Объект string в arduino и команды через последовательный порт

Содержание

Работа с последовательным портом UART (serial) на Arduino

Последовательный интерфейс (serial) предназначен передачи данных через универсальный асинхронный порт UART. Порт UART очень часто используется для передачи данных с Ардуино на компьютер, и обратно, а также для связи нескольких плат ардуин между собой.

Для многопортовых DUE/MEGA см. здесь.

Основные функций для работы с последовательным портом (Serial)

Serial.begin(rate) — Открывает последовательный порт и задаёт скорость для последовательной передачи данных. Типичная скорость обмена для компьютерной коммуникации — 9600.

Очевидно, когда задействован последовательный порт, выводы 0 (RX) и 1 (TX) не могут использоваться для других целей.

Serial.println(data) — Передаёт данные в последовательный порт, сопровождая автоматическим возвратом каретки и переходом на новую строку.

Serial.print(data) — тоже самое без возврата каретки и перехода на новую строку.

Serial.begin(скорость_передачи); — Инициализация порта. Задает скорость передачи в битах в секунду. Нормированные скорости: 300, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, или 115200.

count = Serial.available(); — Принимаемые по последовательному порту байты попадают в буфер микроконтроллера, откуда Ваша программа может их считать. Функция возвращает количество накопленных в буфере байт. Последовательный буфер может хранить до 128 байт.

char = Serial.read(); — Считывает следующий байт из буфера последовательного порта. возвращает -1 если нет входящих данных

Serial.flush(); — Ожидает окончания передачи исходящих данных (до версии Arduino 1.0 функция очищала буфер последовательного соединения)..

Разные варианты функции print:

Serial.print(b, DEC); — выводит ASCII-строку — десятичное представление числа b.

Serial.print(b, BYTE) — выводит младший байт числа b.

(аналогично HEX, OCT, BIN).

Serial.print(str) // если str — строка или массив символов, побайтно передает str на COM-порт.

Serial.println(); — отличие заключается в том, что после данных дополнительно выводятся два символа – символ возврата каретки (ASCII 13, или ‘r’) и символ новой линии (ASCII 10, или ‘n’).

Функция write:

Serial.write(uint8_t c); — Записывает данные в последовательный порт. Данные посылаются как байт или последовательность байт.

Serial.write(val); // где val — переменная для передачи, как единственный байт

Serial.write(str); // где str — строка для передачи, как последовательность байт

Serial.write(buf, len); // где buf — массив для передачи, как последовательность байт; len — длина массива.

Пример 1. Передача данных по Serial-порту с Arduino на компьютер

Инициализация порта со скоростью 9600 бот и передача данных (от Arduino на внешние устройства, например на компьютер):

Пример 2. Передача данных по Serial-порту с компьютера на Arduino

serialEvent() — функция вызывается автоматически, когда поступают данные.

Serial.setTimeout() — задает максимальное время (в мс) для работы Serial.readBytesUntil();

Возможные проблемы

1) auto-reboot DTR : возможна автоперезагрузка МК при передаче на него данных по serial-пору. Чтобы отключить это, надо поставить конденсатор 10мкФ между RES и GND. Я ставил электролитический кондер (естественно, + на RES).

Как соединить две ардуины по UART (serial) порту

Схема соединения двух ардуин:

Длина провода и скорость: RS-232 (англ. Recommended Standard 232) — стандарт физического уровня для асинхронного интерфейса (UART).

Расстояние связи по RS232 максимум 15 метров.

Но всё зависит от скорости.

Работа Arduino MEGA/DUE с несколькими последовательными serial портами

Многопортовые ардуино.

Как вы уже заметили, на ардуиновских платах Mega и Due имеется по 4 последовательных порта, а именно:

Serial — выводы 0 (RX) and 1 (TX);

Serial1 — выводы 19 (RX) and 18 (TX);

Serial2 — выводы 17 (RX) and 16 (TX);

Serial3 — выводы 15 (RX) and 14 (TX).

Естественно, что на Due используется напряжение 3.3 В (на MEGA как обычно 5 В).

Как с ними работать?

Здесь синим цветом выделены собственно имена объектов ( Serial , Serial1 , Serial2 , Serial3 ), которые используются в коде программы для работы с их методами. Всё просто! Например,

Пример вывода на дисплей LCD1602 через последовательный порт UART Arduino из-под Linux средствами языка Python

Короче говоря, есть комп с линуксом, к которому подключена Arduino через USB, а к арудине подключен дисплей LCD1602, и мы хотим на него выводить инфу.

Сначала привожу полный код программы для Arduino UNO, к которой подключен дисплей LCD1602:

Я сделал здесь решетку ‘#’ в качестве символа завершения передачи пакета данных. Как только в потоке данных встречается символ #, данные выводятся на дисплей, и буфер обнуляется, при этом сам символ ‘#’ не выводится. Конечно, можно было бы использовать ‘n’ или др.

Далее мы напишем скрипт на Python, который будет выводить инфу на дисплей. Я выбрал Python, потому что это прикладной язык и он лучше всего подходит для подобных задач. С такими языками как C++/C# и т.п. больше возни с библиотеками, а здесь всё просто, особенно если это дело происходит под линуксом.

Первым делом устанавливаем необходимые библиотеки (для 2-ой или 3-ей версии python)

$sudo apt-get install python-serial

$sudo apt-get install python3-serial

Далее в интерпретаторе python пишем:

Здесь ардуина у меня подключена к порту /dev/ttyUSB0 — это я узнавал из Arduino IDE. Обычно она всегда на этом порту сидит, если других устройств на последовательный порт не подключено.

Как вы уже догадались, и в первой, и во второй программы должна быть указано одинаковая скорость в бодах. В моем случае это 9600 — стандартная, хотя и маленькая скрость. Может быть и больше (читай выше).

Arduino – Serial – последовательный порт

Каждая платформа Arduino имеет, по крайней мере, один последовательный порт, который обеспечивает передачу данных от микроконтроллера и обратно.

В Arduino IDE имеется терминал, который можно использовать для отображения данных, отправленных через последовательный порт из Arduino, а также отправлять данные обратно в Arduino.

Arduino UNO имеет один аппаратный последовательный порт, подключенный к порту USB. Arduino MEGA имеет три дополнительных последовательных порта, которые можно использовать для своих целей.

Мы ссылаемся на отдельные последовательные порты через последовательные объекты. Во всех системах Arduino реализован объект Serial, который отвечает за передачу данных через первый доступный последовательный порт. В Arduino MEGA дополнительно реализован Serial1, Serial2, Serial3. Все приведенные ниже примеры для Serial также относятся и к Serial1, Serial2 и Serial3.

Функция Serial.begin()

Основным элементом при использовании последовательной передачи данных, является инициализация последовательного порта. Нам необходимо определить скорость передаваемой информации, а также параметры порта. Скорость передачи данных определяется бодами, то есть битами в секунду. Параметры порта определяются количеством переданных битов, четностью и стоп-битами.

Чтобы установить параметры передачи, мы используем функцию Serial.begin(), которая принимает один или два параметра. Первым параметром является скорость передачи данных, второй параметр – параметр порта. Ниже приведен пример использования метода Serial.begin():

Как вы можете видеть в приведенном выше примере, мы можем инициализировать последовательный порт, используя один или два аргумента. Если второй аргумент не задан, то система по умолчанию устанавливает значение 8N1 (8 бит данных, без четности, 1 стоповый бит).

Стандартная скорость передачи данных составляет: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600 или 115200. Кроме того, можно задать свою скорость передачи (путем указания ее значения). Допустимыми параметрами порта являются:

  • SERIAL_5N1
  • SERIAL_6N1
  • SERIAL_7N1
  • SERIAL_8N1 (по умолчанию)
  • SERIAL_5N2
  • SERIAL_6N2
  • SERIAL_7N2
  • SERIAL_8N2
  • SERIAL_5E1
  • SERIAL_6E1
  • SERIAL_7E1
  • SERIAL_8E1
  • SERIAL_5E2
  • SERIAL_6E2
  • SERIAL_7E2
  • SERIAL_8E2
  • SERIAL_5O1
  • SERIAL_6O1
  • SERIAL_7O1
  • SERIAL_8O1
  • SERIAL_5O2
  • SERIAL_6O2
  • SERIAL_7O2
  • SERIAL_8O2

Если вам не нужно менять способ отправки данных, мы рекомендуем вам оставить параметры по умолчанию. Однако бывают ситуации, когда требуется внести изменения в настройки для приема данных с другого устройства или для передачи данных куда-то в определенном формате.

Насколько важно определить параметры и скорость последовательного порта, мы рассмотрим на следующем примере:

При запуске терминала Arduino IDE мы увидим, что вместо передаваемого текста «test» мы получим непонятный набор символов. Теперь давайте немного изменим программу:

При загрузке исправленного варианта программы в терминале должно отображаться два раза в секунду ожидаемое слово «test».

Теперь измените в терминале скорость передачи данных с 9600 на 19200 бит/с (в правом нижнем углу). Опять же, мы увидим непонятный набор символов вместо «test». Как вы можете видеть, для правильной работы необходима установка идентичных параметров передачи данных.

Функции Serial.print() и Serial.println()

Функция Serial.print() позволяет отправлять информацию через последовательный порт. Можно отправлять как текстовые, так и переменные значения или непосредственно числа. Данные отправляются в кодировке ASCII. Это означает, что число, например, 12, будет отправлено как два символа 1 и 2. Вот типичный синтаксис Serial.print():

Мы отправляем отдельные символы, заключая их в апострофы. Тексты размещаем в двойных кавычках. Числа без кавычек. Можно преобразовать числа в соответствующий формат — по умолчанию установлен десятичный формат.

Вариантом Serial.print() является функция Serial.println(), который отличается добавлением символа конца строки в конце сообщения. В следующем примере показаны различия в использовании этих двух функций:

Функция Serial.write()

В отличие от Serial.print() и Serial.println(), функция Serial.write() позволяет отправлять один байт информации (число). Ниже приведен синтаксис Serial.write():

Примеры использования Serial.write():

Как вы можете видеть в данном примере, при отправке числа 65 с помощью Serial.print() в терминале получим два символа 6 и 5, а отправка числа 65 с использованием Serial.write() в терминале будет интерпретироваться как код ASCII 65, т.е «А».

Функция Serial.available()

Функция Serial.available() позволяет проверить, можно ли прочитать данные из последовательного порта. Arduino имеет 64-байтовый буфер последовательного порта. Функция вызывается без параметров, возвращает количество доступных для чтения байт. Serial.available() позволяет исполнить часть программы, которая считывает данные из последовательного порта только при их появлении. Примеры использования Serial.available():

Читайте также:  Осветительные приборы для дома

В первом примере показано использование условия (if) для проверки доступных данных, и если данные прочитаны, выполняется фрагмент кода. Этот синтаксис, помещенный в функцию loop(), не блокирует его выполнение.

Во втором примере программа будет остановлена ​​до тех пор, пока в буфере не появляться данные, прочитанные из последовательного порта. Ниже приведено практическое использование Serial.available():

Программа проверяет, поступили ли данные из последовательного порта. Если в буфере содержится информация, то программа проверяет, сколько байтов поступило и отправляет эту информацию на терминал.

Когда вы запустите программу и включаете терминал, то изначально не увидите никакой информации. После ввода текста или числа и отправки через терминал, Arduino начнет циклично отправлять количество символов, доступных в буфере последовательного порта.

Функция serialEvent()

Функция serialEvent() — это специальная функция, такая же, как loop() или setup(), которая вызывается в тот момент, когда в буфер последовательного порта попадет информация. Она позволяет выполнять действия независимо от текущего выполнения кода. Как правило, эта функция содержит инструкции для чтения данных из последовательного порта. Пример использования serialEvent() приведен ниже:

ВНИМАНИЕ. В соответствии с документацией Arduino данная функция не поддерживается в системах Esplora, Leonardo и Micro.

Функция Serial.read()

Данные из буфера последовательного порта считываются при помощи функции Serial.read(). Она извлекает один байт данных, уменьшая количество доступной информации в буфере. Ниже приведен пример использования Serial.read():

Вышеуказанная программа считывает данные из последовательного порта и отправляет их на терминал. Существует два способа интерпретации данных. В первом случае байт, считанный с порта, рассматривается как число. Терминал отобразит соответствующий символ ASCII, во втором случае прочитанный байт рассматривается как код ASCII. Когда вы запустите программу и введете букву «a» в первом случае, вы получите код «97», а во втором букву «a».

Функция Serial.readBytes()

Функция Serial.readBytes() позволяет читать большее количество байтов из последовательного порта и помещать данные в буфер. Функция Serial.readBytes() завершит работу в момент, когда будет прочитано соответствующее количество байтов или истечет установленное время. Синтаксис Serial.readBytes() показан ниже:

Функция возвращает количество байтов, считанных в буфере или ноль, если данных нет.

Функция Serial.readBytesUntil()

Функция Serial.readBytesUntil() считывает данные из последовательного буфера в массив. Функция завершит работу, когда истечет время, либо обнаружит терминальный символ, либо считает данные указанной длинны. Синтаксис Serial.readBytes() показан ниже:

Функция возвращает количество байтов, считанных в буфере, или ноль, если данных нет.

Функция Serial.setTimeout()

Функция Serial.setTimeout() позволяет задать время ожидания данных из последовательного порта для Serial.readBytes() и Serial.readBytesUntil(). По умолчанию установлено 1000 мс (1 сек).

Ниже приведен пример использования Serial.readBytes(), Serial.readBytesUntil() и Serial.setTimeout():

В первой части вышеприведенного примера будут прочитаны четыре байта данных, при условии, что эта операция будет выполнена в течение 10 секунд. Во второй части, помимо этого, чтение может быть прервано, когда в буфере появляется конкретный код (здесь код определен как «X»).

Функции Serial.find() и Serial.findUntil()

Функция Serial.find() считывает содержимое буфера в поисках конкретной строки. Функция возвращает true, когда строка найдена и false, когда данные не найдены. Ниже приведен пример кода программы:

В данном примере программа считывает данные из буфера и когда полученные данные соответствуют строке поиска (test), то отображается сообщение (ok).

Serial.find() ожидает данные в течение времени, определенного с помощью функции Serial.setTimeout(). В случаях, когда в буфере имеется большое количество данных, то их можно обработать почти мгновенно. Когда же буфер пуст, функция ожидает следующую порцию данных в течение некоторого времени и заканчивается, возвращая соответствующее значение.

Serial.findUntil() — это вариант Serial.find(), который отличается от предшественника дополнительным аргументом, позволяющим прервать загрузку буфера последовательного порта. Пример синтаксиса показан ниже:

Функция будет считывать данные из последовательного порта, пока не будет найдена строка поиска (text) или прочитан символ «K», или пока не пройдет определенное время (по умолчанию – 1 секунда).

UART — Универсальный Асинхронный Приёмопередатчик

Общие сведения:

Универсальный асинхронный приёмопередатчик (Univsersal Asynchronos Reciever-Transmitter) — это физическое устройство приёма и передачи данных по двум проводам. Оно позволяет двум устройствам обмениваться данными на различных скоростях. В спецификацию UART не входят аналоговые уровни на которых ведётся общение между устройствами, UART это протокол передачи единиц и нулей, электрическую спецификацию на себя берут другие стандарты, такие как TTL (transistor-transistor logic — транзисторно-транзисторная логика), RS-232, RS-422, RS-485 и другие (RS [англ.recommended standard] — рекомендованный стандарт). На данный момент в микроконтроллерах используется в основном TTL (или точнее CMOS) UART для соединения не более двух устройств. В наших примерах мы часто называем его последовательным портом.

Подключение:

У каждого устройства, поддерживающего UART обычно обозначены два вывода: RX и TX. TX — означает transmit (передаю), RX — receive (принимаю). Отсюда становится понятно что RX одного устройства нужно подключать к TX другого. Если Вы подключите RX одного устройства к RX другого, то оба устройства будут слушать друг друга, вы соединили их входы. Если соединить TX и TX — это уже более опасно, это выходы низкого сопротивления устройств и если на одном будет логическая единица, а на втором ноль — по проводу пойдёт ток короткого замыкания (это зависит от конкретной программной или аппаратной реализации). Хотя в современных чипах от этого есть защита, на всякий случай, не стоит на неё ориентироваться. Так же необходимо объединить референсные уровни двух устройств (GNDGND), если не подразумевается гальваническая развязка.

Пример соединения двух UNO:

UART на Arduino:

На Arduino и Arduino-совместимых платах аппаратный UART обозначается символами RX и TX рядом с соответствующими выводами. На Arduino UNO/Piranha UNO это 0 и 1 цифровые выводы:

Arduino UNO/Piranha UNO

В скетче инициализируется функцией begin() в коде функции setup():

Пример:

Piranha ULTRA

На Piranha ULTRA присутствуют два аппаратных UART. Один на тех же выводах, что и UNO, второй на 8 (RX) и 9 (TX) выводах:

В Arduino IDE второй аппаратный UART называется Serial1 (Сериал один), и инициализируется так же как и первый:

Простой пример для копирования буфера первого UART’а во второй и наоборот:

Arduino MEGA

У Arduino MEGA, помимо UART’a на цифровых выводах 0 и 1 как и у UNO, присутствуют ещё три аппаратных UART. На плате это выводы 19 (RX1), 18 (TX1), 17 (RX2), 16 (TX2) и 15 (RX3), 14 (TX3) соответственно. UART совместимый по расположению с UNO обозначен RX0, TX0:

На заметку: На многих Arduino и Arduino-совместимых платах UART0 используется для загрузки скетчей, так что если Ваш скетч не загружается, проверьте эти выводы. Во время загрузки скетча к ним ничего не должно быть подключено.

Отладка проектов при помощи UART

В совокупности с монитором последовательного порта UART может быть очень полезен для отладки кода. Например, если не понятно доходит ли Ваш код до определённого места или какие значения принимает переменная, можно вызвать функцию println() и вывести значение переменной или какое-нибудь сообщение в монитор порта. В Arduino IDE монитор порта находится в меню Инструменты -> Монитор порта, так же его можно вызвать нажав пиктограмму лупы в правом верхнем углу главного окна Arduino IDE или вызвать с клавиатуры комбинацией клавиш Ctrl+Shift+M. Перед вызовом монитора порта необходимо выбрать порт с которым Вы хотите работать. Сделать это можно в меню Инструменты -> Порт.

Для удобства отладки можно указать директивы препроцессора языка Си #define , #ifdef , #ifndef

Пример:

Программный UART на Arduino

Помимо аппаратного UART в Arduino можно использовать программный. Программный порт хорошо подходит для простых проектов, не критичных к времени работы кода или для отладки проектов, позволяя не отключать модули использующие UART во время загрузки сетчей. При его использовании нужно лишь помнить что никакой другой код не может выполняться пока программа занимается считыванием данных из него и передача может осуществляться только в полудуплексном или симплексном режимах. Так же на программный RX можно назначать только те выводы, которые поддерживают прерывание по смене уровней. На UNO, например, это все цифровые выводы, кроме 13-го. Прежде чем собирать свой проект, проконсультируйтесь с инструкцией к конкретной плате.

Пример использования программного порта:

Далее к программному порту нужно обращаться через объект mySerial . Например: mySerial.write(data); .

UART на Raspberry Pi:

На Raspberry Pi UART находится на выводах колодки 8 — TX (GPIO14) и 10 — RX (GPIO15)

Перед работой с последовательным портом необходимо его включить. Сделать это можно из эмулятора терминала командой sudo raspi-config -> Interfacing options -> Serial -> No -> Yes -> OK -> Finish или из графической среды в главном меню -> Параметры -> Raspberry Pi Configuration -> Interfaces -> Serial Port

Пример работы с последовательным портом на Python:

Данный пример выводит строку «iArduino.ru» в последовательный порт Raspberry и ждёт данных из последовательного порта.

Подробнее о UART:

Параметры

При обозначении параметров UART принято использовать короткую запись ЦИФРАБУКВАЦИФРА

  • ЦИФРА — количество бит в кадре
    • от 5 до 9 бит. Обычно 8.
  • БУКВА — наличие и тип бита чётности
    • N — None (Отсутствует) без бита чётности
    • E — Even (Чётный). Проверка данных на чётность. Перед стоп-битом в кадр добавляется бит: 0 если в кадре было нечётное количество единиц, 1 — если чётное.
    • O — Odd (Нечётный). Проверка данных на нечётность. Перед стоп-битом в кадр добавляется бит: 1 если в кадре было нечётное количество единиц, 0 — если чётное.
  • ЦИФРА — длительность стоп-бита
    • 1, 1.5, 2. Продолжительность стоп-бита (1, 1.5 или 2 битовых интервала)

Таким образом, стандартные настройки в Arduino: 8-N-1

Кадрирование данных

При приёме-передаче данных каждое устройство ориентируется на своё внутреннее тактирование. Обычно это тактирование от 8 до 16 раз быстрее скорости передачи данных и обычно отсчитывается от стартового бита. Именно поэтому необходимо чтобы оба устройства были настроены на одну и ту же скорость передачи.

Так же при передаче данных присутствуют синхронизирующие биты, именуемые старт-бит и стоп-бит. Старт-бит сигнализирует о начале передачи данных и стоп-бит, соответственно об окончании.

Рассмотрим кадр данных:

При разговорах о серийный протоколах принято использовать такие слова как кадр и пакет. Кадр — интервал от старт-бита до стоп-бита. Пакет — количество кадров полезных данных. При этом не стоит путать кадр и байт: байт — это только сами данные, не включающие в себя синхронизирующие и проверочные биты.

Старт-бит:

При отсутствии передачи линия удерживается в состоянии логической единицы (в случае TTL Arduino это 5 вольт или Vcc). Как только передающее устройство притягивает линию к 0 (GND или 0 вольт в случае Arduino), это сигнализирует принимающему устройству о том что сейчас будет передача данных.

Данные:

При появлении старт-бита на линии принимающее устройство начинает отсчитывать время в соответствии с установленной скоростью и считывать состояния линии через определённые промежутки времени в соответствии с установленным количеством бит данных, после этого.

Стоп-бит:

По завершении передачи данных принимающее устройство ожидает стоп-бит, который должен быть на уровне логической единицы. Если по завершении кадра удерживается логический ноль, значит данные неверны. Если логический ноль удерживается время, превышающее длину кадра в 1,5 раза, такое состояние именуется break (разрыв линии, исторически пошло от устройств, использующих токовую петлю для передачи данных). Некоторые передатчики вызывают это состояния специально перед посылкой пакета данных. Некоторые приёмники считают такое состояние за неправильно выставленную скорость и сбрасывают свои настройки на установки «по умолчанию».

Читайте также:  При последовательном соединении мощность лампы накаливания

Скорость передачи данных

Скорость изменения логических уровней (импульсов) на линии принято измерять в бодах. Единица измерения названа так в честь французского изобретателя Жана Мориса Эмиля Бодо.

Скорость при использовании UART может быть любой, единственное требование — скорости передающего и принимающего должны быть одинаковы. Стандартная скорость UART принята за 9600 бод. Arduino без проблем и лишних настроек может принимать и передавать данные на скоростях до 115200 бод.

Так как при передаче данных присутствуют синхронизирующие биты, именуемые старт-бит и стоп-бит, не совсем корректно говорить, что скорость 9600 бод равна 9600 битам в секунду. Если речь идёт о полезных данных, то реальная скорость на 20% ниже. Например, если выставлены параметры 8-N-1 и 9600 бод, то на передачу одного байта уходит десять бит, и 9600/10 = 960 байт, что равно 7680 битам в секунду.

Методы связи

UART позволяет одновременно передавать и принимать данные, однако не всегда это возможно или нужно. Например, если Вам нужно только получать не критические данные (которые можно проверить следующим пакетом, например расстояние, посылаемое лидаром каждые несколько сотен миллисекунд) от цифрового датчика или любого другого устройства и не нужно ничего передавать, такой метод называется симплексным. Всего различают три метода связи:

  • Полнодуплексная — когда ведущий и ведомый могут одновременно принимать и передавать (одновременная передача в обе стороны)
  • Полудуплексная — когда ведущий и ведомый поочерёдно принимают и передают (Поочерёдная передача в обе стороны)
  • Симплексная — когда ведущий или ведомый только передают (Передача в одну сторону)

Arduino String – работа со строками в ардуино

Arduino String – основная библиотека для работы со строками в ардуино. С ее помощью существенно упрощается использование массивов символов и строк в скетче. Объект типа String содержит множество полезных функций для создания и объединения строк, преобразований string to int (парсинг чисел) и int to string (форматирование чисел). Строки используются практически в любых проектах, поэтому и вероятность встретить String в скетче очень высока. В этой статье мы постараемся рассмотреть основные методы этого класса и наиболее часто возникающие ситуации.

Для чего нужен String в ардуино

Стандартным способом работы со строками в языке C является использование массива символов. Это все означало необходимость работы с указателями и понимания адресной арифметики. В ардуино и C++ у программистов появилось гораздо больше возможностей. Все “низкоуровневые” операции по работе со строкой выделены в отдельный класс, а для основных операций даже переопределены операторы. Например, для объединения срок мы просто используем хорошо знакомый знак “+”, а не зубодробильные функции типа malloc и strcpy. С помощью String мы работаем со строкой как с целым объектом, а не рассматриваем его как массив символов. Это позволяет сосредоточиться на логике скетча, а не деталях реализации хранения символов в памяти.

Естественно, у любого “упрощения” всегда есть свои подводные камни. String всегда использует больше оперативной памяти и в некоторых случаях функции класса могут медленнее обрабатываться. Поэтому в реальных больших проектах придется тщательно взвешивать все плюсы и минусы и не забывать, что никто не мешает нам работать со строками в стиле С. Все обычные функции обработки массивов char остаются в нашем арсенале и в arduino.

Создание строк в ардуино с помощью String

В ардуино у нас есть несколько способов создать строку, приведем основные:

  • char myCharStr [ ] = “Start”; – массив типа char с завершающим пустым символом;
  • String myStr = “Start”; – объявляем переменную, создаем экземпляр класса String и записываем в него константу-строку.
  • String myStr = String(“Start”); – аналогичен предыдущему: создаем строку из константы
  • String myStr(myCharStr); – создаем объект класса String с помощью конструктра, принимающего на вход массив типа char и создающего из char String.
  • String myStr = String(50); – создаем строку из целого числа (преобразование int to string).
  • String myStr = String(30, H); – создаем строку – представление числа в 16-чной системе (HEX to String)
  • String myStr = String(16, B); – создаем строку – представление числа в двоичной системе (Byte to String).

Каждый раз, когда мы объявляем в коде строку с использованием двойных кавычек, мы создаем неявный объект класса String, являющийся константой. При этом обязательно использование именно двойных кавычек: “String” – это строка. Одинарные кавычки нужны для обозначения отдельных символов. ‘S’ – это символ.

Функции и методы класса String

Для работы со строками в String предусмотрено множество полезных функций. Приведем краткое описание каждой из них:

  • String() – конструктор, создает элемент класса данных string. Возвращаемого значения нет. Есть множество вариантов, позволяющих создавать String из строк, символов, числе разных форматов.
  • charAt() возвращает указанный в строке элемент. Возвращаемое значение – n-ный символ строки.
  • compareTo() – функция нужна для проверки двух строк на равенство и позволяет выявить, какая из них идет раньше по алфавиту. Возвращаемые значения: отрицательное число, если строка 1 идет раньше строки 2 по алфавиту; 0 – при эквивалентности двух строк; положительное число, если вторая строка идет раньше первой в алфавитном порядке.
  • concat() – функция, которая объединяет две строки в одну. Итог сложения строк объединяется в новый объект String.
  • startsWith() – функция показывает, начинается ли строка с символа, указанного во второй строке. Возвращаемое значение: true, если строка начинается с символа из второй строки, в ином случае false.
  • endsWith() – работает так же, как и startsWith(), но проверяет уже окончание строки. Также возвращает значения true и false.
  • equals() – сравнивает две строки с учетом регистра, т.е. строки «start» и «START» не будут считаться эквивалентными. Возвращаемые значения: true при эквивалентности, false в ином случае.
  • equalsIgnoreCase() – похожа на equals, только эта функция не чувствительна к регистру символов.
  • getBytes() – позволяет скопировать символы указанной строки в буфер.
  • indexOf() – выполняет поиск символа в строке с начала. Возвращает значение индекса подстроки val или -1, если подстрока не обнаружена.
  • lastIndexOf() –выполняет поиск символа в строке с конца.
  • length() – указывает длину строки в символах без учета завершающего нулевого символа.
  • replace() – заменяет в строке вхождения определенного символа на другой.
  • setCharAt() – изменяет нужный символ в строке.
  • substring() – возвращает подстроку. Может принимать два значения – начальный и конечный индексы. Первый является включительным, т.е. соответствующий ему элемент будет включаться в строку, второй – не является им.
  • toCharArray() – копирует элементы строки в буфер.
  • toLowerCase() – возвращает строку, которая записана в нижнем регистре.
  • toUpperCase() – возвращает записанную в верхнем регистре строку.
  • toInt() – позволяет преобразовать строку в число (целое). При наличии в строке не целочисленных значений функция прерывает преобразование.
  • trim() – отбрасывает ненужные пробелы в начале и в конце строки.

Объединение строк Arduino

Объединить две строки в одну можно различными способами. Эта операция также называется конкатенацией. В ее результате получается новый объект String, состоящий из двух соединенных строк. Добавить к строке можно различные символы:

  • String3 = string1 + 111; // позволяет прибавить к строке числовую константу. Число должно быть целым.
  • String3 = string1 + 111111111; // добавляет к строке длинное целое число
  • String3 = string1 + ‘А’; // добавляет символ к строке
  • String3 = string1 + “aaa”;// добавляет строковую постоянную.
  • String3 = string1 + string2; // объединяет две строки вместе.

Важно осторожно объединять две строки из разных типов данных, так как это может привести к ошибке или неправильному результату.

Arduino string to int и string to float

Для конвертации целочисленных значений string to int используется функция toInt().

String MyStr = “111”;

int x = MyStr.toInt();

Если нужно конвертировать объект с плавающей запятой, применяется функция atof().

String MyStr = “11.111”;

MyStr.toCharArray(myStr1, MyStr.length()); // копируется String в массив myStr1

float x = atof(myStr1); // преобразование в float

Преобразование int to string

Для создания строки из числа не требуется делать особых телодвижений. Мы можем просто объединить строку и число:

String str = “Строка номер “+ i;

Можем создать объект, используя конструктор

String str = String(50);

Можем объединить оба способа:

String str = “Строка номер “+ String(50);

Преобразование String в массив char

Тип данных Char позволяет объявлять текстовые строки несколькими способами:

  • char myStr1[10]; – в данном случае объявлен массив определенного размера.
  • char myStr2 [6] = <‘a’, b, ‘c’, ‘d’, ‘e’>; – объявлен сам массив. Конечный символ не записанявно, его прибавит сам компилятор.
  • char myStr3[6] = <‘a’, b, ‘c’, ‘d’, ‘e’’/0’>; – объявлен массив, при этом в конце прописан признак окончания строки.
  • char myStr4 [ ] = “abcde”; – инициализация массива строковой постоянной. Размер и завершающий символ добавляются автоматически компилятором.
  • char myStr5 [6 ] = “abcde”; – инициализация массива с точным указанием его размера.
  • char myStr 6[30 ] = “abcde”; – аналогично, но размер указан больше для возможности использования строк большей длины.

Еще раз напомним, что в типе данных char строковые константы нужно записывать в двойные кавычки «Abcde», а одиночные символы – в одинарные ‘a’.

Конвертировать строку в массив сhar array можно при помощи следующего кода:

String stringVar = “111”;

Можно сделать обратное преобразование – char to string.

char[] chArray = “start”;

Пример преобразования String to const char*. Указание звездочкой char*означает, что это массив указателей.

String stringVar=string (`start);

Char charVar[ sizeof [stringVar)];

Заключение о String и ардуино

В этой статье мы рассмотрели основные вопросы использования String для работы со строками arduino. Как показывают примеры, ничего страшного и сложного в этом классе нет. Более того, зачастую мы можем даже не догадываться, что работаем с классом String: мы просто создаем переменную нужного типа, присваиваем ей строку в двойных кавычках. Создав строку, мы используем все возможности библиотеки String: можем без проблем модифицировать строку, объединять строки, преобразовывать string в int и обратно, а также делать множество других операций с помощью методов класса.

В ситуациях, когда скетч большой и перед нами встает дефицит памяти, использовать String нужно осторожно, по возможности заменяя на char*. Впрочем, в большинстве первых проектов начинающего ардуинщика таких ситуаций не много, поэтому рекомендуем использовать String без опаски – это предотвратит появление ошибок адресной арифметики, возникающих при работе с массивами char.

Объект string в arduino и команды через последовательный порт

Программируем Arduino. Профессиональная работа со скетчами

Переводчик А. Макарова

Технический редактор Н. Суслова

Литературный редактор Н. Рощина

Художники Л. Егорова, С. Маликова

Корректоры С. Беляева, Н. Витько

Верстка Л. Егорова

Программируем Arduino. Профессиональная работа со скетчами . — СПб.: Питер, 2017.

© ООО Издательство «Питер», 2017

Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

Доктор Саймон Монк (Dr. Simon Monk; Престон, Соединенное Королевство) имеет степень бакалавра в области кибернетики и информатики, а также доктора наук в области программной инженерии. Доктор Монк несколько лет занимался академической наукой, прежде чем уйти в промышленность. Является одним из основателей компании Momote Ltd, специализирующейся на разработке программного обеспечения для мобильных устройств. Со школьных лет активно увлекается электроникой и много пишет для радиолюбительских журналов об электронике и открытом аппаратном обеспечении. Автор многочисленных книг по электронике, посвященных в основном открытым аппаратным платформам, особенно Arduino и Raspberry Pi. В соавторстве с Полом Шерцем написал третье издание книги «Practical Electronics for Inventors».

Вы можете последовать за Саймоном в Twitter, где он зарегистрирован как @simonmonk2.

Хочу выразить большую признательность издательству McGraw-Hill Education, сотрудники которого приложили массу усилий, чтобы выпустить эту книгу. Отдельное спасибо моему редактору Роджеру Стюарту (Roger Stewart), а также Ваставикте Шарма (Vastavikta Sharma), Джоди Маккензи (Jody McKenzie), Ли-Энн Пикрелл (LeeAnn Pickrell) и Клер Сплан (Claire Splan).

Хочу также поблагодарить компании Adafruit, SparkFun и CPC за предоставленные модули и компоненты, использовавшиеся при подготовке этой книги.

И напоследок, но не в последнюю очередь, спасибо Линде за ее терпение и великодушие, благодаря которым я смог написать эту книгу.

Arduino — стандартный микроконтроллер, получивший широкое признание у инженеров, мастеров и преподавателей благодаря своей простоте, невысокой стоимости и большому разнообразию плат расширения. Платы расширения, подключаемые к основной плате Arduino, позволяют выходить в Интернет, управлять роботами и домашней автоматикой.

Простые проекты на основе Arduino не вызывают сложностей в реализации. Но, вступив на территорию, не охваченную вводными руководствами, и увеличивая сложность проектов, вы быстро столкнетесь с проблемой нехватки знаний — врагом всех программистов.

Эта книга задумана как продолжение бестселлера «Programming Arduino: Getting Started with Sketches»1. Несмотря на то что эта книга включает краткое повторение основ из книги «Programming Arduino», она познакомит читателя с более продвинутыми аспектами программирования плат Arduino. В частности, эта книга расскажет, как:

• обеспечить эффективную работу при минимальном объеме доступной памяти;

• решать сразу несколько задач без помощи механизмов многопоточного выполнения;

• упаковывать код в библиотеки, чтобы им могли пользоваться другие;

• использовать аппаратные прерывания и прерывания от таймера;

• добиться максимальной производительности;

• уменьшить потребление электроэнергии;

• взаимодействовать с последовательными шинами разных типов (I2C, 1-Wire, SPI и последовательный порт);

• взаимодействовать с портом USB;

• взаимодействовать с сетью;

• выполнять цифровую обработку сигналов (Digital Signal Processing, DSP).

Книга включает 75 примеров скетчей, которые распространяются в открытом виде и доступны на веб-сайте автора www.simonmonk.org. Перейдя по ссылке на страницу этой книги, вы сможете загрузить исходный код примеров, а также самый актуальный список ошибок и опечаток, найденных в книге.

Что необходимо для чтения книги

Данная книга в первую очередь посвящена вопросам программирования. Поэтому для опробования большинства примеров будет достаточно платы Arduino, светодиода и мультиметра. Если у вас имеются дополнительные платы расширения Arduino, они тоже пригодятся. Для рассмотрения примеров из главы 12 вам понадобится плата Ethernet или Wi-Fi. На протяжении всей книги мы будем использовать разные модули для демонстрации разных интерфейсов.

В центре внимания находится Arduino Uno — наиболее широко используемая плата Arduino, но в главах, посвященных программированию порта USB и цифровой обработке сигналов, рассматриваются некоторые особенности других плат Arduino, таких как Leonardo и Arduino Due.

В приложении в конце книги вы найдете список поставщиков, у которых сможете приобрести все эти компоненты.

Как работать с этой книгой

Каждая глава посвящена отдельной теме, связанной с программированием Arduino. Главы книги, кроме главы 1, где приводится краткий обзор основ Arduino, можно читать в любом порядке. Если вы опытный разработчик, начните с главы 14, чтобы вникнуть в некоторые особенности программирования Arduino.

Далее следует краткое описание глав.

Глава 1 «Программирование Arduino». Эта глава содержит сводную информацию о программировании Arduino. Это учебник для тех, кому требуется быстро ознакомиться с основами Arduino.

Глава 2 «Под капотом». В этой главе мы заглянем под капот и посмотрим, как работают программы для Arduino и откуда они берутся.

Глава 3 «Прерывания и таймеры». Новички обычно стараются не использовать прерывания, и совершенно напрасно, так как часто они оказываются удобным инструментом и их программирование не представляет никаких сложностей. Однако прерывания имеют свои ловушки, и эта глава расскажет вам все, что вы должны знать, чтобы не попасть в них.

Глава 4 «Ускорение Arduino». Платы Arduino оснащены маломощными процессорами с невысоким быстродействием, поэтому иногда требуется выжать из них все, что только можно. Например, встроенная функция digitalWrite надежна и проста в использовании, но неэффективна, что особенно заметно, когда требуется одновременно включить несколько выходов. В этой главе вы узнаете, как увеличить ее производительность, а также познакомитесь с другими приемами создания быстродействующих скетчей.

Глава 5 «Снижение потребления электроэнергии». Когда для питания платы Arduino используются аккумуляторы или солнечные батареи, желательно уменьшить потребление электроэнергии. Этого можно добиться не только оптимизацией конструкции устройства, но и применением особых приемов программирования.

Глава 6 «Память». В этой главе мы посмотрим, как уменьшить потребление памяти, а также познакомимся с достоинствами и недостатками, связанными с динамическим распределением памяти в скетчах.

Глава 7 «Интерфейс I2C». Интерфейс I2C на плате Arduino может существенно упростить взаимодействие с модулями и компонентами и позволит обойтись меньшим числом контактов на плате. Эта глава описывает, как действует интерфейс I2C и как им пользоваться.

Глава 8 «Взаимодействие с устройствами 1-Wire». В этой главе рассказывается о шине 1-Wire для связи с устройствами, такими как датчики температуры компании Dallas Semiconductor, которые часто применяются с платами Arduino. Здесь вы узнаете, как действует эта шина и как ею пользоваться.

Читать онлайн «Программируем Arduino. Основы работы со скетчами» автора Монк Саймон — RuLit — Страница 23

String text = «Temp: » + tempC + » C»;

Увы, в C этот прием не работает. В данном случае сообщение можно вывести несколькими инструкциями print, как показано далее:

lcd.print(«Temp: «); lcd.print(tempC); lcd.print(» C»);

Этот подход устраняет необходимость закулисного копирования данных в процессе конкатенации (объединения) строк, как происходит в других современных языках.

Аналогичный подход с применением нескольких инструкций вывода можно использовать при работе с монитором последовательного порта и инструкциями Serial.print. В подобных случаях последней в строке обычно используется команда println, добавляющая в конец символ перевода строки.

Форматирование строк с помощью sprintf

Стандартная библиотека строковых функций для языка C (не путайте с библиотекой Arduino String Object, которая обсуждается в следующем разделе) включает очень удобную функцию sprintf, выполняющую форматирование массивов символов. Она вставляет значения переменных в строку шаблона, как показано в следующем примере:

sprint(line1, «Temp: %d C», tempC);

Массив символов line1 — это строковый буфер, содержащий форматированный текст. Как указано в примере, он имеет емкость 17 символов, включая дополнительный нулевой символ в конце. Имя line1 я выбрал потому, что собираюсь показать, как сформировать содержимое верхней строки для жидкокристаллического дисплея с двумя строками по 16 символов в каждой.

В первом параметре команде sprintf передается массив символов, в который должен быть записан результат. Следующий аргумент — строка формата, содержащая смесь простого текста, такого как Temp:, и команд форматирования, например %d. В данном случае %d означает «десятичное целое со знаком». Остальные параметры будут подставлены в строку формата в порядке их следования на место команд форматирования.

Чтобы во вторую строку на жидкокристаллическом дисплее вывести время, его можно сформировать из отдельных значений часов, минут и секунд, как показано далее:

sprintf(line2, «Time: %2d:%02d:%02d», h, m, s);

Если попробовать вывести строку line2 в монитор последовательного порта или на экран жидкокристаллического дисплея, вы увидите текст

Команда sprintf не только подставила числа в нужные места, но и добавила ведущий ноль перед цифрой 5. В примере между символами : находятся команды форматирования трех компонентов времени. Часам соответствует команда %2d, которая выводит двузначное десятичное число. Команды форматирования для минут и секунд немного отличаются (%02d). Эти команды также выводят двузначные десятичные числа, но добавляют ведущий ноль, если это необходимо.

Однако имейте в виду, что этот прием предназначен для значений типа int. К сожалению, разработчики Arduino не реализовали в стандартной библиотеке C поддержку других типов, таких как float.

Определение длины строки

Так как строки, хранящиеся в массивах символов, часто оказываются короче самих массивов, в библиотеке предусмотрена удобная функция с именем strlen. Эта функция подсчитывает число символов в массиве, предшествующих нулевому символу, отмечающему конец строки.

Функция принимает массив символов в своем единственном параметре и возвращает размер строки (исключая пустой символ), хранящейся в нем, например, команда

Библиотека Arduino String Object

В Arduino IDE, начиная с версии 019, вышедшей несколько лет тому назад, включается библиотека String, более понятная и дружественная разработчикам, использующим Java, Ruby, Python и другие языки, где конкатенацию строк допускается выполнять простым оператором +. Эта библиотека также предлагает массу вспомогательных функций для работы со строками.

Конечно, данная библиотека добавляет к скетчу несколько килобайт кода. Кроме того, она использует механизм динамического распределения памяти со всеми сопутствующими проблемами, такими как исчерпание памяти. Поэтому подумайте хорошенько, прежде чем принять решение о ее использовании. Многие пользователи Arduino предпочитают применять обычные массивы символов.

Эта библиотека удивительно проста в использовании, и, если вам приходилось работать со строками в Java, благодаря библиотеке Arduino String Object вы будете чувствовать себя как дома.

Создание строк

Создать строку можно из массива элементов типа char, а также из значения типа int или float, как показано в следующем примере:

String message = «Temp: «;

String temp = String(123);

Конкатенация строк

Строки типа String можно объединять друг с другом и с данными других типов с помощью оператора +. Попробуйте добавить следующий код в функцию setup пустого скетча:

String message = «Temp: «;

String temp = String(123);

Serial.println(message + temp + » C»);

Обратите внимание на то, что последнее значение, добавляемое в строку, в действительности является массивом символов. Если первый элемент в последовательности значений между операторами + является строкой, остальные элементы автоматически будут преобразованы в строки перед объединением.

Другие строковые функции

В табл. 6.1 перечислены еще несколько удобных функций из библиотеки String. Полный список доступных функций можно найти по адресу http://arduino.cc/en/Reference/StringObject.

Таблица 6.1. Некоторые полезные функции в библиотеке String

Функция

Пример

Описание

char ch = String(«abc»)[0]

Переменная ch получит значение «a»

Удалит пробелы с обеих сторон от группы символов abc. Переменная s получит значение «abc»

Преобразует строковое представление числа в значение типа int или long

String s = «abcdefg»;

String s2 = s.substring(1, 3);

Возвращает фрагмент исходной строки. Переменная s2 получит значение «bc». В параметрах передаются: индекс первого символа фрагмента и индекс символа, следующего за последним символом фрагмента

String s = «abcdefg»;

Заменит все вхождения «de» в строке на «DE». Переменная s2 получит значение «abcDEfg»

Использование ЭСППЗУ

Содержимое всех переменных, используемых в скетче Arduino, теряется при выключении питания или выполнении сброса. Чтобы сохранить значения, их нужно записать байт за байтом в память ЭСППЗУ. В Arduino Uno имеется 1 Кбайт памяти ЭСППЗУ.

ПРИМЕЧАНИЕ

Это не относится к плате Arduino Due, не имеющей ЭСППЗУ. В этой модели данные следует сохранять на карту microSD.

Для чтения и записи данных в ЭСППЗУ требуется использовать библиотеку, входящую в состав Arduino IDE. Следующий пример демонстрирует, как записать единственный байт в ЭСППЗУ, в данном случае операция выполняется в функции setup:

byte valueToSave = 123

В первом аргументе функции write передается адрес в ЭСППЗУ, куда должен быть записан байт данных, а во втором — значение для записи в этот адрес.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector