Монтаж мощных светодиодов

Содержание

Термоклей для светодиодов – алюминиевый радиатор своими руками

Устройство и принципы функционирования радиатора для светодиодов. Правила выбора материала и площади детали. Делаем радиатор своими руками легко и быстро.

Распространенное мнение, что светодиоды не нагреваются – заблуждение. Возникло оно потому, что маломощные светодиоды на ощупь не горячие. Все дело в то, что они оснащены отводчиками тепла – радиаторами.

Принцип действия теплоотвода

Главным потребителем тепла, выделяемого светодиодом, является окружающий воздух. Его холодные частицы подходят к нагретой поверхности теплообменника (радиатора), нагреваются и устремляются вверх, освобождая место новым холодным массам.

При столкновении с другими молекулами происходит распределение (рассеивание) тепла. Чем больше площадь поверхности радиатора, тем интенсивнее он передаст тепло от светодиода воздуху.

Подробнее о принципах работы светодиодов читайте здесь.

Количество поглощенного воздушной массой тепла с единицы площади не зависит от материала радиатора: эффективность естественного «теплового насоса» ограничено его физическими свойствами.

Материалы для изготовления

Радиаторы для охлаждения светодиодов различаются по конструкции и материалу.

Окружающий воздух может принять не более 5-10 Вт с единичной поверхности. При выборе материала для изготовления радиатора следует принять во внимание выполнение следующего условия: теплопроводность его должна быть не менее 5-10 Вт. Материалы с меньшим параметром не смогут обеспечить передачу всего тепла, которое может принять воздух.

Теплопроводность выше 10 Вт будет технически избыточной, что повлечет за собой неоправданные финансовые затраты без увеличения эффективности радиатора.

Для изготовления радиаторов традиционно используют алюминий, медь или керамику. В последнее время появились изделия, выполненные из теплорассеивающих пластмасс.

Рекомендуем Вам также более подробно прочитать про импульсный блок питания своими руками.

Алюминиевые

Основным недостатком алюминиевого радиатора является многослойность конструкции. Это неизбежно приводит к возникновению переходных тепловых сопротивлений, преодолевать которые приходится с помощью применения дополнительных теплопроводящих материалов:

  • клейких веществ;
  • изолирующих пластин;
  • материалов, заполняющих воздушные промежутки и пр.

Алюминиевые радиаторы встречаются чаще всего: они хорошо прессуются и вполне сносно справляется с отводом тепла.

Медные

Медь обладает большей теплопроводностью, чем алюминий, поэтому в некоторых случаях ее использование для изготовления радиаторов оправдано. В целом же данный материал уступает алюминию в плане легкости конструкции и технологичности (медь – менее податливый металл).

Изготовление медного радиатора методом прессования – наиболее экономичным – невозможно. А обработка резанием дает большой процент отходов дорогостоящего материала.

Керамические

Одним из наиболее удачных вариантов теплоотводчика является керамическая подложка, на которую предварительно наносятся токоведущие трассы. Непосредственно к ним и подпаиваются светодиоды. Такая конструкция позволяет отвести в два раза больше тепла по сравнению с металлическими радиаторами.

Пластмассы теплорассеивающие

Все чаще появляется информация о перспективах замены металла и керамики на терморассеивающую пластмассу. Интерес к этому материалу понятен: стоит пластмасса намного дешевле алюминия, а ее технологичность намного выше. Однако теплопроводность обычной пластмассы не превышает 0,1-0,2 Вт/м.К. Добиться приемлемой теплопроводности пластмассы удается за счет применения различных наполнителей.

При замене алюминиевого радиатора на пластмассовый (равной величины) температура в зоне подвода температур возрастает всего на 4-5%. Учитывая, что теплопроводность теплорассеивающей пластмассы намного меньше алюминия (8 Вт/м.К против 220-180 Вт/м.К), можно сделать вывод: пластический материал вполне конкурентоспособен.

Таблица – Сравнение теплопроводности различных материалов
МатериалТеплопроводность, Вт/м.К
Алюминий120-240
Медь401
Керамика15-40; 100-200
Теплорассеивающие пластмассы1 – 40
Термопаста0,1 – 10

Конструктивные особенности

Конструктивные радиаторы делятся на две группы:

Первый тип, в основном, применяется для естественного охлаждения светодиодов, второй – для принудительного. При равных габаритных размерах пассивный игольчатый радиатор на 70 процентов эффективнее ребристого.

Но это не значит, что пластинчатые (ребристые) радиаторы годятся только для работы в паре с вентилятором. В зависимости от геометрических размеров, они могут применяться и для пассивного охлаждения.

Обратите внимание на расстояние между пластинами (или иглами): если оно составляет 4 мм – изделие предназначено для естественного отвода тепла, если зазор между элементами радиатора всего 2 мм – его необходимо комплектовать вентилятором.

Оба типа радиаторов в поперечном сечении могут быть квадратными, прямоугольными или круглыми.

Рекомендуем Вам также ознакомиться с электромагнитным устройством – дроссель для ламп.

Расчет площади радиатора

Методики точного расчета параметров радиатора предполагают учет множество факторов:

  • параметры окружающего воздуха;
  • площадь рассеивания;
  • конфигурацию радиатора;
  • свойства материала, из которого изготовлен теплообменник.

Но все эти тонкости нужны для проектировщика, разрабатывающего теплоотвод. Радиолюбители чаще всего используют старые радиаторы, взятые из отслужившей свой срок радиоаппаратуры. Все, что им надо знать – какова максимальная рассеиваемая мощность теплообменника.

Подсчитать этот параметр можно по формуле:

Ф = а х Sх (Т1 – Т2), где

  • Ф – тепловой поток (Вт);
  • S – площадь поверхности радиатора (сумма площадей всех ребер или иголок и подложки в кв. м). Подсчитывая площадь, следует иметь в виду, что ребро или пластина имеет две поверхности отвода тепла. То есть площадь теплоотвода прямоугольника площадью 1 см2 составит 2 см2. Поверхность иглы рассчитывается как длина окружности (π х D), умноженная на ее высоту;
  • Т1 – температура теплоотводящей среды (граничной), К;
  • Т2 – температура нагретой поверхности, К;
  • а – коэффициент теплоотдачи. Для неполированных поверхностей принимается равным 6-8 Вт/(м2К).

Есть еще одна упрощенная формула, полученная экспериментальным путем, по которой можно рассчитать необходимую площадь радиатора:

S = [22 – (M x 1.5)] x W, где

  • S – площадь теплообменника;
  • W – подведенная мощность (Вт);
  • M – незадействованная мощность светодиода.

Для ребристых радиаторов, изготовленных из алюминия, можно воспользоваться примерными данными, представленными тайваньскими специалистами:

  • 1 Вт – от 10 до 15 см2;
  • 3 Вт – от 30 до 50 см2;
  • 10 Вт – около 1000 см2;
  • 60 Вт – от 7000 до 73000 см2.

Однако следует учесть, что вышеприведенные данные неточные, так как они указываются в диапазонах с достаточно большим разбегом. К тому же определены данные величины для климата Тайваня. Их можно использовать только для проведения предварительных расчетов.

Получить наиболее достоверный ответ об оптимальном способе расчета площади радиатора можно на следующем видео:

Сделать своими руками

Радиолюбители редко берутся за изготовление радиаторов, поскольку этот элемент – вещь ответственная, напрямую влияющая на долговечность светодиода. Но в жизни бывают разные ситуации, когда приходится мастерить теплоотводчик из подручных средств.

Рекомендуем Вам также более подробно прочитать про изготовление диммера своими руками.

Вариант 1

Самая простая конструкция самодельного радиатора – круг, вырезанный из листа алюминия с выполненными на нем надрезами. Полученные сектора немного отгибаются (получается нечто, похожее на крыльчатку вентилятора).

По осям радиатора отгибаются 4 усика для крепления конструкции к корпусу лампы. Светодиод можно закрепить через термопасту саморезами.

Вариант 2

Радиатор для светодиода можно изготовить своими руками из куска трубы прямоугольного сечения и алюминиевого профиля.

  • труба 30х15х1,5;
  • пресс-шайба диаметром 16 мм;
  • термоклей;
  • термопаста КТП 8;
  • профиль 265 (Ш-образный);
  • саморезы.

В трубе для улучшения конвекции сверлятся три отверстия диаметром 8 мм, а в профиле – отверстия диаметром 3,8 мм – для его крепления саморезами.

Светодиоды приклеиваются к трубе – основанию радиатора – при помощи термоклея.

В местах соединения деталей радиатора наносится слой термопасты КТП 8. Затем производится сборка конструкции с помощью саморезов с пресс шайбой.

Способы крепления светодиодов к радиатору

Светодиоды прикрепляют к радиаторам двумя способами:

Приклеить светодиод можно на термоклей. Для этого на металлическую поверхность наносится капелька клеящей массы, затем на нее садится светодиод.

Для получения прочного соединения светодиод необходимо на несколько часов придавить небольшим грузом – до полого высыхания клея.

Однако большинство радиолюбителей предпочитают механическое крепление светодиодов. Сейчас выпускаются специальные панели, с помощью которых можно быстро и надежно смонтировать светодиод.

В некоторых моделях предусмотрены зажимы для вторичной оптики. Монтаж выполняется просто: на радиатор устанавливается светодиод, на него – панелька, которая крепится к основанию саморезами.

Но не только радиаторы для светодиода можно изготовить самостоятельно. Любителям заниматься растениями рекомендуем ознакомиться со светодиодной лампой для рассады своими руками.

Качественное охлаждение светодиода является залогом долговечности светодиода. Поэтому к подбору радиатора следует подходить со всей серьезностью. Лучше всего использовать готовые теплообменники: они продаются в магазинах радиотоваров. Стоят радиаторы недешево, зато легко монтируются и светодиод защищает от избытка тепла надежнее.

Мощные сверхяркие светодиоды — особенности монтажа, питания, конструкции

Осветительными приборами, где в качестве источников света используются сверхяркие светодиоды, уже никого не удивишь. Спрос на такие устройства неизменно растет, это напрямую связано с низким энергопотреблением этих приборов. Учитывая, что на освещение тратится около 25-35% потребляемой электроэнергии, экономия будет весьма ощутимой.

Читайте также:  Соединение многожильного провода с одножильным

Кратко об эффективности

Эффективностью осветительного прибора принято считать соотношение вырабатываемого светового потока (измеряется в люменах) к потребляемой электроэнергии (ватт). Качественная лампа с нитью накала имеет эффективность около 16 люменов на ватт, флуоресцентная (энергосберегающая) — в четыре раза больше (64 лм/Вт), для длинных дневных ламп этот показатель в районе 80 лм/Вт.

КПД сверхярких светодиодов, выпускающихся массово на текущий момент, примерно такой же, как у ламп дневного света. Обратите внимание, что мы говорим именно про массовую продукцию. Что касается теоретического предела для сверхярких светодиодных источников, то он определен порогом в 320 лм/Вт.

Как обещают многие производители, в ближайшие несколько лет КПД можно будет повысить до уровня 213 лм/Вт.

Влияние особенностей конструкции на стоимость

Для изготовления сверхярких светодиодных источников света может применяться один из двух способов:

  • чтобы получить свет, близкий по спектру к белому, используются три кристалла установленных в одном корпусе. Один красный, второй синий и третий зеленый;
  • применяется кристалл, излучающий в голубом или ультрафиолетовом спектре, он подсвечивает линзу покрытую люминофором, в результате излучение преобразуется в свет, близкий по спектру к природному.

Не смотря на то, что первый вариант более эффективен, его реализация обходится несколько дороже, что отрицательно отражается на распространенности. Помимо этого спектр света, излучаемый таким источником, отличается от природного.

У приборов, изготовленных по второй технологии, меньше эффективность. Стоит также учитывать, что люминофор содержит в себе сложный по составу композит на основе церия и иттрия, которые сами по себе стоят недешево. Собственно, этим и объясняется относительно высокая стоимость сверхярких светодиодов белого света. Конструкция такого устройства показана на рисунке.

Устройство сверхяркого светодиода

Обозначения:

  • А – печатный проводник;
  • В – основание с повышенной теплопроводимостью;
  • C – защитный корпус устройства;
  • D – паста-припой;
  • E – кристалл светодиода, излучающий ультрафиолетовый или голубой свет;
  • F –люминофорное покрытие;
  • G – клей (может быть заменен эвтектическим сплавом);
  • H – провод, соединяющий кристалл и вывод;
  • K – отражатель;
  • J – теплоотводящее основание;
  • L – вывод питания;
  • M – диэлектрическая прослойка.

Особенности монтажа

На работу сверхярких светодиодов оказывает влияние степень нагрева кристалла и самого p-n перехода. От первого напрямую зависит срок эксплуатации устройства, от второго – уровень светового потока. Поэтому для длительной службы сверхярких светодиодов необходимо организовать надежный теплоотвод, делается это при помощи радиатора.

Следует принять во внимание, что теплопроводящие основания этих полупроводников, как правило, проводят электричество. Поэтому когда устанавливается несколько элементов на один радиатор, следует позаботиться о надежной электроизоляции оснований.

Хороший теплоотвод значительно увеличивает срок службы сверхярких светодиодов

Остальные правила монтажа практически такие же, как у обычных диодов, то есть необходимо соблюдение полярности, как при установке самой детали, так и подключении питания.

Особенности питания

Учитывая относительно высокую стоимость сверхярких светодиодов, очень важно использовать для их работы надежные и качественные источники питания, поскольку эти полупроводниковые элементы критичны к токовой перегрузке.

После нештатного режима прибор может остаться работоспособным, но мощность излучаемого светового потока существенно сократится. Помимо этого такой элемент с большой вероятностью станет причиной поломки и других, совместно подключенных светодиодов.

Прежде, чем говорить о драйверах для сверхярких светодиодов, коротко расскажем об особенностях их питания. В первую очередь необходимо принять во внимание следующие факторы:

  • мощность светового потока, излучаемая этими элементами, напрямую зависит от величины протекающего через них электротока;
  • для сверхярких светодиодов характерна нелинейная ВАХ (вольт-амперная характеристика);
  • температура оказывает сильное влияние на ВАХ этих полупроводниковых приборов.

Ниже показано изменение ВАХ при температуре полупроводникового элемента (сверхяркий smd-светодиод) 20 °С и 70 °С.

Изменение характеристик от влияния температуры

Как видно из графика, при подаче на полупроводник стабильного напряжения величиной 2 В, электроток, проходящий через него, меняется в зависимости от температуры. При нагреве кристалла 20°С он будет равен 14 мА, когда температура повысится до 70°С, этот параметр будет соответствовать 35 мА.

Результатом такой разницы будет изменение мощности светового потока при одном и том же питающем напряжении. Исходя из этого, необходимо стабилизировать не напряжение, а электроток, проходящий через полупроводник.

Такие блоки питания называются светодиодными драйверами, они представляют собой обычные стабилизаторы тока. Это устройство можно приобрести готовое или собрать самостоятельно, в следующем разделе мы приведем несколько типичных схем драйверов.

Самодельный светодиодный драйвер

Предоставим вашему вниманию несколько вариантов драйверов на основе специализированных микросхем компании Monolithic Power System, использование которых существенно упрощает конструкцию. Схемы приводятся в качестве примера, полное описание типового включения можно найти в даташит на микросхемы.

Вариант первый на базе понижающего преобразователя МР4688.

Пример включения МР4688

Данный драйвер может работать с напряжениями от 4,5 до 80 В, порог максимального выходного электротока 2 А, что позволяет запитать светильник на сверхярких светодиодах большой мощности. Уровень электротока, проходящего через светодиоды, регулируется сопротивлением RFB . Реализация ШИМ-диммирования с частотой 20 кГц позволяет плавно изменять протекающий через светодиод электроток.

Второй вариант драйвера на базе микросхемы МР2489. Ее компактный корпус (QFN8 или TSOT23-5) делает возможным размещение драйвера в цоколе MR16, используемый галогенными лампами, что позволяет заменить последние светодиодными. Типовая схема подключения МР2489 показана на рисунке.

Драйвер на базе МР2489

Приведенная выше схема позволяет включать два параллельных светодиода, у каждого из которых рабочий ток 350 мА.

Последний вариант драйвера на базе микросхемы МР3412, который может быть использован в переносных фонариках. Отличительная особенность такой схемы – возможность работы от пальчикового элемента питания АА.

Драйвер для фонарика на базе МР3412

Подключение мощных светодиодов

Данный материал условно разделим на 2 части: теория и практика. В первой мы расскажем о видах драйверов и принципах их работы, а в конце статьи кратко распишем, как именно подключаются к питанию мощные светодиоды.

Теория

При разработке схем включения мощных светодиодов справедливы и могут быть использованы те же методики, что и для маломощных. Но при использовании подобных схем включения возникает проблема, обусловленная тем, что для ограничения тока через светодиод используется резистор, на котором падает определенное напряжение, и соответственно выделяется тепло. При рабочих токах в 20-30 мА тепловыделение незначительно и не доставляет проблем, однако при включении мощных светодиодов с рабочим током 0,35А и выше (многие позволяют пропускать через себя ток до 3 А) возникает проблема повышенного тепловыделения. В качестве примера рассмотрим включение светодиода с рабочим током 1А и падение напряжения на переходе 3В, включенного в источник напряжения 5В. По закону Ома сопротивление токоограничивающего резистора равно 2 Ома, и соответственно при токе 1А на нем выделится 2Вт тепла. Может показаться, что это совсем немного, но учитывая современные тенденции к уменьшению размеров корпусов деталей и устройств, может оказаться, что такой резистор просто расплавит корпус устройства, после чего сгорит. КПД такой схемы получается также очень низким, что недопустимо при использовании батарейного питания.

Выходом из этой ситуации является применение импульсных стабилизаторов тока. Они имеют высокий КПД – до 90% (у некоторых типов даже выше), высокую стабильность выходного тока, отсутствие влияния изменений входного напряжения. ‘Такие источники тока (драйверы) можно разделить на две группы – это AC/DC и DC/DCпреобразователи. Вторую группу можно подразделить еще на несколько подгрупп, но об этом позже. Источники первой группы применяются для питания светодиодов от бытовой сети переменного тока 110-220В. Вторая группа применяется при питании от источников пониженного постоянного напряжения, например, аккумулятор, компьютерный БП. Основные характеристики драйверов обеих групп – это диапазон входного напряжения, диапазон выходного напряжения, мощность, ток, наличие дополнительных функций.

Рассмотрим эти характеристики по отдельности.

1. Диапазон входного напряжения. Для драйверов первой группы он обычно лежит в пределе 110 – 220В. Иногда встречаются драйверы, предназначенные для питания только от 110 или 220В. У драйверов второй группы кол-во возможных вариантов гораздо шире. Это связано с тем, что производители оптимизируют КПД в определенном диапазоне напряжений. Поэтому при выборе драйвера по этому параметру следует исходить из характеристик питающего напряжения. Также следует учитывать возможный диапазон изменений напряжения питания, т.к. например на литиевых аккумуляторах обычно указано напряжение 4,2В, но это значение полностью заряженного элемента, а при разряде оно может упасть ниже 3,5В.

2. Диапазон выходного напряжения. Этот параметр показывает в каком диапазоне драйвер может менять выходное напряжение для поддерживания рабочего тока. Обычно указывается в вольтах, но иногда можно встретить и указание того для какого кол-ва светодиодов предназначен драйвер. Эти величины несложно пересчитать друг в друга, зная характеристики светодиодов. Например, для большинства мощных светодиодов падение напряжения составляет около 3В. Т.е. если в характеристиках указан диапазон выходного напряжения 2-4В, то им можно питать только один светодиод, а если 10-24 – то от 4 до 6. На этот параметр следует обратить особое внимание, т.к. в схемах светодиоды включаются последовательно и если выбрать неправильный диапазон выходного напряжения, в лучшем случае светодиоды просто либо не будут светиться вообще, либо не на полную мощность, а в худшем выйдут из строя как светодиоды, так и сам драйвер.

3. Рабочий ток. Этот параметр показывает какой ток драйвер будет пропускать через светодиоды (в случае правильности подключения по предыдущим пунктам). Значение тока следует выбирать исходя из характеристик светодиодов, и не должно превышать максимально допустимого, т.к. это может сказаться на сроке службы светодиодов, а в отдельных случаях приведет в выходу из строя.

Читайте также:  Отражатель света своими руками

4. Мощность. Этот параметр указывается не всегда, т.к. драйвер выдать мощность большую, чем максимально допустимая не сможет в следствии особенности схемотехники.

5. Дополнительные функции. Сюда можно отнести регулировку выходного тока, различные защиты (от повышенного входного напряжения, перегрева). При выборе драйвера желательно выбирать модели с защитой, т.к. это прямо связано с безопасностью, особенно если драйвер находится в труднодоступном месте или рядом с горючими материалами.

Особое внимание следует уделить соотношению входного и выходного напряжений драйвера. И если для AC/DCдрайверов все понятно – там выходное напряжение всегда меньше входного, то для DC/DCвозможны различные варианты. Основываясь на этом можно выделить три группы:
1. Входное напряжение выше выходного. Такие драйверы являются понижающими, т.е стабилизация тока обеспечивается только в этом случае. При падении напряжения ниже чем необходимое для стабилизации тока перестают его стабилизировать.
2. Входное напряжение ниже выходного. В этом случае драйвер преобразует напряжение в повышенное и с помощью него обеспечивает стабилизацию тока. При использовании таких драйверов следует учитывать, что при превышении выходного напряжения входным стабилизация тока прекращается и может превысить допустимые значения.
3. Этот тип объединяет два предыдущих. Такие драйверы являются наиболее универсальными и позволяют работать в наиболее широком диапазоне напряжений, но основной сферой применения является питание светодиодов от литиевых батарей, т.к. рабочее напряжение светодиода может находится в районе 3,8В, а диапазон напряжения одного литиевого элемента в пределах 3,5 – 4,2В, т.е. когда батарея полностью заряжена напряжение необходимо понижать, а при дальнейшем разряде – повышать.

Практика

Случай №1 Подключение без драйвера

Возьмём светодиоды холодного белого свечения 3 Ватт. Вольтаж по нижней границе составляет 3,2V. Соответственно, если подключить последовательно 4 таких светодиода, то суммарное напряжение цепи будет равно 3.2*4= 12,8V , что равно бортовой сети авто (12-13V).
Если необходимо подключить 16 светодиодов. то мы просто делаем 4 параллельные цепочки по 4 последовательных светодиода.

Случай №2 Подключение с драйвером.

Если стоит задача подключить строго определённое количество светодиодов, и набрать ими напряжение равное имеющемуся источнику не представляется возможным, потребуется драйвер. Также драйвер целесообразно использовать, если вы хотите существенно продлить вашим светодиодам жизнь.

Итак, прежде всего, определяемся, где будут использоваться наши светодиоды. Если в машине, то нам потребуется DC/DC драйвер. Если от розетки, то AC/DC.

Подключать мощные светодиоды рекомендуется последовательно, избегая параллельного включения. Также желательно в одной цепи использовать однотипные светодиоды, а в случае невозможности следует выбирать рабочий ток цепи по наиболее маломощному светодиоду. Драйвер, как и сами светодиоды выделяют тепло, поэтому необходимо обеспечивать допустимый тепловой режим работы. Светодиоды необходимо устанавливать на радиаторы размера, соответствующего мощности (рекомендуемые размеры обычно указываются в характеристиках светодиодов), в качестве радиатора может использоваться обычная металлическая пластинка.

На рисунке приведена схема последовательного включения 12-ти трехватных светодиодов к источнику тока с характеристиками 56W, 700mA, PFC.

Данный источник тока имеет входное напряжение в диапазоне 100-240В, а выходное от 40В до 80В, мощность 56Вт и стабилизированный ток – 700мА.

Трехватный светодиод работает на напряжении 3.8В, максимальное напряжение блока на выходе – 80В. Следовательно на данный блок можно подключить максимум 21 трехватный светодиод (80В / 3.8В

21шт) и минимум 11 (40В / 3.8В

11шт). Если на данный блок подключить менее 11 трехватных светодиодов, то они выйдут из строя.

Подключение и установка мощного светодиода на радиатор

Таким образом, исходя из количества и мощности светодиодов, которые нам нужно подключить мы подбираем драйвер.
Ниже приведём для наглядности три примера подключения:

1) Один светодиод 3W или от 1 до 3шт по 1W можно запитать от такого драйвера
2) Светодиод 10W от такого
3) 9 светодиодов по 3 Ватт от такого

Важное замечание! При использовании драйверов стабилизаторы напряжения не требуются т.к. драйвер имеет данную функцию.

Также хотелось бы вновь обратить Ваше внимание на то, что использование драйвера позволяет не использовать резисторы. На фотографиях ниже один и тот же драйвер запитывает 1 светодиод и 3 светодиода.

Правильное подключение светодиодов

На сегодняшний день существуют сотни разновидностей светодиодов, отличающихся внешним видом, цветом свечения и электрическими параметрами. Но всех их объединяет общий принцип действия, а значит, и схемы подключения к электрической цепи тоже базируются на общих принципах. Достаточно понять, как подключить один индикаторный светодиод, чтобы затем научиться составлять и рассчитывать любые схемы.

Распиновка светодиода

Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.

Всего существует 3 надёжных способа определения полярности: визуальный, с помощью мультиметра и путём подключения к источнику напряжения. Каждый из них по-своему уникален и интересен, в связи с чем данная тема вынесена в отдельную статью: «Где плюс, а где минус?»

SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Всегда соблюдайте полярность при подключении светодиода к источнику постоянного напряжения (тока).

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Расчёт ограничительного резистора

Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора. Даже небольшой рост номинального тока приведёт к перегреву кристалла и, как следствие, к снижению рабочего ресурса. Выбор резистора производят по двум параметрам: сопротивлению и мощности. Сопротивление рассчитывают по формуле:

  • U – напряжение питания, В;
  • ULED – прямое падение напряжения на светодиоде (паспортное значение), В;
  • I – номинальный ток (паспортное значение), А.

Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:

R – сопротивление резистора, принятого к установке, Ом.

Более подробную информацию о расчётах с практическими примерами можно получить в статье о расчете резистора для светодиода. А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.

Включение светодиодов от блока питания

Речь пойдёт о блоках питания (БП), работающих от сети переменного тока 220 В. Но даже они могут сильно отличаться друг от друга выходными параметрами. Это могут быть:

  • источники переменного напряжения, внутри которых есть только понижающий трансформатор;
  • нестабилизированные источники постоянного напряжения (ИПН);
  • стабилизированные ИПН;
  • стабилизированные источники постоянного тока (светодиодные драйверы).

Подключить светодиод можно к любому из них, дополнив схему нужными радиоэлементами. Чаще всего в качестве блока питания применяют стабилизированные ИПН на 5 В или 12 В. Данный тип БП подразумевает, что при возможных колебаниях напряжения сети, а также при изменении тока нагрузки в заданном диапазоне напряжение на выходе изменяться не будет. Это преимущество позволяет подключать к БП светодиоды, используя только резисторы. И именно такой принцип подключения реализован в схемах с индикаторными светодиодами. Подключение мощных светодиодов и светодиодных матриц нужно производить через стабилизатор тока (драйвер). Несмотря на их более высокую стоимость, только так можно гарантировать стабильную яркость и продолжительную работу, а также исключить преждевременную замену дорогостоящего светоизлучающего элемента. Такое подключение не требует наличия дополнительного резистора, а светодиод присоединяется непосредственно к выходу драйвера с соблюдением условия:

  • Iдрайвера – ток драйвера по паспорту, А;
  • ILED – номинальный ток светодиода, А.

При несоблюдении условия, подключенный светодиод перегорит от перегрузки по току.

В качестве источника питания можно использовать даже одну пальчиковую батарейку на 1,5 В. Но для этого придётся собрать небольшую электрическую схему, которая позволит повысить напряжение питания до нужного уровня. О том, как это сделать, можно узнать из статьи «Как подключить светодиод от батарейки на 1,5 В».

Последовательное подключение

Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее. Через все элементы схемы течёт ток одинаковой величины:

А падения напряжений суммируются:

Исходя из этого, можно сделать выводы:

  • объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
  • при выходе из строя одного светодиода произойдёт обрыв цепи;
  • количество светодиодов ограничено напряжением БП.

Параллельное подключение

Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор. Формулы для расчёта токов и напряжений примут следующий вид:

Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.

Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в данной статье.

Смешанное включение

Разобравшись со схемами последовательного и параллельного подключения, пришло время комбинировать. Один из вариантов комбинированного подключения светодиодов показан на рисунке.

Кстати, именно так устроена каждая светодиодная лента.

Включение в сеть переменного тока

Подключать светодиоды от БП не всегда целесообразно. Особенно, если речь идёт о необходимости сделать подсветку выключателя или индикатор наличия напряжения в сетевом удлинителе. Для подобных целей достаточно будет собрать одну из простых схем подключения светодиода к сети 220 В. Например, схема с токоограничительным резистором и выпрямительным диодом, защищающим светодиод от обратного напряжения. Сопротивление и мощность резистора вычисляют по упрощённой формуле, пренебрегая падением напряжения на светодиоде и диоде, так как оно на 2 порядка меньше напряжения сети:

Читайте также:  Светосигнальный прибор для энергосберегающей светодиодной лампы

Из-за большой мощности рассеивания (2–5 Вт), резистор часто заменяют неполярным конденсатором. Работая на переменном токе, он как бы «гасит» лишнее напряжение и почти не нагревается.

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного RGB-светодиода расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

Рубрикатор

События

Наши новости

Новости

Подписка на новости

Опрос

Какие лампы Вы используете для домашнего освещения?

Реклама

Теплоотводящие печатные платы для монтажа мощных светодиодов

Закс Мартин (Martin Sachs)

Перевод: Новиков Андрей

За счет постоянного расширения области применения мощных светодиодов, особенно в области светотехники, проблема теплоотвода становится все более актуальной. В статье представлен обзор возможностей для теплоотвода, материалов и правил дизайна, а также приведены конкретные примеры.

Обзор по отводу тепла на печатных платах

Наряду с возможностями теплоотвода с помощью радиаторов, которые, как правило, устанавливаются конечным потребителем вручную после монтажа печатной платы, существует множество методов, предлагаемых производителем печатных плат:

  • Теплопроводящая паста:
    • однокомпонентная паста;
    • нанесение методом трафаретной печати;
    • толщина: 100–500 мкм;
    • применение в комбинации с теплоотводящими сквозными отверстиями (thermal vias);
    • теплопроводность: примерно 2 Вт/м·K;
    • преимущество: не требует больших затрат;
    • недостаток: занимает площадь печатной платы.
  • Печатные платы с толстым слоем меди:
    • толщина медного слоя: от 105 мкм;
    • применение преимущественно в силовой электронике с высокими токами;
    • теплопроводность меди: 400 Вт/м·K;
    • преимущество: отличная теплопроводность;
    • недостаток: ограничение по минимальной толщине проводников.
  • Печатные платы IMS (изолированные металлические подложки).

Изолированные металлические подложки (IMS)

Два термина всегда используются в связи с теплоотводом и печатными платами: теплопроводность и тепловое сопротивление.

Теплопроводность описывает способность материала транспортировать тепло (энергию) и зависит от плотности материала, переносящего энергию. В таблице 1 представлены значения теплопроводности для материалов, которые обычно используются при изготовлении печатных плат.

Таблица 1. Теплопроводность материалов печатных плат

0,2

0,02

220

400

Материал — переносчик энергииТеплопроводность, Вт/м•K
FR4
Воздух
Алюминий
Медь
Спец. препреги≥1

Материалы с теплопроводностью ниже 0,8 Вт/м·K считаются термоизоляторами. Так как печатная плата состоит из различных материалов, невозможно указать конкретное значение ее теплопроводности.

Для описания качества теплопроводности часто используется значение теплового сопротивления Rth (1). Это значение может быть определено на основе толщины слоя материала d, контактной площади A и теплопроводности λ:

Таким образом может быть рассчитано тепловое сопротивление каждого материала печатной платы. Общее сопротивление печатной платы IMS — это сумма отдельных сопротивлений:

Из этого следует, что чем тоньше слой материала и чем лучше теплопроводность, тем, соответственно, ниже тепловое сопротивление.

Отвод тепла с помощью металлического основания платы

В печатных платах этого типа вместо обычного базового материала используется металлическое основание или сердцевина из алюминия или меди. На это основание с помощью препрега закрепляется медная фольга. Металлическое основание является, таким образом, неотъемлемой частью печатной платы (рис. 1).

Рис. 1. Печатная плата IMS: a) конструкция односторонней платы; б) шлиф

При этом возможны следующие варианты таких плат:

  • односторонняя плата с глухими отверстиями;
  • двусторонняя плата с глухими и сквозными отверстиями;
  • многослойная плата;
  • жестко-гибкая плата.

Общие правила проектирования приведены в таблице 2 и на рис. 2.

Рис. 2. Схема конструкции: а) односторонняя плата с металлическим основанием; б) двусторонняя плата с металлической сердцевиной

Таблица 2. Параметры для проектирования печатных плат с металлической сердцевиной

Толщина металлической сердцевиныdKern = 0,5–2 мм
Толщина медной фольгиdCu = 35–105 мкм
Толщина препрегаdIsolation

0,06–0,15 мм*

Минимальный диаметр металлизированного отверстия печатной платыddk ≥ 0,3 мм**
Минимальный диаметр неметаллизированного отверстия печатной платыdndk ≥ 1 мм**
Минимальный диаметр отверстия в металлическом основанииdmin ≥ 1 мм**
Расстояние между двумя металлизированными отверстиямиa ≥ 1,2 мм**
Минимальная фрезаdf ≥ 1,6 мм**
Цвет паяльной маскиЗеленый, белый, черный
Финишные покрытияHAL, HAL бессвинцовый, OSP, химический Ni/Au, химическое Sn***

Примечания. * Толщина препрега зависит от размера отверстий (в двусторонних печатных платах IMS), которые должны быть заполнены.
** Зависит от толщины металлического основания.
*** Покрытие «химическое олово» принципиально не рекомендуется.

Примеры печатных плат с металлическим основанием различных конструкций

Надежность сквозного соединения может быть дополнительно повышена за счет его заполнения после сверления специальной пастой, а не избытком смолы препрега (рис. 3, 4).

Рис. 3. Односторонняя плата с металлическим основанием: а) жесткая печатная плата (топология CREE); б) специализированное применение; в) конечный продукт

Рис. 4. Двусторонняя плата с основанием из алюминия: a) фрагмент; б) шлиф; в) шлиф сквозного отверстия

Отвод тепла через металлическую подложку

При отводе тепла через металлическую подложку печатные платы изготавливаются как обычно, после чего они крепятся к подложке с помощью препрегов. Металлическая подложка является, таким образом, неотъемлемой частью печатной платы (рис. 5).

Рис. 5. Плата с металлической подложкой: a) конструкция; б) шлиф

Правила проектирования приведены в таблице 3 и на рис. 6.

Рис. 6. Схема конструкции платы с металлической подложкой

Таблица 3. Параметры для проектирования печатных плат с металлической подложкой

Толщина металлической подложкиdTräger = 0,5–2 мм
Толщина медной фольгиdCu = 35–105 мкм
Толщина препрегаdIsolation

0,06–0,15 мм

Толщина печатной платыdFR4 как можно тоньше (0,1–0,3 мм)
Минимальный диаметр отверстия в металлической подложкеdmin ≥ 1 мм*
Минимальная фрезаdf ≥ 1,6 мм*
Цвет паяльной маскиБез ограничения
Финишные покрытияБез ограничения

Примечание. * В зависимости от толщины металлической подложки.

При этом возможны следующие варианты конструкций таких плат:

  • односторонняя плата с глухими отверстиями (нецелесообразно);
  • двусторонняя плата с глухими и сквозными отверстиями;
  • многослойная плата;
  • жестко-гибкая плата;
  • различные контуры печатных плат/подложек (рис. 7).

Для улучшения теплоотвода вместо FR4 может быть использован другой базовый материал с более высокой теплопроводностью. При использовании различных контуров печатной платы и металлической подложки последняя должна превышать размеры печатной платы как минимум с двух сторон для осуществления точного монтажа платы (рис. 8).

Рис. 7. Фрагмент печатной платы с металлической подложкой с различными контурами

Рис. 8. Расположение печатной платы: a) правильно; б) неправильно

Области применения печатных плат IMS:

  • Высокомощные светодиоды.
  • Силовая электроника.
  • Распределительные устройства.

Заключение

Представим некоторые важные рекомендации для оценки стоимости плат, изготовленных по технологии IMS, и по материалам, а также покажем преимущества и недостатки этой технологии.

Факторы, определяющие увеличение издержек:

  • Толщина металлического основания или подложки (стоимость сырьевого материала).
  • Толщина медной фольги (стоимость сырьевого материала).
  • Количество высверленных отверстий (износ инструмента).
  • Количество фрезированных структур (износ инструмента).
  • Печатные платы с металлической сердцевиной или основанием и препрегами FR4.
  • Печатные платы с металлической сердцевиной или основанием и препрегами ≥ 1 Вт/м·K.
  • Печатные платы с Berquist Thermal Clad (только односторонние печатные платы).

Преимущества печатных плат с металлическим основанием:

  • Сплошное соединение печатной платы и металлического субстрата.
  • Хороший теплоотвод.
  • Возможны контуры печатной платы и подложки, отличающиеся друг от друга.
  • Высокая механическая стабильность.
  • Нет необходимости в дополнительном отводе тепла.

Недостатки печатных плат с металлическим основанием:

  • Ограниченная степень интеграции.
  • На печатных платах с металлической подложкой возможен только односторонний монтаж поверхностных компонентов.
  • Высокая стоимость.
  • Большой вес.
  • Необходимы специальные знания для процесса изготовления (температурные режимы / предварительный нагрев).

Общие рекомендации

Рекомендации по теплопроводности и тепловому сопротивлению

Чем меньше эпоксидной смолы, тем лучше тепловое сопротивление. Для уменьшения сопротивления и улучшения теплопроводности используются смолы со специальными наполнителями. Однако это идет в ущерб адгезии: чем меньше эпоксидной смолы, тем хуже сцепление. Особенно важно учитывать это в процессах бессвинцовой пайки. В этом случае необходим разумный компромисс.

Рекомендации по толщине медной фольги

В печатных платах с металлической сердцевиной следует использовать медную фольгу не тоньше 70 мкм. Таким образом улучшается горизонтальный транспорт тепла, что приводит к лучшему охлаждению электронного компонента через печатную плату.

Примечание. Оригинал статьи опубликован в журнале PLUS (Produktion von Leiterplatten und Systemen. 2010. № 9. Германия).

Другие статьи по данной теме:

Если Вы заметили какие-либо неточности в статье (отсутствующие рисунки, таблицы, недостоверную информацию и т.п.), просьба сообщить нам об этом. Пожалуйста укажите ссылку на страницу и описание проблемы.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector