Каким прибором измеряется сопротивление изоляции?

Содержание

Порядок проведения замеров сопротивления изоляции

В процессе работы электроустановок изоляция подвергается воздействию окружающей среды, что неизменно сказывается на ее свойствах. Кроме того, из – за нагрева токоведущих проводов, она со временем изнашивается.

Из всего вышеперечисленного вполне очевидно, что только при регулярных измерениях параметров изоляции возможна безотказная работа электроустановок.

Основным параметром характеризующим изоляцию является – сопротивление изоляции постоянному току. Данный параметр нуждается в регулярном измерении для стабильной работы любой системы.

Кроме того, правилами эксплуатации электрооборудования определена периодичность замеров сопротивления изоляции – не менее одного раза за три года, но специалисты рекомендуют делать это чаще. Почему? Попробуем обосновать данную необходимость.

В первую очередь, регулярные измерения сопротивления изоляции обеспечивают безопасность ваших людей, они помогут предотвратить многие несчастные случаи, в том числе и в результате возгорания.

Второй немаловажный момент это, естественно, возможные убытки, к которым могут привести поломки в системе электроснабжения.

Ну и конечно, последнее, что необходимо отметить, – данные замеры помогут вам минимизировать, а то и вовсе избежать потерь электроэнергии, благодаря чему вы сэкономите изрядные средства.

Измерение сопротивления изоляции кабеля осуществляют между фазными проводниками, фазными проводниками и нейтральными, фазными проводниками и землей, нейтральными проводниками и землей. Если проверка проводится в соответствии с нормами ПТЭЭП, то кабель обязательно демонтируется. О ссылках ПТЭЭП вы можете прочитать в соответствующем разделе меню на нашем сайте.

Измерение сопротивления изоляции под напряжением

Результатом замеров сопротивления изоляции является сопротивление характеризующее ток утечки, возникающий между точками электроустановки при включении прибора под напряжение.

Такие измерения производятся специальными приборами, называемыми мегаомметрами. Это приборы предназначенные для измерения очень больших значений сопротивления, и генерирующие высокие значения напряжения ( от 500 до 2500 Вольт) для возможности измерения сопротивления на участках с таким напряжением.

Параметры характеризующие сопротивление изоляции

1. Сопротивление изоляции постоянному току – Ruз.

Как правило, со временем возникают внешние дефекты, из за которых сопротивление изоляции сильно снижается. Замер сопротивления изоляции в данном случае производится так: к изоляции прилагается выпрямляющее напряжение, во время воздействия которого измеряется утечка тока проходящего через изоляцию.

В данной формуле: Rиз – сопротивление изоляции, Uпр.в. – выпрямляющее напряжение, Iут – ток утечки.

2. Коэффициент абсорбции изоляции.

Данный коэффициент идеально определяет увлажнение изоляции, он представляет собой отношение сопротивления изоляции измеренного через 60 секунд, после приложения напряжения мегаомметра, к сопротивлению изоляции измеренному через 15 секунд, после приложения. Обозначаются данные сопротивления соответственно R60 и R15.

Важно знать, что при влажной изоляции коэффициент абсорбции приближен к единице, а при сухой изоляции – значительно ее превышает. Это происходит из – за того, что при сухой изоляции время заряда абсорционной емкости достаточно велико, а для влажной, соответственно – мало.

3. Коэффициент поляризации изоляции.

Коэффициент поляризации определяет степень старения изоляции. Указывает способность частиц перемещаться под действием электрического поля. Он представляет собой отношение сопротивления изоляции – измеренного через 600 секунд после приложения напряжения мегаомметра к сопротивлению измеренному через 60 секунд.

Как правило, если коэффициент поляризации меньше единицы, то изоляция является опасной. Хорошая изоляция имеет Кпол не менее 2х, в то время как от 4х начинается идеальная изоляция.

Замер сопротивления изоляции

Опишем вкратце как происходит процесс замера. Прежде всего, необходимо убедиться, что на проверяемом оборудовании нет напряжения. После этого, проверяемое оборудование очищается от грязи и пыли, и заземляется на несколько минут – для снятия остаточных зарядов.

Далее, сопротивление изоляции будет определяться показанием стрелки прибора мегаомметра, присоединенному к измеряемому прибору проводами обладающими большим сопротивлением изоляции. По завершению измерений проверяемый объект необходимо разрядить

По окончанию всех работ составляется протокол проверки сопротивления изоляции проводов, кабелей и обмоток.

Закажите у нас данную услугу и вы сможете работать спокойно!

Не следует проводить замеры сопротивления изоляции, если температура менее 10°С. В следствии нестабильности влаги возможно искажение результатов измерений!

Проведение замеров сопротивления изоляции при температура менее 10°С не рекомендуется из-за нестабильности влаги и, как следствие, — искажения результатов измерений.

Сопротивление изоляции

Сопротивление изоляции элементов электроустановок производится с целью определения соответствия ее значения нормам, установленным ПЭЭП (правилам эксплуатации электроустановок потребителей) стандарта МЭК 364-6-61. В табл. 61 А указаны нормы сопротивления изоляции на уровне 0,5 мОм.

В каких случаях проводятся измерения

  • пары токопроводящих жил кабеля в одной цепи;
  • всех токоведущих жил кабеля по отношению к «земле».

Работа выполняется на отключенном электрооборудовании (лампы должны быть вывернуты, предохранители извлечены из гнезд и т.п.). Для приборов, оснащенных электронными схемами: измерение сопротивления относительно «земли» выполняется после соединения жил «фазы» и «ноля». В противном случае велик риск выхода электронной схемы из строя.

П. 413.3 ГОСТ Р 50571.3-94 токонепроводящие помещения или площадки необходимы для предотвращения одновременного касания к элементам электрооборудования с разными потенциалами. Это условие выполняется, если материал отделки пола и стен обладает изолирующими свойствами или соблюдаются следующие условия:

  • доступные для прямого прикосновения токопроводящие элементы отдалены не менее, чем на 2 м друг от друга, а вне зоны прямой досягаемости – на расстояние минимум 1,25 м;
  • доступные для прямого прикосновения токопроводящие части надежно изолированы от соседних;
  • токопроводящие элементы, не являющиеся частью электрооборудования, изолированы.

Сопротивление изолированных стен и пола в любой точке (относительно «земли») должно быть не ниже:

  • для электроустановок с напряжением до 500 В – 50 кОм;
  • для электроустановок с напряжением выше 500 В – 100 кОм.

В соответствии с требованиями МЭК 364-6-61 (п. 612.5) необходимо провести три измерения. Первое выполняется на расстоянии 1 м от элементов с токопроводящими свойствами, остальные два – на больших расстояниях.

Приборы, использующиеся для измерений

Наиболее часто используемый прибор для измерения – мегомметр. Основные его составные части – генератор постоянного тока и магнитоэлектрический логометр (измерительный механизм).

Мегомметры отечественного производства – типа М4100 и ряд его модификаций, а также Ф4101 и Ф4102. Действие последних основано на работе электронной схемы, питающейся от сети 220 В или от 12 В преобразователя. Используются также снятые с производства приборы типа ЭС-0202/1Г, ЭС-0202/2Г, МС-05 (06), М1101 М. Рабочее напряжение мегомметров различно: от 100 до 2500 В.

Выполнение измерений с помощью мегомметра

Прибор присоединяют к измеряемому объекту с помощью гибких медных одножильных (длиной около 2-3 м) проводов, изоляция которых не должна быть хуже 100 Мом. Концы проводов должны быть маркированы и оснащены клеммами и зажимами (щупами). Кабели во время работы не должны касаться рядом расположенных предметов и земли.

При измерениях относительно «земли» соединяются контакты (зажимы) корпуса прибора, обозначенные буквой «З» (земля), с металлической оболочкой кабеля, предварительно заземленной. Для этого можно использовать временный переносной заземлитель либо присоединить к клемме заземляющего стационарного контура. Зажим «Л» (линия) соединяется с одним из проводников кабеля. Аналогично измеряется сопротивление изоляции между токопроводящими жилами.

Читайте также:  Подбор драйвера для светодиодов

Правила измерения сопротивления изоляции силовых кабелей

Сопротивлении изоляции кабеля измеряется только после его отсоединения от электроустановок. Напряжение с кабеля должно быть снято. Чтобы избавиться от остаточного потенциала, необходимо заземлить на несколько минут его жилы. Изоляция должна быть чистой.

После присоединения мегомметра в соответствии с вышеописанной схемой следует выбрать предел измерения (в зависимости от предполагаемого значения сопротивления изоляции. Прибор необходимо проверить на работоспособность и откалибровать. После проведения измерений результаты сравнивают с определенными стандартами нормами.

Как пользоваться мегаомметром, измерение изоляции

Электрические сети характеризуются различными параметрами. Одним из важнейших параметров сетей является электрическая изоляция. Изоляция представляет собой какой-либо материал, препятствующий электрическому току протекать в ненужном направлении. Изоляцией может быть защитная оболочка проводов и кабелей. Такие приспособления, как изоляторы, не позволяют контактировать токопроводящим линиям с землёй. Все эти меры по изоляции токопроводящих частей направлены на то, чтобы не допустить короткого замыкания, возгорания или поражения человека электрическим током.

Мегаомметр

Изоляция, как и всякий другой материал, подвержена влиянию различных внешних факторов: погода, механический износ и другие. Для своевременного обнаружения дефекта изоляции существует прибор, так называемый мегаомметр. Он производить измерение сопротивления изоляции.

Принцип работы прибора

Для чего предназначен прибор, можно понять из его названия, которое образовано из трёх слов: «мега»— размерность числа 10 6 «ом» — единица сопротивления и «метр» — измерять. Для измерения электрического сопротивления в диапазоне мегаомов используется прибор мегаомметр. Принцип работы прибора основан на применении закона Ома, из которого следует, что сопротивление (R) равно напряжению (U), делённому на ток (I), протекающий через это сопротивление. Следовательно, для того чтобы реализовать этот закон в приборе, нужны:

  1. генератор постоянного тока;
  2. измерительная головка:
  3. клеммы для подключения измеряемого сопротивления;
  4. набор резисторов для работы измерительной головки в пределах рабочей области;
  5. переключатель, коммутирующий эти резисторы;

Реализация мегаомметра по такой схеме требует минимум элементов. Она проста и надёжна. Такие приборы исправно работают уже полвека. Напряжение в таких аппаратах выдаёт генератор постоянного тока, величина которого различна в разных моделях. Обычно оно равно 100, 250, 500, 700, 1000, 2500 вольт. В различных моделях приборов может применяться одно или несколько напряжений из этого ряда. Генераторы отличаются по мощности и соответственно по габаритам. В действие такие генераторы приводятся ручным способом. Для работы нужно покрутить ручку динамо-машины, которая вырабатывает постоянный ток.

В настоящее время на смену электромеханическим приборам приходят цифровые. В таких приборах в качестве источников постоянного тока используются либо гальванические элементы, либо аккумуляторы. А также есть новые модели со встроенным сетевым блоком питания.

Работа с мегаомметром

Работы на каком-либо оборудовании с этим прибором относятся к работам с повышенной опасностью вследствие того, что прибор вырабатывает высокое напряжение и есть вероятность получения электротравмы. Работы с этим прибором разрешается производить персоналу, изучившему инструкцию по работе с прибором, по правилам охраны труда и техники безопасности при работе в электроустановках. Работник должен иметь соответствующую группу допуска и периодически проходить проверки на знание правил работ в электроустановках, знать инструкции по охране труда, в том числе с использование мегаомметра.

Обычно этим прибором проводится измерение сопротивления изоляции кабельных линий, электропроводки и электродвигателей. Приборы должны проходить периодическую проверку в метрологической службе и иметь соответствующие документы. Запрещается проводить измерения не проверенным прибором, он должен быть изъят из эксплуатации и отправлен на проверку.

Перед началом работ с использование мегаомметра нужно убедиться в целостности прибора визуальным осмотром. На нём должен быть штамп поверки, не должно быть сколов на корпусе прибора, стекло индикатора должно быть целым. Проверяются измерительные щупы на предмет повреждения изоляции. Нужно провести тестирование прибора. Для этого необходимо, если используется стрелочный прибор, установить его на горизонтальную поверхность, чтобы избежать погрешности в измерениях и провести измерения с разведёнными и замкнутыми щупами.

На старых моделях мегаомметров измерения проводят посредством вращения рукоятки генератора с постоянной частотой 120–140 оборотов в минуту. На других моделях измерения производят нажатием соответствующей кнопки на приборе. Мегаомметр должен показывать бесконечность и ноль мегаом соответственно. После этого можно приступать к работам по измерению сопротивления изоляции.

Измерения прибором

Оформление этого вида работ на разных предприятиях отличается. В каких-то организациях эти работы выполняются по наряду-допуску, в каких-то по распоряжению или в порядке текущей эксплуатации. Важно, что общие правила выполнения одинаковы. Возьмём для примера технологию измерения сопротивления изоляции кабелей связи на железнодорожном транспорте. Выполнив все необходимые организационно-технические мероприятия (оформление работы, вывешивание плакатов и так далее), приступаем непосредственно к измерениям.

Выбрав пару, на которой нужно произвести измерения, первоначально нужно проверить на ней отсутствие напряжения. С помощью приготовленных ранее заземлителей снимаем заряд с измеряемых жил кабеля и заземляем их. Установив измерительные щупы и сняв заземлители, проводим измерение сопротивления изоляции мегаомметром. Зафиксировав полученные результаты, переключаем измерительный щуп на другую жилу и повторяем процедуру измерения.

Нужно помнить, что после проведения измерений в кабеле остаётся электрический заряд. После окончания измерений с помощью заземлителя необходимо снять электрический заряд. Нужно разрядить и сам мегаомметр. Это делается кратковременным замыканием измерительных шнуров между собой. Работы по установке измерительных щупов и заземлителей проводятся в диэлектрических перчатках.

Измеренная величина сопротивления изоляции заносится в протокол. В протоколе обычно указывается, каким прибором проводилось измерение, величина подаваемого напряжения и измеренное сопротивление изоляции. Величина сопротивления различна для разных видов испытаний. Она сравнивается с допустимой величиной и делается вывод о состоянии изоляции электроустановки.

Для производства работ по измерению сопротивления изоляции нужно руководствоваться следующими данными:

  1. электроприборы и аппараты напряжением до 50 вольт испытываются напряжением мегаомметра 100 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм. При проведении измерений полупроводниковые приборы, находящиеся в составе аппарата, должны быть зашунтированы для предотвращения выхода их из строя;
  2. электроприборы и аппараты напряжением от 50 до 100 вольт испытываются напряжением мегаомметра 250 вольт. Результаты аналогичны п.1;
  3. электроприборы и аппараты напряжением от 100 до 380 вольт испытываются напряжением мегаомметра 500–1000 вольт. Результаты аналогичны п.1;
  4. электроприборы и аппараты напряжением от 380 до 1000 вольт испытываются напряжением мегаомметра 1000–2500 вольт. Результаты аналогичны п.1;
  5. щиты распределительные, распределительные устройства (РУ), токопроводы испытываются напряжением мегаомметра 1000–2500 вольт, величина измеренного сопротивления должна быть не менее 1 МОм, при этом измерять нужно каждую секцию РУ;
  6. осветительная электропроводка испытывается напряжением мегаомметра 1000 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм.

Периодичность проведения измерений устанавливается на предприятиях. Владельцы электроустановок принимают решения о дальнейших действиях на электроустановке в зависимости от результатов измерений.

Работа по измерению сопротивления изоляции — одна из важнейших работ в электроустановках, которая помогает следить за состоянием электрооборудования и кабельного хозяйства и вовремя принимать меры для безаварийной эксплуатации электрохозяйства.

Сопротивление изоляции кабеля.

Приступая к измерению сопротивления изоляции кабеля важно учесть температурные показатели окружающей среды. Почему так?

Это связано с тем, что при минусовой температуре в кабельной массе молекулы воды будут находиться в замерзшем состоянии, фактически в виде льда. А как известно лед является диэлектриком и не проводит ток.

Так что при определении сопротивления изоляции при минусовой температуры именно эти частички замерзшей воды не будут обнаружены.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Приборы и средства измерения сопротивления изоляции кабеля.

Следующим пунктом при проведении измерения сопротивления изоляции кабельных линий, будут сами измерительные приборы.

Наиболее популярным прибором для измерения сопротивления изоляции у работников нашей электролаборатории является прибор MIC-2500.

С помощью этого прибора произведенного фирмой Sonel можно не только снять замеры показателей сопротивления кабельных линий, шнуров, проводов, электрооборудования (трансформаторы, выключатели, двигатели и т.п), но и определить замер уровня изношенности и уровня увлажненности изоляции.

Стоит отметить, что именно прибор MIC-2500 включен в государственный реестр разрешенных для измерения сопротивления изоляции.

Согласно инструкциям прибор MIC-2500 должен проходить ежегодную государственную поверку. После процедуры поверки на прибор наносят голограмму и штамп, которые подтверждают прохождение поверки. В штампе указывается информация о дате плановой поверки и серийный номер измерительного прибора.

К работе с измерениями сопротивления изоляции допускаются только исправные и поверенные приборы.

Нормы сопротивления изоляции для различных кабелей.

Для определения норма сопротивления изоляции кабелей, нужно провести их классификацию. Кабели по функциональному назначению разделяются на:

  • выше 1000 (В) – высоковольтные силовые
  • ниже 1000 (В) – низковольтные силовые
  • контрольные кабели – (цепи защиты и автоматики, вторичные цепи РУ, цепи управления, цепи питания электроприводов выключателей, отделителей, короткозамыкателей и т.п.)
Читайте также:  Контроллер мигания светодиодов

Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных кабелей осуществляется мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются при напряжении 500-2500 (В).

Каждый кабель имеет свои нормы сопротивления изоляции. Согласно ПТЭЭП и ПУЭ.

Высоковольтные силовые кабели выше 1000 (В) — сопротивление изоляции должно достигать показателя не ниже 10 (МОм)

Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно достигать отметки ниже 0,5 (МОм)

Контрольные кабели — сопротивление изоляции не должно опускаться ниже 1 (МОм)

Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей.

Чтобы понять и упростить процесс выполнения работ по измерению сопротивления изоляции в высоковольтных силовых кабелях, рекомендуем порядок действий при замерах.

1. Проверяем отсутствие напряжения на кабеле при помощи указателя высокого напряжения

2. Ставим испытательное заземление с использованием специальных зажимов ка кабельные жилы с той стороны, где будем проводить измерение.

3. На другой стороне кабеля оставляем свободные жилы, при этом разводим их на достаточное расстояние друг от друга.

4. Размещаем предупреждающие информационные плакаты. Желательно поставить на другой стороне человека для наблюдения за безопасностью во время измерения мегаомметром.

5. Каждую жилу измеряем 1 минуту мегаомметром на 2500 (В) для получения показателей сопротивления изоляции силового кабеля.

Например, замеряем сопротивление изоляции на жиле фазы «С». При этом помещаем заземление на жилы фаз «В» и «А». Один конец мегаомметра подключаем к заземлению, или проще сказать к «земле». Второй конец — к жиле фазы «С».

Наглядно это выглядит так:

6. Данные измерений в процессе работы записываем в блокнот.

Методика измерения сопротивления изоляции низковольтных силовых кабелей.

Что касается измерения изоляции низковольтных силовых кабелей, то методика измерения незначительно отличается от описанной выше.

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, предназначенных для работ в электроустановках.

2. С другой стороны кабеля, жилы разводим их на достаточное расстояние друг от друга и оставляем свободными.

3. Размещаем запрещающие и предупреждающие плакаты. Оставляем с другой стороны человека для наблюдения за безопасностью.

4. Измерение сопротивления изоляции низковольтного силового кабеля проводим мегаомметром на 2500 (В) по 1 минуте:

  • между фазными жилами (А-В, В-С, А-С)
  • между фазными жилами и нулем (А-N, В-N, С-N)
  • между фазными жилами и землей (А-РЕ, В-РЕ, С-РЕ), если кабель пятижильный
  • между нулем и землей (N-PE), предварительно отключив ноль от нулевой шинки

6. Полученные показатели измерений сопротивления изоляции фиксируем в блокноте.

Методика измерения сопротивления изоляции контрольных кабелей.

Особенностью измерения сопротивления изоляции контрольных кабелей является то, что жилы кабеля можно не отсоединять от схемы и делать замеры вместе с электрооборудованием.

Измерение сопротивления изоляции контрольного кабеля выполняется по уже знакомому алгоритму.

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, которые предназначены для работ в электроустановках.

2. Измеряем сопротивления изоляции контрольного кабеля мегаомметром на 500-2500 (В) в такой последовательности.

Сначала совершаем подключение одного вывода мегаомметра к испытуемой жиле. Остальные жилы контрольного кабеля соединяем между собой и на землю. Ко второй выводу мегаомметра подключаем либо землю, либо любую другую не испытуемую жилу.

1 минуту производим замер испытуемой жилы. Потом эту жилу возвращаем к остальным жилам кабеля и поочередно измеряем каждую жилу.

3. Все полученные показатели измерения сопротивления изоляции контрольного кабеля фиксируем в блокнот.

Протокол измерения сопротивления изоляции кабеля.

Все вышеперечисленные электрические измерения, после получения данных сопротивления изоляции кабеля необходимо подвергнуть сравнительному анализу с требованиями и нормами ПУЭ и ПТЭЭП. На основании сравнения необходимо сформулировать вывод-заключение о пригодности кабеля к последующей эксплуатации и составить протокол измерения сопротивления изоляции.

Измеритель сопротивления: как называется прибор и как проводятся измерения?

Сопротивление элементов электрической цепи — важнейший параметр, поскольку от него зависит величина протекающего в цепи тока. А сила тока, в свою очередь, определяет сечение проводов, номинал автоматов защиты и многое другое. Какой же используют прибор для измерения сопротивления в той или иной ситуации?

Принципы измерения электрического сопротивления

Различают два вида электрического сопротивления: активное и реактивное.

Активное или резистивное

Это противодействие материала движению электрически заряженных частиц, имеющее место при любом виде тока.

Закон Ома наглядно

Определяется из закона Ома для участка цепи: R = U/I, где:

  • R — сопротивление участка цепи, Ом;
  • U — падение напряжения на участке цепи, В;
  • I — сила тока на данном участке, А.

Таким образом, для вычисления активного сопротивления элемента требуется приложить к его выводам некоторое известное напряжение и замерять силу протекающего в цепи тока.

Реактивное

Существует только в цепях переменного тока, подразделяется на два типа:

  1. индуктивное: этим сопротивлением обладают катушки индуктивности, например, обмотки электродвигателей и трансформаторов;
  2. емкостное: относится к конденсаторам и прочим элементам, обладающим электрической емкостью.

Емкостное сопротивление в цепи переменного тока

Для расчета реактивного сопротивления применяются более сложные методики и приборы.

Конструкция простейшего омметра

Омметр — прибор для измерения активного сопротивления. Самый простой вариант — аналоговый или стрелочный. Действие основано на способности протекающего по проводнику тока создавать магнитное поле, значительно усиливающееся при сматывании провода в катушку.

Внутри аналогового омметра имеются такие компоненты:

  1. подвижная катушка на пружинке с присоединенной к ней стрелкой;
  2. постоянный магнит;
  3. блок ограничивающих резисторов R (нужный выбирается переключателем);
  4. источник питания — батарейка или аккумулятор;
  5. щупы с разъемами для подключения к прибору.

При подсоединении щупов к выводам проверяемого элемента с сопротивлением RX, цепь замыкается и через катушку течет ток.

Его величина зависит от RX, а ограничивающий резистор R исключает возможность короткого замыкания. От силы тока зависит индукция магнитного поля, создаваемого катушкой, и, соответственно, сила ее взаимодействия с постоянным магнитом.

Чем выше эта сила, тем больше смещается катушка, растягивая пружину, и тем дальше отклонится прикрепленная к ней стрелка. Подключая разные ограничивающие резисторы, меняют чувствительность прибора — от нее зависит диапазон измерений.

Цифровой омметр

Цифровой омметр — современный вариант. Вместо аналогового измерительного механизма используются датчики напряжения и тока, отсылающие сигнал на микропроцессор. Тот анализирует данные и выводит результат на жидкокристаллический дисплей.

Преимущества перед аналоговыми:

  • высокая точность показаний;
  • результаты измерений легко читаются (при использовании аналогового омметра приходится вглядываться в шкалу);
  • компактные размеры;
  • дополнительные функции: память, фиксация показаний и пр.

Недостаток цифровых моделей: датчики опрашивают цепь через определенные временные интервалы, потому невозможно отследить изменения измеряемого параметра в режиме реального времени.

Из-за этого профессиональные мастера-электронщики часто отдают предпочтение аналоговым моделям.

Мегаомметры

Важное значение имеет величина сопротивления изоляции токоведущих частей, поскольку она обеспечивает безопасную эксплуатацию электроустановки и предотвращает короткое замыкание. Изоляцию изготавливают из диэлектриков — материалов с высоким электрическим сопротивлением, измеряемым мегаомами.

Потому для создания тока в цепи напряжения источника, тока имеющегося в обычном омметре недостаточно. Мегаомметр оснащен генератором постоянного тока, приводимым в действие вращением рукоятки. Он способен развивать напряжение до 2,5 кВ.

Вместо двух разъемов для подключения щупов, как у омметра, в мегаомметре имеется три с такой маркировкой:

  1. «З» (в некоторых моделях «Rx»): земля;
  2. «Л» («-»): линия;
  3. «Э»: экран.

Первые два разъема используют при измерении сопротивления изоляции между токоведущими частями и землей либо между разными фазами. При помощи разъема «Э» нейтрализуют помехи, влияющие на точность показаний.

Мегаомметры также делятся на аналоговые и цифровые. В первых применяется тот же измерительный механизм, что и в обычных омметрах.

При работе с мегаомметром из-за высокого напряжения требуется осторожность; после измерений необходимо по особой методике разрядить наведенную прибором высоковольтную разность потенциалов (заряд накапливается протяженными участками кабелей).

Измерительные мосты постоянного тока

Для измерения собирают мостовую схему из 4-х резисторов, один из которых — тестируемый (Rx), а три других — образцовые регулируемые (R1, R2, R3).

Одну диагональ моста подключают к полюсам источника питания, к другой через выключатель и ограничивающий резистор подсоединяют амперметр высокой чувствительности (милли- или микроамперметр). Подстраивая резисторы R1, R2 и R3, проверяющий балансирует мост — добивается, чтобы на амперметре отобразился «0».

Читайте также:  Соединение проводов СИП и магистрального провода

Такая ситуация наступит при равенстве произведений сопротивлений на противоположных плечах моста, откуда определяют сопротивление Rx тестируемого элемента по формуле: Rx = (R1*R3)/R2.

Приборы измерения сопротивления

Контура заземления

Залог надлежащей работы защитного заземления — его низкое сопротивление.

Требуется регулярно проверять сопротивление контура заземления, поскольку он может возрастать из-за следующих причин:

  • окисление (коррозия) поверхности электродов заземлителя;
  • увеличение удельного сопротивления грунта;
  • нарушение контакта между токопроводящей шиной и заземлителем из-за коррозии или механических повреждений.

Измерение сопротивления заземлителя также вычисляют по закону Ома для участка цепи.

Для этого на определенном расстоянии от тестируемого заземлителя, в грунт вбивают основной и вспомогательный измерительный электроды, затем соединяют их проводами с заземлителем.

Полученную цепь подключают к калиброванному источнику питания и замеряют две величины:

  1. протекающий в цепи ток I;
  2. падение напряжения U на участке между тестируемым заземлителем и вспомогательным электродом.

Искомое сопротивление определяют делением: R = U / I.

Измерение контура заземления

Описанный метод амперметра и вольтметра является наиболее простым, но дает значительную погрешность. Поэтому работа современных приборов основана на более точных методах, например, компенсационном. Сопротивление контуров заземления измеряют как аналоговыми приборами (МС-08, Ф4103-М1, М4116), так и цифровыми.

Весьма удобны приборы с токоизмерительными клещами, обладающие следующими преимуществами:

  • не используются дополнительное оборудование и электроды (необходимо двое токоизмерительных клещей);
  • не требуется разрывать цепь заземлителя.

Удельного сопротивления грунта

Некоторые из приборов для измерения сопротивления контура заземлителя, дополнительно снабжены функцией определения удельного сопротивления грунта. Для этого электроды подключают по иной схеме. Например, часто используют метод 4-х электродов.

В цепях переменного тока

В цепях переменного тока помимо активного сопротивления имеет место реактивное. Для его измерения применяются другие приборы.

Петли фаза-ноль

Сопротивление участка электросети от трансформатора на подстанции до розетки нормируется. Если оно вследствие ошибок при монтаже или неверного подбора сечения проводов окажется завышенным, это приведет к несбалансированному режиму работы и даже аварии.

Данный участок представляет собой петлю, образованную фазным и нулевым проводниками. Отсюда и название — петля фаза-ноль.

Порядок действий при расчете сопротивления:

  1. вольтметром замеряют напряжение U1 между фазой и нулем в розетке. В идеале следует замерять ЭДС на выводах обмотки трансформатора, но доступа к нему обычно нет;
  2. в розетку включают нагрузку и последовательно с ней — амперметр. Нагрузка подбирается так, чтобы сила тока I в цепи была стабильной и составляла 10 – 20 А. При меньших значениях завышенное сопротивление петли может себя не проявить;
  3. вольтметром определяется падение напряжения U2 на нагрузке.

Расчет производят так:

  1. вычисляют полное сопротивление цепи: R1 = U1/I;
  2. рассчитывают сопротивление нагрузки: R2 = U2/I;
  3. определяют сопротивление петли фаза-ноль путем вычитания из полного сопротивления цепи сопротивления нагрузки: Rп = R1 – R2.

Обычным мультиметром выполнить измерения нельзя — он дает большую погрешность. Требуются приборы повышенной точности — класса 0,2. Это измерители лабораторного уровня: они часто поверяются и требуют от оператора высокой квалификации.

Иногда их называют «измерителями тока короткого замыкания», но это не совсем верно: непосредственно токи КЗ прибор не определяют, он лишь вычисляет его значение, основываясь на результатах измерения (по обычному закону Ома).

Прибор содержит:

  • высокоточный амперметр;
  • высокоточный вольтметр;
  • нагрузочный резистор;
  • элементы питания для функционирования цифрового блока обработки данных.

Пользователю достаточно вставить щупы в розетку и нажать кнопку «пуск». Измеритель сам выполнит порядок действий, описанный выше, и отобразит результат на дисплее.

Видео по теме

Как правильно пользоваться прибором для измерения сопротивления изоляции:

В процессе эксплуатации электросети приходится замерять сопротивление самых разных ее элементов. Для этого выпускают широкий перечень приборов, каждый из которых имеет свое назначение и не может быть заменен другими.

Как измерить сопротивление изоляции

Безопасность в процессе эксплуатации электрооборудования и быстрое устранение проблем в проводке невозможны без своевременной и грамотной диагностики. Для этого нужно знать, как измерить сопротивление изоляции по определенной методике. Тестируемая величина относится к главным параметрам состояния защитного слоя.

Для выполнения подобных мероприятий есть несколько способов. Каким прибором измеряют сопротивление изоляции для получения наиболее достоверной информации? Сегодня мы поговорим о применении самых популярных устройств, используемых для этих целей.

Как измерить сопротивление изоляции мультиметром

Большой диапазон вариантов использования мультиметра обусловлен особенностями его конструкции. Устройство с достаточной точностью справится с тестированием самых разных типов деталей и предохранителей, катушек и конденсаторов.

Расположение обозначений на корпусе варьируется в зависимости от модели, но для нашего случая обязательно должен быть символ «Ω», соответствующий измеряемому сопротивлению. На панели указано несколько пределов для проводимого тестирования и переключатель ручного формата. Все обозначения – это буквенные или цифровые символы.

Основные показатели в процессе измерения

Предположим, что ориентировочные параметры измерения составляют 1 кОм. В процессе проверки на дисплее прибора может быть показана единица, что означает для данной детали более высокое значение сопротивления. Переустанавливаем режим позиции тестера на 1 степень выше. На снимке ниже это равняется 20 кОм. В таком положении следует сделать новое измерение.

Приступая к работе, важно учитывать запрет на касание щупов и выводов измеряемых элементов, ведь в таком случае объективные данные будут искажаться по причине показа суммарного сопротивления тестируемой детали и тела человека.

В чем особенности данного процесса

Некоторые аспекты работы влияют на корректность полученной информации:

  • при тестировании впаянных деталей необходимо один вывод отсоединить от платы;
  • проверить щупы на отсутствие дефектов и повреждений способом их прикладывания друг к другу;
  • выполнить демонтаж многовыводных деталей для гарантии правильного определения их исправности;
  • аккумуляторный источник питания в тестере при разрядке искажает данные измерений.

Все указанные в таблицах или маркированные параметры имеют определенный диапазон допусков, обычно в пределах ± 10%. Приведем пример – для элемента с номинальными характеристиками сопротивления 1 Мом хорошими будут все результаты от 990 кОм до 1,1 Мом.

Как происходит проверка изоляции

Такую процедуру выполняют только в помещениях с плюсовой температурой или в теплую погоду. Это обусловлено возможностью появления кристалликов льда во внутренней части оплетки кабеля. Такие образования относятся к не обладающим проводимостью диэлектрикам. Тестеры их просто не учитывают, а ведь после оттаивания появившаяся влага отрицательно сказывается на состояние кабеля.

Цифровые модели мультиметров имеют несколько секций, выбор которых осуществляется вручную. Подбирается нужный предел измерения после ориентировочной оценки параметров проверяемой цепи. Самые популярные модификации T83x, M83x, MAS83x оснащены пятью вариантами тестирования.

Как измерить сопротивление изоляции мегаомметром

В состав любого образца прибора входят генератор в токовыпрямителем и предназначенный для измерений специальный механизм. Мегаомметры классифицируются по категориям согласно номинальным характеристикам напряжения.

Для устройств любого типа необходимо придерживаться определенных условий на подготовительной стадии:

  • контрольная проверка прибора, выполняемая при находящихся в разомкнутом положении концах жил, при этом указатель находится у значка бесконечности. Замыкании проводов сопровождается приближением стрелки к цифре 0;
  • специальным устройством подтверждается отключение напряжения;
  • обязательное заземление токопродника, снимающееся после установки мегаомметра.

Категорически запрещено прикосновение к токоведущим участкам.

Несколько моментов требуют повышенного внимания в отношении изоляционного слоя элементов, предназначенных для эксплуатации в режиме до 1000 В:

  1. Изоляция защитных и рабочих нулевых проводников должна равняться аналогичному показателю фазных элементов.
  2. Выполняется отсоединение нулевых проводников от заземляющих элементов со стороны приемника и источника питания.

Вращение ручки устройства происходит со скоростью 120 об/мин для обеспечения устойчивого положения стрелки.

Для проводников более 1000 В избежать потенциальных неточностей тестирования из-за присутствия на изоляционном слое токов утечки можно способом накладки экранных колец на измеряемый участок.

Устройство подсоединяется со стороны проверки к жилам после завершения мероприятий, предназначенных для снятия напряжения. Согласно рекомендациям ПУЭ с другой стороны нужно развести жилы на определенное правилами расстояние. Для обеспечения безопасности в этой зоне находится один из работников, а по периметру работ вывешиваются предупредительные плакаты.

Затем поочередно проверяется каждая жила подсоединением к ней одного щупа мегаомметра, второй при этом подключен к заземлению. Пара свободных от проверки жил заземляется. Рекомендованная длительность тестирования – 1 минута.

Кабельные контрольные системы

Единственное отличие применяемой в этом случае технологии от вышерассмотренных, заключается в определении наличия напряжения в токопроводнике на предварительном этапе и проверке прибора в диапазоне 500-2500 вольт. Для этого свободные жилы соединяются и подсоединяются к заземлению, а выходы прибора подключаются к концевой части кабеля и заземляющему контуру.

Периодичность проведения проверок соответствует прописанным для оборудования периодам .

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector