Падение напряжения на светодиодах разных цветов

Содержание

Схема Подключения Светодиода

СД — диод, излучатель света.

КАК УЗНАТЬ ПАРАМЕТРЫ ЛЮБОГО СВЕТОДИОДА

Подключение, ошибки

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. Как подключить светодиод или светодиодную ленту.

Всего в схеме 3 светодиода.
Как подключить МОЩНЫЙ СВЕТОДИОД.

Основы подключения к 220 В

Такой результат получается если из таблицы взять максимальное значение падения напряжения.

При этом избегают попадания горячего воздуха на полупроводник. Самые применяемые два: SMD и такой же

Простейшая схема подключения светодиода


Он подключается последовательно через резистор либо через драйвер питания, регулирующий величину тока. Диммер — это устройство для расширения функциональных возможностей светодиодных источников. Рис 3. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка — сувенир просто выкинули. Выпрямительный диод служит для защиты led-диода от обратного напряжения.

К числу самых распространенных вариантов определения полярности светоизлучающих диодов относятся первые три способа, которые должны выполняться с соблюдением стандартной технологии. Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Внешний квантовый выход — одна из основных характеристик эффективности светодиода. Особых пояснений программа не требует.
Расчет резистора для светодиода

Понятия, сокращения, глоссарий.

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом. Параллельное соединение светодиодов В данной ситуации все происходит наоборот.

Разноцветный Разноцветный светодиод — два или больше диода, объединенных в один корпус. Расчет схемы в этом случае производится для каждой последовательной цепи подключения, а при одинаковом количестве светодиодов и их типов в каждой цепи расчет можно сделать один раз для любой последовательной группы светодиодов.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Если будет изменена полярность и напряжение пойдет в обратном направлении, то оно будет сглажено выпрямительным диодом, защищающим светодиод от пробоя. Возможна установка эффекта затухания или мерцания излучения.

Источниками светодиодного питания в условиях токовой стабилизации обеспечиваются постоянные показатели выходного тока в широком диапазоне. Место монтажа ленты очищают, обезжиривают.

Внешний квантовый выход — одна из основных характеристик эффективности светодиода. Другим вариантом будет включение всех светодиодов параллельным подключением, устанавливая 1 резистор, что рассчитан на тройной ток. Падение напряжения на светодиодах разных цветов.

По долговечности, надежности, безопасности они тоже их превзошли. Как включить светодиод в сеть переменного тока Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется. Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. К 1,5 В Показатели рабочего напряжения светоизлучающих диодов, как правило, превышают 1,5 В, поэтому сверх яркие светодиоды нуждаются в источнике питания не менее 3,,4 В. Тогда входное напряжение придется уменьшить при этом выходной ток не изменится, так и останется мА как был отрегулирован , зачем на 3 светодиода, пусть даже мощных, подавать 50В?

Последовательное подключение

Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры. Светодиод припаян к плоскости ленты.

При таком раскладе светодиод будет работать на определенных полуволнах — мигать с частотой 50 Гц. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению деградации. Если же ограничить ток на уровне 10мА, то ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет. Чтобы не произошел случайный удар током, следует провести установку разрядного резистора большего номинала, расположив его параллельно конденсатору.
Как подключить светодиод к сети 220 Вольт

Все о светодиодах. Как это работает?

Что такое светодиод?

Светодиоды образуют неотъемлемую часть в современной электроники, простые показатели для оптических коммуникационных устройств. Светоизлучающие диоды используют свойства р-п перехода и испускают фотоны, когда ток в прямом направлении. Светодиоды специально излучают свет, когда потенциалы приложены к аноду и катоду.

История светодиодов начинается с 1907 года, когда капитан Генри Джозефа наблюдал особенности электро-люминесценции карбида кремния. Первый светодиод был разработан в 1962 году. Он был разработан Холоньяк, работал в General Electric (GE). Это был GaAsP устройства. Первая коммерческая версия светодиодов пришли на рынок в 1960-х годов.

Изготовление светодиодной технологии произвела бум в 1970-е годы с введением арсенида галлия алюминия (GaAlAs). Эти светодиоды высокой яркости и во много раз ярче, чем старая рассеянного типа. Синие и белые светодиоды были введены в 1990 году, в котором используется индия нитрида галлия (InGaN) в качестве полупроводника. Белый светодиод содержит неорганический фосфор. Когда голубой свет внутри светодиода попадает на люминофор, он излучает белый свет.

Что делает светодиод идеальным?

Светодиоды широко используются в электронных схемах из-за его преимущества по сравнению с лампами. Некоторые важные особенностями являются:

  • Светодиоды заключены в пластик, так что они могут выдерживать механические удары.
  • В отличие от ламп, светодиоды не выделяют тепло и потери мощности при нагреве практически отсутствует.
  • Светодиоды требуют очень низкий ток и напряжений обычно 20 мА при 1,8 вольта. Так что это идеально в схемах с батарейками.

Что находится внутри светодиода?

Внутри корпуса LED, есть две клеммы связаны маленький чип изготовлен из галлия соединения. Этот материал обладает свойством излучения фотонов при переходе P-N смещен в прямом. Различные цвета создаются выбиванием основного материала из другого веществама.

Внутри светодиода

Светодиодная технология

Яркость является важным аспектом LED. Глаз человека имеет максимальную чувствительность к свету около 550 нм в области желто — зеленой части видимого спектра. Именно поэтому зеленый светодиод излучается ярче, чем красный светодиод, хотя оба используют тот же ток. Важные параметры светодиодов являются:

  • Световой поток
    Указывает на энергии света, исходящего от светодиодов. Он измеряется в Люмен (лм) или Милли просвет (MLM)
  • Световая интенсивность
    светового потока, охватывающий большую площадь является силой света.Он определяется как Кандела (кд) или милли Кандела (MCD) Яркость светодиода напрямую связана с его силой света.
  • Светоотдача
    Это испускаемых относительной световой энергии к потребляемой мощности.Она измеряется в терминах люмен на ватт (лм Вт).

Прямой ток, прямое напряжение, угол обзора и скорость реагирования это факторы, влияющие на яркость и эффективность светодиодов. Прямой ток (I) является ток, протекающий через светодиод, когда он смещен в прямом направлении и он должен быть ограничен от 10 до 30 миллиампер, если выше то светодиоды будут уничтожены.

Угол обзора составляет от — угол оси, при котором световая интенсивность падения до половины осевого значения. Вот почему индикатор показывает больше яркости в полном объеме состоянии. Высокие яркие светодиоды имеют узкий угол обзора, так что свет фокусируется в пучок. Рабочее напряжение (V) является падение напряжения на светодиоде. Падение напряжения в диапазоне от 1,8 В до 2,6 вольт для обычных светодиодов, но в голубой и белый он будет идти до 5 вольт. Скорость отклика представляет, как быстро светодиод включается и выключается. Это очень важный фактор, если светодиоды используются в системах связи.

Читайте также:  Как рассчитать ток при параллельном соединении?

Требуется ли балластный резистор?

Светодиоды всегда подключены к источнику питания через резистор. Этот резистор называют «балластный резистор», которая защищает диод от повреждений, вызванных избыточным током. Он регулирует прямой тока на светодиод для безопасного предела и защищает ее от жжения.

Номинал резистора определяет прямой тока и, следовательно, яркость светодиодов. Простое уравнение Vs — Vf — используется для выбора резистора. Vs представляет входное напряжения цепи, Vf прямое падение напряжения светодиода(ов) при допустимом токе через светодиод. Полученное значение будет в Омах. Лучше ограничить ток до безопасного предела 20 мА.

Приведенная ниже таблица показывает прямое падение напряжения на светодиоде.

КрасныйОранжевыйЖелтыйЗеленыйСинийБелый
1,8 В2 V2,1 В2,2 В3,6 В3,6 В

Через типичный светодиод может пройти 30 -40 мА безопасный ток через него .Номинальный ток, чтобы дать достаточную яркость, стандартный красный светодиод 20 мА. Но это может быть 40 мА для синего и белого светодиода. Ограничение тока балластным резистором защищает диод от избыточного тока, протекающего через него. Значение балластного резистора должны быть тщательно отобраны, чтобы предотвратить повреждение светодиодов, а также получить достаточную яркость при токе 20 мА. Следующее уравнение объясняет, как выбирать балластный резистор.

R = V / I

Где R — является значение сопротивления в Ом, V — является входное напряжение в цепи, и I — это допустимый ток через светодиод в амперах. Для типичного красного светодиода, прямое падение напряжения составляет 1,8 вольта. Таким образом, если напряжение питания 12 В (Vs), падение напряжения на светодиод 1,8 В (V) и допустимый ток составляет 20 мА (Если), то значение балластного резистора будет

Vs — Vf / Если = 12 — 1,8 / 20 мА = 10,2 / 0,02 = 510 Ом.

Но если 510 Ом резистор не доступен то можно подобрать ближайший, например 470 Ом резистор может быть использован даже если ток через светодиод слегка увеличивается. Но рекомендуется использовать 1 K резистор для увеличения срока службы светодиодов, хотя там будет небольшое снижение яркости.

Ниже готова арифметические для выбора ограничительного резистора для различных версий светодиодов при различных напряжениях.

НапряжениеКрасныйОранжевыйЖелтыйЗеленыйСинийБелый
12 V470 Ω470 Ω470 Ω470 Ω390 Ω390 Ω
9 V330 Ω330 Ω330 Ω330 Ω270 Ω270 Ω
6 V180 Ω180 Ω180 Ω180 Ω120 Ω120 Ω
5 V180 Ω150 Ω150 Ω150 Ω68 Ω68 Ω
3 V56 Ω47 Ω47 Ω33 Ω

С добавлением других цветов

Светодиод, который может дать разные цвета полезно в некоторых приложениях. Например, светодиоды могут указывать на все системы OK, когда он становится зеленой, и неисправный, когда он становится красной. Светодиоды, которые могут производить два цвета называются Bicolour (Биколор) светодиодов.

Двухцветный светодиодный охватывает два светодиода (обычно красный и зеленый) в общем пакете. Два кристалла установлены на двух клеммах. Двухцветный светодиодный дает красный цвет, если ток проходит в одном направлении и становится зеленым, когда направление тока меняется на противоположное.

Триколор и многоцветные светодиоды , также доступны, которые имеют два или более кристаллов, заключенных в общий корпус. Трехцветный светодиодный имеет два анода для красного и зеленого кристалла и общим катодом. Таким образом, он излучает красный и зеленый цвета в зависимости от анода, в котором имеется ток. Если оба анода подключены, то светодиоды испускают свет и получается желтый цвет. Общий анод и отдельные светодиоды типа катода, также имеются.

Двухцветный индикатор светится разными цветами , начиная от зеленого через желтый, оранжевый и красный основной на ток, протекающий через их аноды, выбрав подходящий резистор для ограничения тока анода. Многоцветные светодиоды содержат более двух чипов, обычно красного, зеленого и синего чипы-в одном корпусе. Мигание разными цветами светодиодов, теперь доступны с двумя выводами. Это дает радугу цвета, которые являются весьма привлекательным.

Инфракрасный диод — источник Невидимого света

ИК диоды широко используются в удаленном управлении (пульт ДУ). Инфракрасные диоды на самом деле испускают нормальный свет с определенным цветом, который не чувствителен к человеческим глазом, потому что его длина волны 950 нм, ниже видимого спектра. Многие источники, такие как солнце, лампы, даже человеческое тело испускает инфракрасные лучи. Поэтому необходимо, чтобы модулировать излучение от ИК-диода, чтобы использовать его в электронном приложении, чтобы предотвратить ложное срабатывание. Модуляции делает сигнал от ИК-светодиода значительно выше чем шум. Инфракрасные диоды есть в корпусе, которые являются непрозрачным для видимого света, но прозрачна для инфракрасного. ИК-светодиоды широко используются в системах управления.

Инфракрасные диоды

Фотодиод — Он может увидеть свет

Фотодиод генерирует ток, когда его р-п перехода получает фотоны видимого или инфракрасного света. Основная работа фотодиода зависит от поглощения фотонов в полупроводниковом материале. Фото-генерируемых носителей разделены электрическим полем, и в результате фототок пропорционален падающему свету. Скорость, с которой носители движутся в области обеднения связана с силой электрического поля по всему региону и подвижность носителей.

Фотон, который поглощается полупроводником в области обеднения приведет к образованию электронно-дырочной проводимости. Дырки и электроны будут транспортироваться под действием электрического поля к краям области обеднения. После носителей покидают область истощения они идут к клеммам фотодиода, чтобы сформировать фото-ток во внешней цепи. Время отклика фотодиода, как правило, 250 нано секунд .

Фотодиоды

Лазерные диоды

Лазерный диод похож на обычные прозрачные светодиодные, но производит Laserwith высокой интенсивности. В лазерном луче число атомов вибрируют в такой цикле, что всё испускаемое излучение одной длины волны в фазе друг с другом. Лазерный свет является монохроматическим и проходит в виде узкого пучка. Луч типичных лазерных диодов составляет 4 мм х 0,6 мм, которая расширяется только до 120 мм на расстоянии 15 метров.

Лазерный диод может включаться и выключаться на более высоких частотах даже выше, чем 1 ГГц. Так что это весьма полезно в телекоммуникационных системах.Поскольку лазер генерирует тепло на поражение тканей тела, он используется в хирургии, чтобы исцелить поражения в очень чувствительных частей, как сетчатки, головного мозга и т.д. лазерные диоды являются важными компонентами в проигрывателях компакт-дисков, чтобы получить данные, записанные в компакт-дисках.

Как определить на сколько вольт светодиод?

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии. Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр. Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора. Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в данной статье.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе. В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи. С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но ,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов. Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта.

В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт. Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Читайте также:  Как определить точность прибора имеющего шкалу?

Узнать все технические характеристики светодиода можно из интернета. Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения. Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке. Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Технические характеристики и параметры светодиодов

Существует множество светодиодов различных форм, размеров, мощностей. Однако любой светодиод — это всегда полупроводниковый прибор, в основе которого – прохождение тока через p-n-переход в прямом направлении, вызывающее оптическое излучение (видимый свет).

Принципиально все светодиоды характеризуются рядом конкретных технических характеристик, электрических и световых, о которых мы и поговорим далее. Данные характеристики вы сможете найти в даташите (в технической документации) на светодиод.

Электрические характеристики — это: прямой ток, прямое падение напряжения, максимальное обратное напряжение, максимальная рассеиваемая мощность, вольт-амперная характеристика. Световые параметры — это: световой поток, сила света, угол рассеяния, цвет (или длина волны), цветовая температура, световая отдача.

Прямой номинальный ток (If – forward current)

Номинальный прямой ток — это ток, при прохождении которого через данный светодиод в прямом направлении, производитель гарантирует паспортные световые параметры данного источника света. Другими словами, это рабочий ток светодиода, при котором светодиод точно не перегорит, и сможет нормально работать на протяжении всего срока эксплуатации. В этих условиях p-n-переход не будет пробит и не перегреется.

Кроме номинального тока есть еще такой параметр, как пиковый прямой ток (Ifp – peak forward current) – максимальный ток, который можно пропускать через переход лишь импульсами длительностью по 100 мкс при коэффициенте заполнения не более DC = 0.1 (точные данные – см.даташит). Теоретически максимальный ток — это предельный ток, который кристалл может выдерживать лишь кратковременно.

На практике величина номинального прямого тока зависит от размера кристалла, от типа полупроводника, и лежит в диапазоне от единиц микроампер до десятков миллиампер (для светодиодных сборок типа COB — еще больше).

Прямое падение напряжения (Vf – forward voltage)

Прямое падение напряжения на p-n-переходе, вызывающее номинальный ток светодиода. Напряжение прикладывается к светодиоду так, что анод имеет положительный потенциал относительно катода. В зависимости от химического состава полупроводника, от длины волны оптического излучения, различаются и прямые падения напряжения на переходе.

Кстати, по прямому падению напряжения можно определить химический состав полупроводника. А вот приблизительные диапазоны прямых падений напряжений для различных длин волн (цветов света светодиодов):

Инфракрасные светодиоды с длиной волны более 760 нм на базе арсенида галлия имеют характерное падение напряжения менее 1,9 В.

Красные (например галлия фосфид — от 610 нм до 760 нм) — от 1,63 до 2,03 В.

Оранжевые (галлия фосфид — от 590 до 610 нм) — от 2,03 до 2,1 В.

Желтые (галлия фосфид, от 570 до 590 нм) — от 2,1 до 2,18 В.

Зеленый (галлия фосфид, от 500 до 570 нм) — от 1,9 до 4 В.

Синий (селенид цинка, от 450 до 500 нм) — от 2,48 до 3,7 В.

Фиолетовый (индия-галлия нитрид, от 400 до 450 нм) — от 2,76 до 4 В.

Ультрафиолетовый (нитрид бора, 215 нм) — от 3,1 до 4,4 В.

Белые (синий или фиолетовый с люминофором) — около 3,5 В.

Максимальное обратное напряжение (Vr – reverse voltage)

Максимальное обратное напряжение светодиода, как и любого светодиода, – это такое напряжение, при прикладывании которого к p-n-переходу в обратной полярности (когда потенциал катода больше потенциала анода) происходит пробой кристалла, и светодиод выходит из строя. Подавляющее большинство светодиодов имеют обратное максимальное напряжение в районе 5 В. Для сборок COB – еще больше, а для инфракрасных светодиодов бывает и до 1-2 вольт.

Максимальная мощность рассеяния (Pd – total power dissipation)

Эта характеристика измеряется при температуре окружающей среды в 25°C. Это та мощность (зачастую в мВт), которую корпус светодиода еще способен рассеивать непрерывно, и не перегорит. Она вычисляется как произведение падения напряжения на текущий через кристалл ток. Если это значение будет превышено (произведение напряжения на ток), то очень скоро кристалл будет пробит, произойдет его тепловое разрушение.

Вольт-амперная характеристика (ВАХ — график)

Нелинейная зависимость тока через p-n-переход от приложенного к переходу напряжения, называется вольт-амперной характеристикой (сокращенно – ВАХ) светодиода. Эта зависимость изображается в даташите графически, и по имеющемуся в распоряжении графику можно очень просто увидеть, какой ток при каком напряжении пойдет через кристалл светодиода.

Характер ВАХ зависит от химического состава кристалла. ВАХ оказывается очень полезна при проектировании электронных устройств со светодиодами, ведь благодаря ей можно без поведения практических измерений узнать, какое напряжение необходимо приложить к светодиоду, чтобы получить заданный ток. Еще с помощью ВАХ можно более точно подобрать к диоду токоограничительный резистор.

Сила света, световой поток (luminous intensity, luminous flux)

Световые (оптические) параметры светодиодов измеряются еще на стадии их производства, при нормальных условиях и на номинальном токе через переход. Температура окружающей среды принимается равной 25°C, устанавливается номинальный ток, и измеряются сила света (в Кд — кандела) или световой поток (в Лм — люмен).

Под световым потоком в один люмен понимают световой поток, испускаемый точечным изотропным источником с силой света, равной одной канделе, в телесный угол в один стерадиан.

Слаботочные светодиоды характеризуются непосредственно силой света, которая указывается в милликанделах. Кандела — это единица силы света, а одна кандела — это сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Другими словами, сила света количественно отражает интенсивность светового потока в определенном направлении. Чем меньше угол рассеяния — тем больше будет сила света светодиода при одном и том же световом потоке. Например сверхъяркие светодиоды обладают силой света в 10 и более кандел.

Угол рассеяния светодиода (Viewing angle)

Эта характеристика часто описывается в документации на светодиоды как «двойной угол половинной яркости тэта», и измеряется в градусах (deg-degrees-градусы). Название именно таково, поскольку светодиод как правило имеет фокусирующую линзу, и яркость не по всему углу рассеяния получится равномерной.

Вообще этот параметр может лежать в диапазоне от 15 до 140°. У SMD светодиодов этот угол шире, чем у выводных собратьев. Например 120° для светодиода в корпусе SMD 3528 — это нормально.

Длина волны света (Dominant Wavelength)

Измеряется в нанометрах. Характеризует цвет излучаемого светодиодом света, который в свою очередь зависит от длины волны и от химического состава полупроводникового кристалла.

Читайте также:  Как сделать мигающий светодиод 12 вольт?

Инфракрасное излучение имеет длину волны более 760 нм, красный цвет — от 610 нм до 760 нм, желтый — от 570 до 590 нм, фиолетовый — от 400 до 450 нм, ультрафиолетовый — менее 400 нм. Белый свет выделяется при помощи люминофоров из ультрафиолетового, фиолетового или синего.

Цветовая температура (CCT – Color Temperature)

Данная характеристика задается в документации на белые светодиоды и измеряется в кельвинах (К). Холодный белый (около 6000К), теплый белый (около 3000К), белый (около 4500К) — точно показывает оттенок белого света.

В зависимости от цветовой температуры, цветопередача будет разной, и воспринимается человеком белый цвет с разной цветовой температурой — по разному. Теплый свет более комфортен, он лучше подойдет для дома, холодный — больше подходит общественным помещениям.

Для светодиодов, применяемых для освещения сегодня, данная характеристика находится в районе 100 Лм/Вт. Мощные модели светодиодных источников света превзошли КЛЛ, и достигают 150 и более Лм/Вт. По сравнению с лампами накаливания, светодиоды превосходят их по световой отдаче более чем в 5 раз.

В принципе, световая отдача численно показывает, насколько эффективен источник света в плане энергопотребления: сколько ватт требуется для получения определенного количество света — сколько люмен на ватт.

Принцип работы и схемы подключения двухцветных светодиодов

Словосочетание двухцветный светодиод свидетельствует о свечении такого чипа двумя цветами. У этого вида источников света 2 разноцветных кристалла и 2 или 3 вывода. Конструкция похожа на RGB, но принцип работы другой – один кристалл горит, если ток проходит одном направлении, второй – при изменении полярности. Это особенность используется в индикаторах и системах сигнализации различного электрооборудования.

Характеристика двухцветных диодов с двумя и тремя выходами

В двухцветный диод установлены 2 кристалла,соединенные встречно-параллельно. Корпус имеет стандартные размеры DIP И SMD с двумя или тремя выводами. При первом варианте каждый вывод служит анодом одного кристалла и катодом другого. Такой источник излучает 2 или 3 цвета. Третий получается при одновременном свечении обеих кристаллов.

Возможные комбинации цветов:

  • красный и синий;
  • красный и зеленый;
  • красный и желтый или желто-зеленый;
  • синий и желтый;
  • зеленый и желтый.

Падение напряжения зависит от цвета кристалла:

  • красный 1,6 В;
  • зеленый 1,8 В;
  • синий 3,5 В;
  • желтый 1,7 В.

Важно! Двухцветный светодиод всегда можно заменить двумя чипами разного цвета, соединенными по соответствующей схеме.

Если у двухцветного светодиода 2 вывода, кристаллы соединены встречно-параллельно. В конструкции с общим анодом или катодом установлено 2 светодиода разного цвета.

В чипах с двумя выводами общий контакт чаще всего расположен посередине корпуса, но бывают исключения. Определить полярность можно при помощи омметра.

Цвета кристаллов подбираются в соответствии с правилами эргономики. Зеленый цвет чаще всего указывает на нормальную работу оборудования, красный – на аварийную ситуацию. Для определения режима ждущего режима используется желтый цвет. Синие кристаллы используются для подсветки поверхностей темных оттенков.

Принцип работы двухцветных светодиодов

Принцип работы элементов с двумя выводами простой. Цвет свечения меняется одновременно с изменением полярности подключения. Это значит, что цвет полностью зависит от того, в какому пути проходит ток. При подаче плюса на один из выводов один кристалл начинает светиться, второй запирается. После смены полярности запертый начинает светиться, светящийся запирается.

Такая схема используется в индикаторах, работающих от переменного напряжения. Двухцветные диоды соединяются параллельно и встречно, ток ограничивает один резистор. Такие элементы часто монтируются в кнопочные выключатели, при помощи которых меняется цвет свечения.

Так как цвет свечения светодиодов ненасыщенный и тусклый, при смешении образуется оттенок, который человеку сложно определить. Еще одна особенность – изменение оттенка при взгляде на источник света с различных ракурсов.

Ситуация меняется, если речь идет о двухцветном светодиоде с тремя выводами в сочетании с микроконтроллером. Эта схема дает возможность включать каждый цвет по отдельности и одновременно оба. При подключении к схеме ШИМ регулятора появляется возможность менять яркость свечения каждого кристалла, чтобы добавить дополнительные оттенки.

Сфера применения

Особенности спектра излучения не мешают светодиодам с двойным свечением найти сферу применения.

Светодиодные индикаторы на основе двухцветных диодов используются:

  • в рекламе;
  • в системах сигнализации (светофорах, мигалках, указателях, электронных табло);
  • в электродвигателях (для определения стороны вращения);
  • при декорировании помещений;
  • в телефонах, планшетах, фотоаппаратах;
  • в зарядках различных аккумуляторов;
  • для тюнинга автомобилей.

Внимание! Двухцветная лампа с цоколем H7 устанавливается в фары автомобилей ближнего (белая) и дальнего (желтая) света, с цоколем PY21W или P21W – в поворотники (красная) и габариты (желтая).

В быту из двухцветных светодиодов можно сделать гирлянду. Одни цвет горит во время положительного полупериода, второй – во время отрицательного.

Схемы подключения двухцветных светодиодов

Чтобы сделать электроприбор своими руками, необходимо знать, как подключить двухсветный светодиод. Самый простой (но не совсем правильный) вариант – подключаем питания к ножкам через резистор и определяем циклов включения/выключения.

Чтобы добавить к схеме резистор, необходимо рассчитать значения его сопротивления и мощности.

С 2015 года ГОСТом 29433-2014 определены новые параметры напряжения электросети:

  • номинальное 230 В;
  • минимальное 207 В, под нагрузкой 198 В;
  • максимальное 253 В.

Сопротивление резистора должно иметь такое значение, чтобы через него мог протекать ток, необходимый для нормального функционирования двухцветного светодиода, но элемент при этом не перегревался. Поэтому значение номинального тока 20 мА для расчетов заменяется другим значениеем – 7 мА = 0,007 А, позволяющим диоду нормально светиться.

Купить нужно элемент на 33 кОм.

Купить нужно элемент на 2 Вт.

Для проверки рассчитывается ток при максимальном напряжении:

Это значит, что резистор на 2 Вт не перегреется даже при максимальном значении напряжения сети.

Внимание! Если двухцветный светодиод имеет 2 вывода, он подключается при помощи одного резистора. При наличии трех выводов требуются 2 резистора, сопротивление вычисляется отдельно для каждого (ток у кристаллов с различным цветом отличается).

На таймере 555

Таймером 555 называют интегральное устройство, генерирующее импульсы через определенные промежутки времени. Доступны модели в пластиковом и металлическом DIP и SMD корпусе на 4,5 – 16 В. Основная сфера применения в быту – управление трехцветными лентами и лампами. Таймер 555 включает цвета поочередно. Стандартное напряжение питания 5 В, перевести на 12 В можно, если поменять сопротивление резисторов.

Похожую схему с таймером 555 можно создать для управления двухцветным светодиодом. Нужно запитать схему от сети 220 В через понижающий трансформатор. Напряжение стабилизирует регулятор 7805. У трансформатора может быть одна или несколько обмоток. При втором варианте требуется дополнительный вывод от обмотки на 12 В.

Если светодиод многоцветный, в схему включается столько таймеров, сколько цветов. Цветные элементы подключаются к выводам 555 через резисторы. В процессе изменения сопротивления интенсивность свечения меняется от минимального до максимального значения.

До 1а

Чтобы управлять двухцветными светодиодами, работающими на токе до 1 А, используется схема TA7291P, оснащенная двумя входами и выходами. Двухцветный светодиод подключается к выходу. Если логика диодов, транзисторов и реле одинаковая, а выходы отличаются, чип не светится.

При одинаковых логических уровнях схема работает иначе. Если на входах уровни различаются, один из выходов присоединяется с общей проводкой, что приводит к присоединению с ней катода двухцветного диода и резистора. Напряжение на втором выходе меняется одновременно с напряжением на входе. Это дает возможность регулировать интенсивность свечения.

Напряжение на втором выходе подается из микроконтроллера, выдающего импульсы. Кроме яркости свечения микроконтроллер контролирует входы, поэтому возможно регулирование алгоритма управления и оттенков свечения.

Важно! Параметры резистора рассчитываются, базируясь на предельно допустимый ток двухцветного светодиода.

Основные выводы

Радиолюбители используют двухцветные светодиоды в различных самодельных осветительных приборах:

  • «Электронном сердце» с таймером 555 и генератором для украшения помещений при поведении различных торжеств;
  • моделях железнодорожного переезда;
  • регуляторах яркости изделий из светодиодов;
  • регуляторах мигания;
  • «Рулетке» (вращающемся круге) на основе таймера 555;
  • 3 D куба на основе микросхемы 4020;
  • поворотниках для мотоциклов, укрепляемых на шлеме;
  • линейных светильниках для подсветки растений.

В домашних условиях любое устройство следует конструировать так, чтобы постоянно светился один базовый цвет. Чаще всего это зеленый, сигнализирующий о подключении к питанию. Другой вариант – установка каждого диода на отдельное место и ввод режима, включающего суммарное свечение.

Если делать лампы из двухцветных диодов, то необходимо знать, что самостоятельный монтаж может привести к неожиданному спектру свечения. Если источник света перегорит, придется переделывать всю систему.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector