержкой времени;

3) защита минимального напряжения.

2.1 Продольная дифференциальная токовая защита

1) Защита выполняется с помощью дифференциального реле РСТ 15.

2) Для выбора трансформатора тока определим номинальный ток двигателя:

, (2.1)

где – номинальная мощность двигателя, Вт (см. таблицу 4);

– номинальное напряжение двигателя, В (см. таблицу 4);

– номинальный коэффициент мощности двигателя.

А.

К установке принимаем трансформатор тока ТЛМ10-400-0,5/10Р:

А, А.

Коэффициент трансформации трансформатора тока:

.

ТТ со стороны питания соединены в «неполную звезду», со стороны нулевых выводов ТТ соединены в «неполную звезду».

3) Определим ток срабатывания защиты:

где — ток небаланса.

А, (2.2)

где – коэффициент пуска двигателя;

– коэффициент однотипности трансформаторов тока;

– коэффициент апериодической составляющей для дифференциального реле;

– допустимая погрешность трансформаторов тока;

– номинальный ток двигателя.

Ток срабатывания защиты равен:

А,

Определим расчетный вторичный ток срабатывания защиты:

А, (2.3)

Определение числа рабочих витков РНТ:

витка (2.4)

Принимаем к установке 27 витков, которым соответствует ток срабатывания защиты:

А, (2.5)

4) Коэффициент чувствительности определяется при двухфазном коротком замыкании в минимальном режиме на шинах, к которым подключен двигатель:

. (2.6)

Так как коэффициент чувствительности превышает нормируемое значение, то защита удовлетворяет требованию чувствительности.

2.2 Защита от перегруза — МТЗ с выдержкой времени

1) Защита выполняется с помощью токового реле РСТ 13 с коэффициентом возврата .

2) Перегруз является симметричным режимом, поэтому защита выполняется одним реле, включенным в одну из фаз. Используем те же трансформаторы тока, что и для токовой защиты (коэффициент трансформации , коэффициент схемы ).

3) Ток срабатывания защиты определяется из условия отстройки от номинального тока двигателя:

, (2.7)

где – коэффициент отстройки.

А.

4) Коэффициент чувствительности не определяется.

5) Ток срабатывания реле:

А. (2.8)

Принимаем к установке реле РСТ 13-19, у которого ток срабатывания находится в пределах .

Определим сумму уставок:

. (2.9)

.

Найдем ток уставки реле:

А.

6) Выдержка времени защиты отстраивается от времени пуска электродвигателя и равна с. Используем реле времени РВ-01.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector