Ограничительный резистор для светодиода

Как правильно рассчитать и подобрать резистор для светодиода

Каждый из нас видел светодиод. Обычный маленький светодиод выглядит как пластиковая колбочка-линза на проводящих ножках, внутри которой расположены катод и анод. На схеме светодиод изображается как обычный диод, от которого стрелочками показан излучаемый свет. Вот и служит светодиод для получения света, когда электроны движутся от катода к аноду — p-n-переходом излучается видимый свет.

Изобретение светодиода приходится на далекие 1970-е, когда для получения света во всю применяли лампы накаливания. Но именно сегодня, в начале 21 века, светодиоды заняли наконец место самых эффективных источников электрического света.

Где у светодиода «плюс», а где «минус»?

Чтобы правильно подключить светодиод к источнику питания, необходимо прежде всего соблюсти полярность. Анод светодиода подключается к плюсу «+» источника питания, а катод — к минусу «-». Катод, подключаемый к минусу, имеет вывод короткий, анод, соответственно, – длинный — длинную ножку светодиода – на плюс «+» источника питания.

Взгляните во внутрь светодиода: большой электрод — это катод, его — к минусу, маленький электрод, похожий просто на окончание ножки, – на плюс. А еще рядом с катодом линза светодиода имеет плоский срез.

Паяльник долго на ножке не держать

Паять выводы светодиода следует аккуратно и быстро, ведь полупроводниковый переход очень боится лишнего тепла, поэтому нужно краткими движениями паяльника дотрагиваться его жалом до припаиваемой ножки, и тут же паяльник отводить в сторону. Лучше в процессе пайки держать припаиваемую ножку светодиода пинцетом, чтобы обеспечить на всякий случай отвод тепла от ножки.

Резистор обязателен при проверке светодиода

Мы подошли к самому главному — как подключить светодиод к источнику питания. Если вы хотите проверить светодиод на работоспособность, то не стоит напрямую присоединять его к батарее или к блоку питания. Если ваш блок питания на 12 вольт, то используйте для подстраховки резистор на 1 кОм последовательно с проверяемым светодиодом.

Не забывайте о полярности — длинный вывод на плюс, вывод от большого внутреннего электрода — к минусу. Если не использовать резистор, то светодиод быстро перегорит, в случае если вы нечаянно превысите номинальное напряжение, через p-n-переход потечет большой ток, и светодиод практически тут же выйдет из строя.

Цвет свечения светодиода

Светодиоды бывают разных цветов, однако цвет свечения не всегда определяется цветом линзы светодиода. Белый, красный, синий, оранжевый, зеленый или желтый — линза может быть прозрачной, а включишь — окажется красным или синим. Светодиоды синего и белого свечения — самые дорогие. Вообще, на цвет свечения светодиода влияет в первую очередь состав полупроводника, и как вторичный фактор – цвет линзы.

Многоцветные RGB светодиоды содержат в одном корпусе несколько излучающих свет p-n-переходов, каждый из которых дает свой цвет свечения. Комбинируя яркости компонентов токами или частотами импульсов токов (для красного, зеленого и синего кристаллов), можно получить любой оттенок. Здесь, конечно, балансирующие резисторы нужны на каждый цветовой канал.

Находим номинал резистора для светодиода

Резистор включается последовательно со светодиодом. Функция резистора — ограничить ток, сделать его близким к номиналу светодиода, чтобы светодиод мгновенно не перегорел, и работал бы в нормальном номинальном режиме. Берем в расчет следующие исходные данные:

Vps – напряжение источника питания;

Vdf – прямое падение напряжения на светодиоде в нормальном режиме;

If – номинальный ток светодиода при нормальном режиме свечения.

Теперь, прежде чем находить значение необходимого резистора R, отметим, что ток в последовательной цепи у нас будет постоянным, одним и тем же в каждом элементе: ток If через светодиод будет равен току Ir через ограничительный резистор.

Следовательно Ir = If. Но Ir = Ur/R – по закону Ома. А Ur = Vps-Vdf. Таким образом, R = Ur/Ir = (Vps-Vdf)/If.

То есть, зная напряжение источника питания, падение напряжения на светодиоде и его номинальный ток, можно легко подобрать подходящий ограничительный резистор.

Если найденное значение сопротивления не удается выбрать из стандартного ряда номиналов резисторов, то берут резистор несколько большего номинала, например вместо найденных 460 Ом, берут 470 Ом, которые всегда легко найти. Яркость свечения светодиода уменьшится весьма незначительно.

Пример подбора резистора:

Допустим, имеется источник питания на 12 вольт, и светодиод, которому нужно 1,5 вольта и 10 мА для нормального свечения. Подберем гасящий резистор. На резисторе должно упасть 12-1,5 = 10,5 вольт, а ток в последовательной цепи (источник питания, резистор, светодиод) должен получиться 10 мА, следовательно из Закона Ома: R = U/I = 10,5/0,010 = 1050 Ом. Выбираем 1,1 кОм.

Читайте также:  Выбор драйвера для светодиодов

Какой мощности должен быть резистор? Если R = 1100 Ом, а ток составит 0,01 А, то, по закону Джоуля-Ленца, на резисторе каждую секунду будет выделяться тепловая энергия Q = I*I*R = 0,11 Дж, что эквивалентно 0,11 Вт. Резистор мощностью 0,125 Вт подойдет, даже запас останется.

Последовательное соединение светодиодов

Если перед вами стоит цель соединить несколько светодиодов в единый источник света, то лучше всего соединение выполнять последовательно. Это нужно для того, чтобы к каждому светодиоду не цеплять свой резистор, чтобы избежать лишних потерь энергии. Наиболее подходят для последовательного соединения светодиоды одного и того же вида, из одной и той же партии.

Допустим, необходимо последовательно объединить 8 светодиодов по 1,4 вольта с током по 0,02 А для подключения к источнику питания 12 вольт. Очевидно, общий ток будет составлять 0,02 А, но общее напряжение составит 11,2 вольта, следовательно 0,8 вольт при токе в 0,02 А должны рассеяться на резисторе. R = U/I = 0,8/0,02 = 40 Ом. Выбираем резистор на 43 Ом минимальной мощности.

Параллельное соединение цепочек светодиодов — не лучший вариант

Если есть выбор, то светодиоды лучше всего соединять последовательно, а не параллельно. Если соединить несколько светодиодов параллельно через один общий резистор, то в силу разброса параметров светодиодов, каждый из них будет не в равных условиях с остальными, какой-то будет светиться ярче, принимая больше тока, а какой-то — наоборот тусклее. В результате, какой-нибудь из светодиодов сгорит раньше в силу быстрой деградации кристалла. Лучше для параллельного соединения светодиодов, если альтернативы нет, применить к каждой цепочке свой ограничительный резистор.

Подключение светодиода через резистор и его расчет

Светодиодное освещение и индикация, за счёт этого полупроводникового прибора считается одной из самых надёжных. При организации освещения светодиодные светильники производят качественный световой поток, при этом являются экологически чистыми источниками света не требующими утилизацию и не потребляющими много электроэнергии. Светодиод работает только от постоянного напряжения и пропускает ток только в одном направлении, как и обыкновенный диод.

Диод излучающий свет является прибором с определённым, чётко регламентированным, протекающим током как максимальным, так и минимальным. Если превысить максимальный допускаемый прямой ток или подводящее к нему напряжение, то он обязательно выйдет из строя, простыми словами «сгорит». Данные о светодиоде можно найти:

  1. В справочнике или технической литературе;
  2. На страницах интернета;
  3. При покупке у продавца-консультанта.

Не зная рабочего напряжения и максимального прямого тока подобрать сопротивление резистора для ограничения тока достаточно проблематично. Разве что имея ли автотрансформатор, или переменный резистор. При этом можно спалить несколько таких полупроводниковых элементов. Этот способ скорее теоретический, чем практический, и применяется он может только в экстренных ситуациях. Резистор — это пассивный элемент, применяющийся в электрических цепях, он обладает определённым значением сопротивления. Выпускается переменный, с регулировочной ручкой, или постоянный резистор. Для резистора характерно понятие мощности, которое тоже стоит учитывать при его расчете в электрических цепях.

Итак, каждый светодиод имеет рабочее напряжение и прямой проходящий и засвечивающий его ток. Если U источника питания, допустим, 1,5 вольта, и по паспорту диод должен подключаться именно к такому напряжению, то ограничивающий резистор не требуется. Или же есть возможность подключить три светодиода с рабочим напряжением 0,5 вольта, последовательно источнику питания. При этом все эти полупроводниковые элементы должны быть одинакового типа и марки. Однако такая ситуация случается крайне редко, а зачастую величина питания значительно больше, чем рабочее напряжение одного светодиода.

Как произвести расчет сопротивления для светодиодов, которое не только ограничивает ток в цепи, но и создаёт падение напряжения. Токоограничивающий резистор для светодиода рассчитывается на основе всем известного закона Ома I=U/R. Отсюда можно выделить и значение сопротивления R=U/I. Где U — напряжение, I — величина постоянного тока.

Вот простейшая схема подключения одного светодиода.

Сила тока при последовательном соединении будет одинакова, а напряжение питания светодиода должно быть определённой величины, зачастую оно значительно ниже питающего всю цепь. Поэтому резистор должен погасить часть напряжения, чтобы приложенное к светодиоду уже было определённого значения, указанного в его паспорте как рабочее напряжение. То, есть I (ток) в цепи известна и будет равна I, потребляющему диодом, а U падения на сопротивлении будет равно разности U питания и U светодиода. Зная U на резисторе и I, который через него проходит, согласно тому же закону Ома можно найти его сопротивление. Для этого напряжение падения на резисторе разделить на протекающий по цепи ток.

После расчета резистора светодиода, он ещё должен соответствовать мощности, для этого U на нём нужно умножить на известный I всей цепи. Ток в любом участке цепи будет одинаковым и поэтому максимальная сила тока, проходящая через светодиод, не будет превышать проходящий через ограничивающий резистор. При этом рекомендуется подбирать резистор с немного большим номиналом, нежели с меньшим, это касается и сопротивления, и его мощности. Зная закон Ома можно также рассчитать сопротивление через R светодиода.

Читайте также:  Как рассчитать мощность циркуляционного насоса для отопления?

Если нет подходящего резистора с нужным сопротивлением его можно получить подключив несколько таких элементов последовательно или параллельно. При этом для последовательного соединения, всеобщее сопротивление всех резисторов будет равно сумме всех входящих в эту цепь.

А при параллельном рассчитывается по такой вот формуле

Нужно учесть, что всё это рассчитывается исходя из напряжения питания, так как при его увеличении увеличится и сила тока во всей цепи. Так что источник питания, должен выдавать не только качественно выпрямленное, но и стабилизированное напряжение.

Шунтирование светодиода резистором

О таком подключении светодиода и резистора стоит рассуждать при последовательном соединении двух и более излучающих свет элементов. Даже с одинаковой маркировкой и типом характеристики каждого светодиода могут немножко отличаться. Если через него протекает I, то он имеет своё внутреннее R. При этом в режиме когда вентиль (диод) проводит его, и не проводит, сопротивление внутреннее будет значительно отличаться. То есть при обратном включении вентиля именно в таком режиме сопротивление будет отличаться уже значительно. Соответственно и обратное напряжение тоже будет очень разниться, что может привести к перегоранию (пробою).

Для предотвращения таких ситуаций рекомендуется шунтировать светодиод маломощным резистором с большим R в несколько сотен Ом. Такое подключение обеспечит выравнивание обратного напряжения на соединенных в одну цепь полупроводниковых приборах выдающих световой поток.

Видео расчета светодиода

Расчет токоограничивающего резистора для светодиода

В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода.

Расчет резистора для одного светодиода

Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.

Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на светодиоде напряжение. Именно это значение нам нужно применять в расчетах.

Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.

Таблица 1 — Характеристики светодиодов

Цветовая характеристикаДлина волны, нМНапряжение, В
Инфракрасныеот 760до 1,9
Красные610 — 760от 1,6 до 2,03
Оранжевые590 — 610от 2,03 до 2,1
Желтые570 — 590от 2,1 до 2,2
Зеленые500 — 570от 2,2 до 3,5
Синие450 — 500от 2,5 до 3,7
Фиолетовые400 — 4502,8 до 4
Ультрафиолетовыедо 400от 3,1 до 4,4
Белыеширокий спектрот 3 до 3,7

Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.

  • Uн.п – напряжение питания, В;
  • Uд — прямое падение напряжения на светодиоде, В;
  • Iд – рабочий ток светодиода, А.

Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.

Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.

Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).

В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).

Расчет резистора при последовательном соединении светодиодов

В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.

Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.

  • Uн.п – напряжение питания, В;
  • Uд1…Uд3 — прямое падение напряжения на светодиодах, В;
  • Iд – рабочий ток светодиода, А.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.

Расчет резисторов при параллельно – последовательном соединении светодиодов

Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис.3.

Читайте также:  Датчик света в автомобиле своими руками

Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.

Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.

Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.

Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.

Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.

Расчет резистора для светодиода

Расчет резистора для светодиода выполняется довольно просто, быстро и не содержит ничего «военного», только закон Ома. Хотя во всемирной сети существует множество онлайн-калькуляторов, помогающие определить различные параметры, но, по моему личному мнению, лучше один раз разобраться самому и понять физику процесса, чем слепо пользоваться подобными калькуляторами.

Самый частый пример – это подключение светодиода к источнику питания с напряжением 5 В, например к USB порту компьютера. Второй пример – подключение к аккумуляторной батарее автомобиля, номинальное значение напряжения которой 12 В. Если к такому источнику питания напрямую подсоединить полупроводниковый прибор, то последний попросту выйдет из строя под действием протекающего тока, превышающего допустимое значение, ‑ произойдет тепловой пробой полупроводникового кристалла. Поэтому нужно ограничивать величину тока.

С целью лучшей наглядности возьмем два типа светодиодов с наиболее распространенными характеристиками:

Расчет резистора для светодиода

Определим сопротивление R1,5 для VD1 при Uип = 5 В.

Для расчета величины сопротивления, согласно закону Ома нужно знать ток и напряжение:

Величина тока, протекающего в цепи и в том числе через VD нам известна из заданного условия IVD1 = 0,01 А, поэтому следует определить падение напряжения на R1,5. Оно равно разности подведенного Uип = 5 В и падения напряжения на светодиоде UVD1 = 2,2 В:

Теперь находим R1,5

Из стандартного ряда сопротивлений выбираем ближайшее в сторону увеличения, поэтому принимаем R1,5 = 300 Ом.

Таким же образом выполним расчет R для VD2:

Произведем аналогичные вычисления при значении Uип = 12 В.

Принимаем R1,12 = 1000 Ом = 1 кОм.

Принимаем R2,12 = 430 Ом.

Для удобства выпишем полученные значения сопротивлений всех резисторов:

Следует заметить, что сопротивление, выбранное из стандартного ряда, превышает расчетное, поэтому ток в цепи будет насколько снижен. Однако этим снижением можно пренебречь в виде его малого значения.

Расчет мощности рассеивания

Определить сопротивление – это только полдела. Еще резистор характеризуется важным параметром, который называется мощность рассеивания P – это мощность, которую он способен выдержать длительное время, при этом, не перегреваясь выше определенной температуры. Она зависит ток в квадрате, так как последний протекая в цепи, вызывает нагрев ее элементов.

Визуально резистор более высокой Р отличается большими размерами.

Выполним расчет P для всех 4-х резисторов:

Из стандартного ряда мощностей выбираем ближайшие номиналы в сторону увеличения: первые три сопротивления можно взять с мощностью рассеивания 0,125 Вт, а четвертый – с 0,250 Вт.

Запишем общий расчет резистора для светодиода. Следует определить всего три параметра:

1) падение напряжения

3) мощность рассеивания.

Как видно, понять и запомнить данный алгоритм достаточно просто. Теперь, в случае применения специальных калькулятор, вы будете понимать, что и как они считают. Кстати, алгоритмы многих подобных калькуляторов не учитывают стандартный ряд номинальных значений, поэтому будьте внимательны, а лучше считайте все сами – это очень полезно делать для приобретения ценного опыта.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector