Попеременное мигание светодиодов

Содержание

Мигающий светодиод: как сделать, подключить и где применять

Моргающий световой сигнал находит широкое применение – от особого режима работы фонарей до индикации сложной аппаратуры. В его основе все чаще используется мигающий светодиод, как надежная и долговечная альтернатива любым другим видам светоисточников.

Рассмотрим, каков его принцип действия, какие готовые решения подобного прибора доступны сегодня на рынке, как сделать, чтобы лед-элемент, функционирующий в обычном режиме, стал работать в мерцающем ритме, какова общая сфера их применения, а также как своими руками на их основе изготовить гирлянды и бегущие огни.

Принцип действия

Светодиод с мигающим световым излучением – это стандартный лэд-кристалл, в электрическую схему питания которого включены задающие режим функционирования емкость и резистор. Внешне он ничем не отличается от обычных аналогов. При этом механизм его работы на уровне процессов, происходящих в электрической цепи, сводится к следующему:

  1. При подаче тока на резистор R накапливается заряд и напряжение в конденсаторе С.
  2. При достижении его потенциала 12 вольт образуется пробой в p-n-границе в транзисторе. Это повышает проводимость, что и инициирует производство светового потока лед-кристаллом.
  3. Когда напряжение снижается, транзистор снова становится закрытым и процесс начинается заново.

Все модули такой схемы функционируют на единой частоте.

Готовые мигающие светодиоды

Мигающие светодиоды от различных производителей по сути представляют собой функционально завершенные, готовые к применению в различных областях схемы. По внешним параметрам они мало чем отличаются от стандартных лед-устройств. Однако в их конструкцию внедрена схема генераторного типа и сопутствующих ему элементов.

Среди главных преимуществ готовых мигающих светодиодов выделяются:

  1. Компактность, прочность корпуса, все компоненты в одном корпусе.
  2. Большой диапазон напряжения питающего тока.
  3. Многоцветное исполнение, широкое разнообразие ритмов переключения оттенков.
  4. Экономичность.

Совет! Простейший мигающий светодиод можно сделать, если соединить в одну цепочку соблюдая правила полярности led-кристалл, CR-батарейку и резистор 160-230 Ом.

Схемы использования

Самый простой вариант схемы, выпускаемых сегодня мигалок на базе светодиодов, изготовление которых возможно своими силами радиолюбителям, включает:

  1. Транзистор малой мощности.
  2. Конденсатор полярного типа на 16 вольт и 470 микрофарад.
  3. Резистор.
  4. Лед-элемент.

При накоплении заряда осуществляется лавинообразный его пробой с открытием транзисторного модуля и свечением диода. Устройство такого типа часто используется в елочной гирлянде. Недостатком схемы является необходимость применения особого источника питания.

Другой вариант популярных на сегодня схем светодиодов мигающего типа включает пару n-p-n-транзисторов модификации КТ315 Б. Для ее сборки применяются также следующие компоненты:

  1. Две пары резисторов на 6,8–15 кОм и 470–680 Ом.
  2. Два конденсатора емкостью на 47-100 мкФ.
  3. Небольшой светодиод или отрезок лед-полоски.
  4. Источник питания от 3 до 12 В.

Принцип действия устройства обуславливается попеременной сменой цикла зарядки/разрядки конденсаторов, которые в свою очередь открывают транзисторы и питают светодиоды и обеспечивают их мигание.

Обычные светодиоды

Стандартный не мигающий светодиод дает яркое равномерное освещение и характеризуется малым потреблением электроэнергии. Наряду с такими качествами, как долговечность, компактность, энергоэффективность и широкий диапазон температур свечения это делает его вне конкуренции среди прочих искусственных источников света. На базе таких led-элементов и собирается схема мерцающих светильников. Рассмотрим, по какому принципу они изготавливаются.

Как сделать чтобы светодиоды мигали

Мигалка на светодиоде может быть собрана на базе одной из выше представленных схем. Соответственно нужно будет приобрести компоненты, описанные выше. Они необходимы для функционирования того или иного варианта. При этом для сборки потребуется паяльник, припой, флюс и другие необходимые комплектующие для пайки.

Сборка цепочки мигающих светодиодов предваряется обязательным лужением выводных контактов всех соединяемых элементов. Также нельзя забывать о соблюдении правил полярности, особенно при включении конденсаторов. Готовый светильник будет выдавать мерцание с частой около 1,5 Гц или что тоже самое порядка 15 импульсов каждый 10-секундный отрезок времени.

Схемы мигалок на их основе

Чтобы происходили элементарные заданные определенной периодичностью вспышки света, требуется пара транзисторов типа C945 или аналоговых элементов. Для первого варианта коллектор размещается в центре, а у второго – по середине располагается база. Один или пара мигающих светодиодов изготавливается по обычной схеме. При этом частотность вспышек задается наличием в цепочке конденсаторов С1 и С2.

В такую систему допустимо внедрение одновременно нескольких лед-кристаллов при монтаже достаточно мощного транзистора pnp-типа. При этом мигающими светодиоды делаются при соединении их контактов с разноцветными элементами, поочередность вспышек задается генераторным модулем, а частотность – заданными программными настройками.

Область применения

Светодиоды, функционирующие в мигающем ритме, применяются в различных областях:

  1. В развлекательной сфере, в игрушках, для украшения декора, в качестве гирлянд.
  2. Как индикация в бытовых и промышленных приборах.
  3. Светосигнализирующих устройствах.
  4. В элементах рекламы, вывесках.
  5. Информационных табло.

Важно! Светодиоды, излучающие свет в мигающем заданном ритме, применяются не только в видимом диапазоне спектра, но также в инфракрасном и ультрафиолетовом сегментах. Область их назначения – системы автоматизации и дистанционного управления различной техники – отоплением, вентиляцией, бытовыми приборами.

Бегущие огни на светодиодах своими руками

Одной из сфер эксплуатации мигающих светодиодов является устройство «бегущие огни». Для сборки схемы применяются такие компоненты:

  1. Генератор импульсом прямоугольного вида.
  2. Устройство индикации.
  3. Дешифратор.
  4. Счетчик.

Изготовление схемы осуществляется на макетной плате беспаечного типа. При этом по номиналу резисторов и конденсаторов допускается небольшой разброс, но не выше 20%. Светодиоды от HL1 до HL16 могут быть не обязательно одного цвета, но различных оттенков. Однако падение напряжение каждого лед-элемента должно быть в рамках 3 вольт.

Как сделать гирлянду из светодиодов

Для изготовления гирлянды, периодически мигающей с заданным ритмом, потребуются следующие компоненты и набор инструмента:

  1. Светодиоды на 20 мАч.
  2. Проводка площадью сечения 0,5-0,25 мм 2 .
  3. Трансформатор на 6 вольт.
  4. Резистор на 100 Ом.
  5. Паяльная станция с наконечником небольшого сечения, припой, канифоль.
  6. Нож с острым лезвием.
  7. Герметик на силиконовой основе.
  8. Фломастер.
  1. Определиться точно с промежутками между мигающими элементами.
  2. Подготовить провод и обозначить фломастером отметины под светодиоды.
  3. На местах отметок сделать срезы изоляции острым ножом.
  4. Далее на оголенные участки нанести канифоль с припоем.
  5. Припаять электроды диодов к этим местам.
  6. Нанести силиконовый герметик на оголенные участки для обеспечения электроизоляции.

По завершении подсоединяется блок питания и обычный резистор. Устройство включается в сеть и проверяется на работоспособность.

Совет! При изготовлении гирлянд нужно учитывать, что исключительно последовательный характер соединения светодиодов в цепи будет обеспечивать свойственный им мигающий эффект.

Основные выводы

Мигающий светодиод – это стандартный лед-элемент, оснащенный для специфического ритмичного свечения резистором и конденсатором, работающий по следующему принципу:

  1. Поступающий ток накапливает заряд на резисторе.
  2. По достижении заданного потенциала происходит пробой в p-n-переходе транзистора – ток проходит, светодиод вспыхивает.
  3. По мере снижения заряда транзистор закрывается и процесс повторяется.

Схема распространенного мигающего самодельного светодиода может включать один или пару транзисторов. При самостоятельной их сборке нужно заранее подготовить все необходимые компоненты и требуемые в ходе работы инструменты. Область применения мерцающих лед-светильников огромна – от игрушек и гирлянд до сигнализации, индикации и систем дистанционного управления.

Если вы знаете, как другим способом собрать схему мигающего светодиода, обязательно поделитесь полезной информацией в комментариях.

Как сделать мигающий светодиод

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

Читайте также:  Фотовспышка с лампой накаливания

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.

В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.

Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.

Простая мигалка на светодиоде

Существуют более простые схемы мигалок на светодиоде. Одна из таких показана на следующем фото.

Если внимательно присмотреться к этой светодиодной мигалке, то можно увидеть, что транзистор в схеме мигалки включен «неправильно». Во-первых, неправильно подключены эмиттер и коллектор. Во-вторых, база «висит в воздухе». Однако схема светодиодной мигалки вполне рабочая. Дело в том, что в ней КТ315 работает как динистор. При достижении на нем порогового значения обратного напряжения происходит пробой полупроводниковых структур и транзистор открывается. Нарастание напряжения на транзисторе происходит по мере зарядки конденсатора. После открывания транзистора конденсатор разряжается на светодиод. Так как в схеме мигалки на светодиодах используется нестандартное включение транзистора, она может потребовать подбора резистора или конденсатора при наладке.

После того, как сделаете своими руками простую мигалку, можете переходить к более сложным мигающим устройствам, например к созданию цветомузыки на светодиодах.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

Как сделать мигающий светодиод

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось подключить батарейку) – попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг.

Принцип действия светодиода

Подключая светодиод, узнайте минимум теории – портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит так:

E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).

Из утверждения следует: может быть создан диод, где разница энергетических уровней присутствует. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:

  1. Амплитуда.
  2. Скважность.
  3. Частота следования.

Очевидно, подключение светодиода к сети 230 вольт выглядит негодной идеей. Присутствуют подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными считаются:

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Вдобавок, +5 В нетрудно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
  • Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
  • Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
  • Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.

Тестирование мигающих RGB светодиодов

Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:

Схема оценки сопротивления p-n переходов

  1. Микросхема дана вместе с номерами ножек согласно техническим характеристикам.
  2. Питание подается на катод, полярность напряжения отрицательная. 3,3 вольта хватит открыть p-n переходы.
  3. Переменный резистор нужен небольшого номинала. На рисунке установлен с максимальным пределом 680 Ом. В таком положении должен находиться изначально.
  4. Сопротивление открытого p-n перехода невелико, нужен значительный запас, чтобы диоды не погорели (помним, что максимальное прямое напряжение составляет 3 В). Принимается во внимание факт: при низком вольтаже сопротивление каждого светодиода составит 700 Ом. При параллельном включении суммарное сопротивление вычисляется формулой, показанной на рисунке. Подставляя в качестве трех входных параметров 700, получаем 233 Ом. Сопротивление светодиодов, когда только-только начнут открываться (по крайней мере, так полагаем).
Читайте также:  Муфта для соединения кабеля в земле

Формула расчета суммарного сопротивления

Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного. Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство. Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?

Поясняем: в рабочем состоянии светодиодов понадобится включить несколько, проделаем аналогичную настройку. Напряжение питания на микросхеме составит 2,5 вольта. Обратите внимание, светодиоды мигающие, показания неточные. Максимальное не превыше 2,5 вольта. Индикация успешной работы схемы выражается миганием светодиодов. Чтобы часть мерцала, уберем питание с ненужных. Допускается собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Теперь знаем, как сделать мигающую светодиодную подсветку своими руками. Можно ли варьировать время срабатывания. Полагаем, внутри должны использоваться емкости. Возможно, собственные паразитные элементы p-n переходов светодиодов. Подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить. Номинал очень мал, измеряется пФ. Маленькая микросхема лишена больших емкостей. Допускаем, резистор, подключенный параллельно микросхеме (см. пунктир на рисунке), усаженный на землю, будет образовывать точный делитель. Стабильность возрастет.

Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически потребуется продумать вопрос согласно ситуации.

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана – закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.

Простые схемы мигалок на основе мигающих светодиодов для сборки своими руками

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

Готовые мигающие светодиоды и схемы с их использованием

Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах. Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

Трёхцветный (RGB) мигающий светодиод с четырьмя выводами имеет общий анод (катод) и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления.

Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы.

Область применения

Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

Читайте также:  Контрольно измерительные приборы в строительстве

Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

Радиолюбители и радиопрофессионалы, подскажите схему

Опции темы
Поиск по теме

Радиолюбители и радиопрофессионалы, подскажите схему

Нужна примитивная схема, которая обеспечит мигание простого светодиода небольшой яркости (типа АЛ-102, что ли) с частотой 1-2 герца. Вернее, двух светодиодов одновременно (их, говорят, тупо параллельно нельзя включать). Питание от 3 вольтов. Вроде как раньше были схемки типа симметричных мультивибраторов на двух траммзисторах, двух кондёрах и двух сопротивлениях. А может сейчас всё на одной мелкосхеме делается.

Существуют мигающие светодиоды – спроси в магазине радиотоваров.
Их сразу подключаешь к 12В и они мигают, но частоту мигания не изменить.

Вот простая схема, два светодиода мигают по-очереди.
http://right-hands.ru/publ/25-1-0-75
Транзисторы можно взять не такие мощные.

Dfcbkbq, а как её подключать? В инете схемку видел, но для человека, радиоразвитие которого остановилось при Брежневе, она осталась китайской грамотой 🙂

macar2005, мне нужен жёлтый или оранжевый цвет, а в наших краях такие не водятся. В москве водятся, но ценники даже там конские. Да и мне лучше 3 вольта, чем 12.

Вот еще две хорошие ссылки с другими аналогичными схемами:
http://lessonradio.narod.ru/Diagram.htm
http://www.casemods.ru/section9/item561/
Авообще, в яндексе набираем “простой мультивибратор + светодиод” и находим огромное количество схем.
Кстати, светодиоды можно параллельно включать.

Тогда рекомендую позвонить в магазин Эскор и там спросить готовую схему или набор-конструктор “Мастеркит”.

Там два должны работать одновременно, но просто параллельно их, говорят, нельзя цеплять, скорее всего один тусклым будет, потому как второй всё заберёт. Я не пробовал.

А в Эскор так и так идти.

Чтобы светодиоды горели одинаково надо их включить последовательно. Напряжения 3 Вольта должно хватить.

купи белый мигающий светкодиот и жолтый резиновый колпачек (в автомагазинах для подсветки приборов продаются)

el’Dmitriy, с белыми мигающими в Барнауле точно так же, как и с жёлтыми 🙂

HDH, спасибо, зайду, оценю.

Dfcbkbq, а как её подключать? В инете схемку видел, но для человека, радиоразвитие которого остановилось при Брежневе, она осталась китайской грамотой 🙂

macar2005, мне нужен жёлтый или оранжевый цвет, а в наших краях такие не водятся. В москве водятся, но ценники даже там конские. Да и мне лучше 3 вольта, чем 12.

В автомобильном магазине , посередине стоит отдел с светодиодами, всякими, там тебе проблему решат на раз=два.))))))

ты хоть расскажи, для чего?
ЗЫ ачепятка нештяг

[QUOTE= для человека, радиоразвитие которого остановилось при Брежневе, она осталась китайской грамотой 🙂
[/QUOTE]

В таком случае нужно-либо искать готовое изделие,благо сейчас не брежневские времена,найти можно всё.Либо найти умельца(или профессионала),который это может спаять за 5 минут на коленке.Я своему сыну в конце 80-х паял на К561ЛА7 сирену с моргалкой на пожарную машину.Монтаж делается на ножках микросхемы. Частота мигания подбирается изменением резистора(который 100-500Ком) или подбором конденсатора-чем больше ёмкость-тем меньше частота.Прошу не критиковать за художественные способности-рисовал в пейнте,второпях,по памяти.Если светодиоды не очень мощные,то можно обойтись без транзистора,но тогда микросхема будет работать на пределе-надолго не хватит(правда ребёнку игрушка быстрее надоест)

6 способов решить проблему мигания светодиодных и энергосберегающих ламп

Чаще всего с вопросом почему мигает светодиодная лампа вы можете столкнуться после ремонта или замены обычных ламп накаливания на энергосберегающие. Решить эту проблему можно 6 разными способами. Но чтобы узнать в чем причина такого странного поведения ламп для начала покопаемся в теории.

Вот одна из типовых схем энергосберегающей лампы.

Напряжение 220В поступает на диодный мост. В итоге получается постоянное напряжение определенной пульсации. Чтобы выровнять эти пульсации используется конденсатор С4. Вот как раз этот конденсатор и является всему виновником.

Подсветка выключателя

Самой главной причиной моргания выключенных светодиодных и энергосберегающих лампочек является наличие подсветки в выключателе. При выключенном выключателе маленький ток все равно продолжает течь по цепи подсветки заряжая фильтрующий конденсатор. Зарядившись, конденсатор пытается запустить схему питания лампы, однако «силы» не хватает и он тут же разряжается, а лампочка кратковременно вспыхивает. Затем все это повторяется снова и снова.

Распространены 6 основных методов избавления мигания выключенных энергосберегающих ламп:

  1. шунтирование резистором
  2. шунтирование конденсатором
  3. подключение подсветки отдельным проводом
  4. использование проходного выключателя
  5. демонтаж подсветки внутри выключателя
  6. включение параллельно светодиодной обычной лампочки

Шунтирование резистором

Бороться с миганием можно зашунтировав схему определенным сопротивлением. Для этого берете резистор сопротивлением 1мОм и мощностью от 0,5 до 2Вт. Для безопасности лучше заизолировать его термоусадкой.
Лучшее место подключения для резистора — это распределительная коробка. Подключаете его между нулевым и фазным проводами лампочки (параллельно энергосберегайке). Особенно удобно подключать этот резистор через зажимы Wago.

После этого ваша лампа перестанет моргать.

Если ваша распредкоробка запрятана и к ней нет доступа (хотя это уже является нарушением), или в ней нет свободного места, то резистор можно припаять прямо к фазному и нулевому проводу люстры. После чего запрятать концы в клеммник.

Метод имеет большой минус.

Сопротивление будет греться, а при неправильном подборе мощности и вовсе может привести к пожару.

Кроме того, современные электронные счетчики в квартире будут учитывать расход энергии на нагрев сопротивления, и вы в конечном итоге будет платить не только за освещение, но и за эту «модернизацию».

Устраняем мигание светодиодной лампы с помощью конденсатора

Если у вас нет резистора, то вместо него можно воспользоваться конденсатором емкостью от 0,01 до 1мкФ и напряжением с двухкратным запасом от импульсных помех 2*220=440В. Но надежнее всего брать минимум 630В.

Когда нет конденсатора на 630В, а есть на 400В, то при помощи паяльника можно собрать вот такую схемку.

Здесь один резистор служит для защиты конденсатора от импульсных помех, а второй для разряда конденсатора.

В цепи переменного тока, конденсатор это по сути реактивное сопротивление, которое не учитывается эл.счетчиком и в отличии от резистора конденсатор не греется.

Поэтому установка конденсатор более предпочтительнее и безопаснее. Устанавливайте его в те же места, что и вышеописанные с использованием сопротивления (распредкоробка, клеммник люстры).

Где найти такой конденсатор? Чтобы не бегать по радиомагазинам можно просто разобрать уже сгоревшую энергосберегающую лампу и вытащить оттуда или взять из обычного стартера для люминисцентных ламп. Правда есть одно НО. Применять лучше бумажный или керамический, т.к. электролитический при скачках напряжения может не безопасно взорваться. Так что если вы взяли именно его в качестве шунта, обязательно берите с большим запасом по напряжению.

Отдельный нулевой провод

Если у вас выключатель находится в одном блоке с розеткой или к выключателю подведен еще и нулевой провод, то подсветку можно жестко подключить к фазе и нулю. Она будет гореть постоянно, но лампочка моргать уже не будет. Метод связан с прокладкой дополнительных проводов и не очень удобен.

Проходной выключатель

Также можно воспользоваться проходным выключателем вместо обычного. В этом случае в одном положении будет гореть лампочка, а во втором подсветка. Лампочка также моргать не будет.

Это достигается за счет прямой подачи в отключенном положении на лампу только нулевых проводников.

И уже никакие наводки не заставят ее засветиться. Правда здесь также нужно заводить нулевой проводник на выключатель. Зато данный способ позволяет избавиться от мигания, даже когда подсветка не является этому причиной! (об этом сказано ниже).

Если вас не сильно напрягают дополнительные затраты связанные с покупкой проходного переключателя, и залезать в дебри с выбором подходящих резисторов и конденсаторов у вас нет желания, то этот метод наиболее оптимальный.

Подключение простой лампочки

А когда в люстре имеется несколько рожков, то можно вместо одной энергосберегающей лампочки параллельно поставить лампу накаливания. Мигания также должны прекратиться.
Метод работает только при наличии нескольких патронов в одной лампе и наверное самый мало затратный.

Здесь есть плюсы и минусы. Минус — вы лишаетесь преимущества экономии электроэнергии, ради которой скорее всего и переходили на энергосберегайки.
Плюс — освещение становится приятнее для глаз. В некоторых ювелирных мастерских применяют именно такой свет.

Демонтаж подсветки

Ну а наконец самый радикальный метод, когда уже сдают нервы — просто выдерните ненавистную подсветку из выключателя. Правда возникает вопрос для чего вы тогда покупали такой выключатель?

Моргает даже без выключателя с подсветкой

А что делать если ваш выключатель без подсветки, а лампа все равно моргает? При отключенном выключателе длинный питающий провод лампы может выступать своеобразной антенной. И если рядом с ним в одной штробе проложены много параллельных проводов под напряжением, то в отключенном проводе лампочки, они начнут наводить свое электрическое поле.

В результате чего образуется потенциал, который может заряжать фильтрующий конденсатор в схеме питания люминесцентной лампы.

Что с этим делать? Все также шунтировать лампу относительно маленьким сопротивлением, конденсатором или применять методы описанные выше.

4 комментария

Здравствуйте.
Вопрос спецам.
Какое потребление в (Вт) если светодиодная(8Вт) тускло светится?
Если поставить резистор?
Если поставить емкость?
формула расчета при конденсаторе 0,5 мкф?
Спасибо.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector