Расчет драйвера для светодиодов

Содержание

Для чего нужен и как выбрать драйвер для светодиодного освещения

Светодиодное освещение получило большую популярность. Среди осветительных приборов данного класса очень удобна светодиодная лента – за счет легкости ее монтажа. Для обеспечения стабильного электропитания нужен преобразователь напряжения – драйвер для светодиодной ленты. Так называемый led driver гарантирует пользователю качество свечения и долговечность работы светодиодов.

Назначение и принцип работы

Драйвер для светодиода – это электронное устройство, стабилизированный импульсный преобразователь. Функциональное назначение заключается в стабилизации тока, поступающего к led-лампе. Именно тока, в отличие от блока питания, стабилизирующего напряжение. На сегодняшний день блоки питания также называют драйверами для светодиодов, основное условие – устойчивые параметры питания постоянным током.

Блок питания трансформирует переменное напряжение 220 В в постоянное заданной величины. Подходит для запитки светодиодных лент, Led планок и отдельных светодиодов, собранных по одному параллельно, когда напряжение на всех элементах неизменное. В этом случае выходное напряжение, указанное на корпусе блока питания, должно соответствовать значению, указанному на светодиодной ленте. А ток, заявленный на БП, должен быть выше тока нагрузки всех светодиодов сборки.

Пример расчета: 1 метр светодиодной ленты напряжения 12 В с плотностью диодов 60 штук на метр потребляет 0,4 А, 5 метров потребляет 2 А, блок питания должен быть с выходным напряжением 12 В и с током выше 2 А (5 Ампер подойдет). Но в данной статье речь пойдет именно о лед-драйверах, стабилизирующих ток.

Драйвер обеспечивает равномерное свечение более разветвленных светодиодных конструкций, в которых наблюдается различное падение напряжений на светодиодах. Стабилизатор предоставляет одинаковое значение тока во всех точках, а выходное напряжение меняется в заданном диапазоне. Мощность сложной светодиодной схемы увеличивается, но как обеспечить полноценное электропитание?

При переменном токе значительная доля мощности теряется на сглаживающих резисторах сборки, и КПД падает. Но с драйвером, стабилизирующим ток, сглаживающие сопротивления не требуются, а КПД остается очень высоким.

Применяются для запитки светодиодного освещения от электрической сети 220 В в помещениях. Для питания лед-диодов в автомобилях, велосипедных фарах, ручных фонариках.

Основные характеристики

Параметры указаны на корпусе лед-драйвера:

  1. Номинальная мощность – определяет нагрузку, которую можно подключить к данному преобразователю, зависит от мощности каждого диода, цвета и количества.
  2. Рабочий ток – прямо пропорционален мощности светодиодов и интенсивности их излучения.
  3. Выходное напряжение – зависит от схемы соединения светодиодов и их количества.

Мощность номинальная рассчитывается по формуле:

где PLED – мощность одного диода (часто встречающиеся 0,35 А и 0,7 А),

N – количество диодов в схеме.

Мощность драйвера (указана на корпусе) должна быть больше расчетного значения на 20–30%. Pmax = 1,3*Pн. Мощность нагрузки зависит от цвета следующим образом:

  • красный диод имеет падение напряжения 1,9–2,4 В при 0,35 А. Мощность составит в среднем 0,75 Вт.
  • зеленый диод имеет падение напряжения 3,3–3,9 В при 0,35 А. Мощность составит в среднем 1,25 Вт.

Драйвером на 10 Вт можно запитать 13 красных или 8 зеленых светодиодов.

Существуют почти все цвета светодиодов: красный, оранжевый, желтый, зеленый, синий, белый. Величины падения напряжения можно посмотреть в техдокументации на диод.

По типу устройства драйверы делятся на линейные и импульсные:

  1. Линейные – основываются на токовом генераторе с р-канальным транзистором. Дают плавную стабилизацию тока при нестабильном напряжении. Простая конфигурация, небольшой КПД = 85%, дешевизна и большая теплоотдача предполагают использование в маломощных схемах светодиодов. Плюс – плавный режим работы, не создающий электромагнитные высокочастотные помехи.
  2. Импульсные – образуют на выходе высокочастотные импульсы. Принцип работы – ШИМ (широтно-импульсная модуляция). Средняя величина выходного тока обеспечивается коэффициентом заполнения (отношение длительности импульса к количеству повторений). Изменение значения среднего тока на выходе происходит из-за вариации величины заполнения от 10 до 80% при неизменной частоте импульсов. Широкое применение получили благодаря высокому КПД (95%), длительному сроку службы и малым размерам. К минусам относится высокий уровень помех.

По наличию гальванической развязки, которая предоставляет повышенный КПД, надежность и безопасность, предпочтение стоит отдавать драйверам, обладающим этим свойством. Если гальванической развязки нет, драйвер стоит дешевле, но есть опасность удара электротоком (нет защиты).

Срок службы

Преобразователь питания служит меньше, чем светодиоды. Оптика проработает 100 тысяч часов, а работа драйвера зависит от эксплуатационных условий – скачков напряжения, перепадов температур, влажности и рабочей нагрузки. Неполная загруженность преобразователя по мощности вредна тем, что неиспользованная мощность возвращается в сеть, создавая перегрузку драйверу.

Срок службы также зависит от качества:

  • низкого качества – 20 тысяч часов (подходит для эксплуатации в бытовых помещениях);
  • среднего качества – 50 тысяч часов;
  • высокого качества из брендовых компонентов – 70 тысяч часов.

Следует делать выбор, исходя из окупаемости.

Схема драйвера для светодиодов своими руками

Для изготовления обыкновенного драйвера для светодиода своими руками понадобится 2 транзистора и 2 резистора. Стабилизацию тока, протекающего через диод, производит мощный полевой n-канальный транзистор VT2. Резистор R2 устанавливает наибольший ток, поступающий на светодиод, выполняет функцию датчика тока для транзистора VT1 в цепи обратной связи.

Когда ток, проходящий через VT2, увеличивается, напряжение на R2 падает и транзистор VT1 открывается, снижая напряжение на затворе VT2. Токовое значение на диоде уменьшается и происходит стабилизация выходного тока. Запитать схему можно блоком питания 12в и 0,5 А.

Входное напряжение должно быть минимум на 1–2 В больше падения напряжения на диоде. Сопротивление R2 должно рассеивать мощность 1–2 Вт, в зависимости от нужного тока и питающего напряжения. Транзистор VT2 рассчитан на ток не менее 500 мА: IRFЯ48, IRFZ44N, IRF530. VT1 – маломощный биполярный npn транзистор: BC547, 2N3904, 2N2222, 2N5088 мощностью 0,125-0,25 Вт, сопротивлением 100 вОм. Монтаж можно произвести без платы, так как количество компонентов небольшое.

Как подобрать драйвер для светодиодов

На рынке предлагается широкий выбор драйверов для светодиодов. Многие стабилизаторы не соответствуют указанным параметрам, часто этим грешат китайские производители. Недорогие драйверы «подозрительных» производителей могут занижать мощность и вместо обозначенных 50 Вт фактически выдавать 40 Вт. К тому же у них непродолжительное время работы. Перед покупкой следует отдавать предпочтение брендовым производителям с большим количеством часов работы.

Расчет выбора драйверов для светодиодов

Перед приобретением устройства желательно определиться, какие параметры требуются для драйвера. Взять для примера 6 светодиодов током 0,3 А с падением напряжения 12В. Выбор драйвера определяется схемой соединения светодиодов:

Читайте также:  Соединение монтажных проводов с использованием скрутки

  1. Параллельная схема – потребуется преобразователь на 6 В и ток 0,6 А. Напряжения нужно вдвое меньше, но тока – вдвое больше. Минус схемы: токи в отдельной ветке различны из-за неодинаковых параметров светодиодов, поэтому одна из веток будет светиться интенсивней, чем вторая.
  2. Последовательная схема – потребуется драйвер на 12 В и ток 0,3 А. Цепь одна с одинаковым током на всем протяжении. Диоды излучают свет все с одинаковой яркостью. Минус схемы – при большом количестве диодов потребуется преобразователь с очень большим напряжением.
  3. Последовательно-параллельная схема – потребуется driver с такими же характеристиками, как при параллельной схеме, но диоды будут светить с одинаковой интенсивностью. Минус схемы – в первый момент подачи питания в одном из диодов (из-за различных характеристик) может оказаться ток, превышающий номинальное значение в два раза. Светодиоды выдерживают непродолжительные скачки тока, но все же эта схема менее предпочтительна. Не допускается соединять более двух диодов параллельно, так как скачок тока будет значительным и может вывести из строя осветительный элемент.

Во всех трех случаях мощность драйвера одинакова, составляет 3,6 Вт (Ватт), рассчитывается по формуле:

где I – сила тока (Ампер), U – напряжение (Вольт).

Мощность преобразователя не зависит от схемы соединения светодиодов, а зависит лишь от их количества.

Приобрести данный товар можно в:

  • интернет-магазинах производителей, Aliexpress или Ebay;
  • специальных пунктах реализации электроники и радиодеталей.

Рекомендуется тщательно подбирать драйверы для светодиодов, от этого зависит срок их службы.

Как правильно подобрать драйвер для светодиодов

Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света, а срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов.

Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.

Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это источник стабильного тока, но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.

Электронное устройство (по сути — стабилизированный импульсный преобразователь) подбирается под необходимую нагрузку, будь то набор отдельных светодиодов, собранных в последовательную цепочку, или параллельный набор таких цепочек, либо может быть лента или вообще один мощный светодиод.

Стабилизированный источник питания постоянного напряжения хорошо подойдет для питания светодиодных лент, LED-линеек, или для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно, — то есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.

Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, – потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, – и готово.

Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.

Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы, однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), – поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.

Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.

Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.

Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.

Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.

Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — импульсный ШИМ-преобразователь на специализированной микросхеме, со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.

Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.

Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.

Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.

На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.

Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.

Как правильно выбрать драйвер для светодиодного светильника

Опубликовано ПроспектГрупп в 17.02.2019 17.02.2019

Светодиодное освещение приобрело популярность в начале 2000-х годов. С тех времен появилось огромное количество производителей и большое разнообразие светодиодных источников света. Каждый год выпускается более тысячи новинок для всех отраслей рынка. Производители предоставляют гарантию на светильники в среднем от 3 до 5 лет.
Сердцем светодиодного светильника является драйвер — блок питания. В 96% случаях именно он является следствием поломки. Если светильник выходит из строя после гарантийного срока, то не всегда выгодно покупать новый или отправлять его ремонтировать на завод. Удобнее подобрать к нему драйвер, который продлит срок службы светодиодного светильника.

Читайте также:  Паяльная станция на atmega8 и дисплее lph8731-3c

Чтобы правильно подобрать замену блоку питания следует учесть два важных фактора:
1. Драйвер светодиодного светильника имеет на выходе постоянный ток, а не постоянное напряжение. Например, 240 мА, 300 мА, 350 мА, 700 мА и выше.
2. Выходное напряжение драйвера — “плавающее”, т.е. находится в диапазоне значений. Например, от 40В до 97В.

Таким образом итоговая характеристика блока питания может выглядеть следующим образом: Output — выходное напряжение — 65…110В, выходной ток — 700мА.

Если у вас нет желания и времени изучать теорию, отправьте запрос и получите от нас список блоков питания, подходящих для ваших светодиодных светильников

РАЗБЕРЕМ ПЕРВЫЙ ПРИМЕР

У светодиодного светильника не работает блок питания. Его характеристики:
Выходной ток 350мА, диапазон выходного напряжения 12-35В.
Это означает, что аналогичный драйвер должен быть с выходным током 350мА и диапазоном напряжения, близким к оригиналу, либо быть с более широким интервалом. Например, 10-36В или 12-38В.

ВТОРОЙ ПРИМЕР

У светодиодного LED драйвера следующие характеристики: 36х1W, OUTPUT 60-120V, 350mA Max.
Расшифровка: выходное напряжение 60-120В, максимальный выходной ток равен 350мА, максимальная мощность 36Вт.
В данном примере у источника питания широкий выходной диапазон питания. По закону Ома при напряжении 120В и токе 350мА, его мощность должна быть 42Вт, но по маркировке видно, что нагрузка не должна превышать 36Вт.
Поэтому реальный диапазон выходного напряжения у аналога может быть скорректирован до значений, например, 90-108В или 80-114В.

ЛАЙФХАК

Имеют место быть случаи, когда не удается подобрать замену драйверу один в один по току или диапазону напряжения. Попробуйте вместо одного блока питания на светильник, сделать расчет формата “один блок на два светильника”, подключив его параллельно или последовательно.

! При последовательном соединении складывается напряжение. Ток остается неизменным.
! При параллельном соединении складывается значение выходного тока. Напряжение не изменяется.

Рассмотрим на примере по картинке:

Output Voltage: 25…40V Output Current: 350mA
Последовательное соединение: (25…40В)+(25…40В) = 50…80В , 350мА
Параллельное соединение: 25…40В , 350мА+350мА = 700мА

Если у вас нет желания и времени делать подбор, отправьте запрос и получите от нас список драйверов, подходящих для ваших светодиодных светильников

Смотрите также видео: Ключевые факторы выбора светодиодных светильников

Расчет сопротивления резистора для светодиодов: онлайн-калькулятор

Светодиоды пришли на смену традиционным системам освещения – лампам накаливания и энергосберегающим лампам. Чтобы диод работал правильно и не перегорел, его нельзя подключать напрямую в питающую сеть. Дело в том, что он имеет низкое внутреннее сопротивление, потому если подключить его напрямую, то сила тока окажется высокой, и он перегорит. Ограничить силу тока можно резисторами. Но нужно подобрать правильный резистор для светодиода. Для этого проводятся специальные расчеты.

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Исходя из закона Ома, рассчитываем по такой формуле:

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Онлайн-калькулятор расчета сопротивления

Задача усложняется, если вы хотите подключить не один, а несколько диодов.

Для облегчения самостоятельных расчетов мы подготовили онлайн-калькулятор расчета сопротивления резисторов. Если подключать несколько светодиодов, то нужно будет выбрать между параллельным и последовательным соединениями между ними. И для этих схем нужны дополнительные расчеты для источника питания. Можно их легко найти в интернете, но мы советуем воспользоваться нашим калькулятором.

Вам понадобится знать:

  1. Напряжение источника питания.
  2. Характеристику напряжения диода.
  3. Характеристику тока диода.
  4. Количество диодов.

А также нужно выбрать параллельную или последовательную схему подключения. Рекомендуем ознакомиться с разницей между соединениями в главах, которые мы подготовили ниже.

В каких случаях допускается подключение светодиода через резистор

Никакие диоды, в том числе светодиоды, нельзя включать без ограничения проходящего тока. Резисторы в таком случае просто необходимы. Даже небольшое изменения напряжения вызывают очень сильное изменение тока и, следовательно, перегрев диода.

Параллельное соединение

Для тех, кто уже сталкивался на практике со схемами подключения светодиодного освещения, вопрос о выборе между параллельным и последовательным соединением обычно не стоит. Чаще всего выбирают схему последовательного соединения. У параллельного соединения для светодиодов есть один важный недостаток – это удорожание и усложнение конструкции, потому что для каждого диода нужен отдельный резистор. Но такая схема имеет и большой плюс – если сгорела одна линия, то перестанет светить только один диод, остальные продолжат работу.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Объясняется достаточно просто: если перегорит один светодиод, то на другой (-ие) может попасть больший ток и начнется перегрев. Потому при параллельной схеме подключения каждому диоду нужен отдельный резистор.

Последовательное соединение светодиодов

Именно такое соединение пользуется популярностью. Объясняется такой частый выбор простым примером. Представьте, что в елочной гирлянде для каждого светодиода подобран резистор. А в гирлянде этих лампочек бывает более сотни! Параллельное соединение в данном случае невыгодно и трудоемко.

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Сегодня можно подобрать драйвер под любое количество светодиодов. Но рекомендуем не брать китайские аналоги! Кроме того, что они быстрей изнашиваются, ещё могут выдавать не те характеристики в работе, которые заявлены на упаковке.

Если светодиодов не так много, подойдут и резисторы вместо достаточно высокого по цене драйвера.

Интересное видео по теме:

В заключение

Пишите комментарии и делитесь статьей в социальных сетях! Если возникли вопросы, можно найти в интернете дополнительные видео для расчета сопротивления резистора и на другие близкие темы.

Как правильно выбрать драйвер для светодиодного светильника

Опубликовано ПроспектГрупп в 17.02.2019 17.02.2019

Светодиодное освещение приобрело популярность в начале 2000-х годов. С тех времен появилось огромное количество производителей и большое разнообразие светодиодных источников света. Каждый год выпускается более тысячи новинок для всех отраслей рынка. Производители предоставляют гарантию на светильники в среднем от 3 до 5 лет.
Сердцем светодиодного светильника является драйвер — блок питания. В 96% случаях именно он является следствием поломки. Если светильник выходит из строя после гарантийного срока, то не всегда выгодно покупать новый или отправлять его ремонтировать на завод. Удобнее подобрать к нему драйвер, который продлит срок службы светодиодного светильника.

Читайте также:  Устранение перегрузки домашней электропроводки

Чтобы правильно подобрать замену блоку питания следует учесть два важных фактора:
1. Драйвер светодиодного светильника имеет на выходе постоянный ток, а не постоянное напряжение. Например, 240 мА, 300 мА, 350 мА, 700 мА и выше.
2. Выходное напряжение драйвера — “плавающее”, т.е. находится в диапазоне значений. Например, от 40В до 97В.

Таким образом итоговая характеристика блока питания может выглядеть следующим образом: Output — выходное напряжение — 65…110В, выходной ток — 700мА.

Если у вас нет желания и времени изучать теорию, отправьте запрос и получите от нас список блоков питания, подходящих для ваших светодиодных светильников

РАЗБЕРЕМ ПЕРВЫЙ ПРИМЕР

У светодиодного светильника не работает блок питания. Его характеристики:
Выходной ток 350мА, диапазон выходного напряжения 12-35В.
Это означает, что аналогичный драйвер должен быть с выходным током 350мА и диапазоном напряжения, близким к оригиналу, либо быть с более широким интервалом. Например, 10-36В или 12-38В.

ВТОРОЙ ПРИМЕР

У светодиодного LED драйвера следующие характеристики: 36х1W, OUTPUT 60-120V, 350mA Max.
Расшифровка: выходное напряжение 60-120В, максимальный выходной ток равен 350мА, максимальная мощность 36Вт.
В данном примере у источника питания широкий выходной диапазон питания. По закону Ома при напряжении 120В и токе 350мА, его мощность должна быть 42Вт, но по маркировке видно, что нагрузка не должна превышать 36Вт.
Поэтому реальный диапазон выходного напряжения у аналога может быть скорректирован до значений, например, 90-108В или 80-114В.

ЛАЙФХАК

Имеют место быть случаи, когда не удается подобрать замену драйверу один в один по току или диапазону напряжения. Попробуйте вместо одного блока питания на светильник, сделать расчет формата “один блок на два светильника”, подключив его параллельно или последовательно.

! При последовательном соединении складывается напряжение. Ток остается неизменным.
! При параллельном соединении складывается значение выходного тока. Напряжение не изменяется.

Рассмотрим на примере по картинке:

Output Voltage: 25…40V Output Current: 350mA
Последовательное соединение: (25…40В)+(25…40В) = 50…80В , 350мА
Параллельное соединение: 25…40В , 350мА+350мА = 700мА

Если у вас нет желания и времени делать подбор, отправьте запрос и получите от нас список драйверов, подходящих для ваших светодиодных светильников

Смотрите также видео: Ключевые факторы выбора светодиодных светильников

Как подобрать драйвер для светодиодов: по току, мощности и напряжению

Драйвер (от англ. driver – «водитель» или «задающее устройство») – устройство, которое обеспечивает светодиод необходимым током. По сути, это блок питания, только он регулирует не напряжение, а ток и предназначен для светодиодов. Это своеобразный «водитель», обеспечивающий их длительную и стабильную работу.

Светодиод – это полупроводниковый прибор, который под воздействием приложенного напряжения излучает свет. Чтобы работать в нормальном режиме, ему необходим постоянный и строго стабилизированный ток.

Это особенно важно для мощных светодиодов, поскольку они более чувствительны к всевозможным перепадам и скачкам напряжения. При снижении величины питающего тока мгновенно уменьшается светоотдача, а при увеличении светодиод перегревается и сгорает. Драйвер предотвращает такие ситуации. Он стабилизирует ток, исключает его скачки и перепады. Но для этого важно знать, как выбрать драйвер для светодиодов.

Как подобрать драйвер для светодиодов

В первую очередь необходимо определиться с типом драйвера. Он может быть:

Работает очень просто – за счет резистора R, выполняющего роль ограничителя, при изменении напряжения восстанавливает необходимый ток. На представленной схеме драйвера для светодиодов можно наглядно видеть принцип линейной регулировки тока.

Недостатком здесь считается тот факт, что через резистор тоже течет ток, из-за чего мощность бесполезно рассеивается просто на нагрев окружающего воздуха. Причем чем выше входное напряжение, тем больше потери. Плюс линейной схемы – простота. Такие драйверы недорого стоят и имеют достаточную надежность.

Линейные драйверы применяются для не слишком мощных светодиодов. У диодов с большим рабочим током драйвер будет потреблять больше энергии, чем сам световой элемент.

Здесь драйвер только следит за током через светодиод и управляет ключом, собранным на транзисторе. Вместо резистора в схеме присутствует кнопка КН, а еще в нее добавлен конденсатор, который заряжается при нажатии этой кнопки, заставляя светодиод загораться. Конденсатор питает диод, пока ток не опустится ниже допустимого. После этого нужно вновь нажать кнопку КН.

Эта схема более эффективна для мощных светодиодов, поскольку здесь минимальные потери энергии. Ввиду сложной конструкции импульсные драйверы дороже стоят, но их применение окупается высокой производительностью и высоким качеством стабилизации тока.

Стоит также сказать про диммируемые драйверы. Они позволяют регулировать интенсивность света, который исходит от диодов, за счет изменения входных и выходных параметров тока. Еще диммируемый драйвер может менять цвет свечения. К примеру, при меньшей мощности белые диоды будут светить желтым светом, а при большей – синим.

При подборе драйвера необходимо обращать внимание на следующие характеристики:

  • входное и выходное напряжение;
  • выходная мощность;
  • выходной ток;
  • степень защиты.

Входное напряжение

При подборе входного напряжения драйвера необходимо учитывать напряжение источника питания, к которому будет подключен светодиодный светильник. Напряжение источника должно входить в диапазон значений входного напряжения драйвера.

Тип тока

Он может быть переменным AC или постоянным DC. Эту информацию, как и значения входного напряжения можно найти на корпусе самого драйвера. Для подключения от розетки ток должен быть переменным, а от бортовой сети автомобиля – постоянным.

Выходные параметры: напряжение, ток и мощность

При расчете драйвера для светодиодов необходимо учитывать тип их соединения. При последовательной схеме нужно сложить напряжения всех диодов цепочки. К примеру, для 3 светодиодов с током 300 мА и рабочим напряжением 3,3 В общее напряжение будет 3 · 3,3 = 9,9 В. Ток же остается одним для всех диодов – 300 мА. Выходит, что драйвер должен иметь выходной ток 300 мА и выходное напряжение 3,3 В.

Но при выборе не стоит искать драйвер именно с такими параметрами. Чаще всего устройство рассчитано на определенный диапазон. Именно в него должны укладываться рассчитанная величина напряжения и тока.

Разберем на рассматриваемом примере, как рассчитать драйвер для светодиодов по мощности:

  1. Мощность – это ток, умноженный на напряжение: P = I · U = 0,3 · 9,9 = 2,97 Вт.
  2. Рассчитанная мощность диодов равна мощности, которая должна быть у драйвера. Но нужно добавить запас 10-20%. Тогда получится, что оптимальным будет драйвер с мощностью от 2,97 · 1,1 = 3,27 до 2,97 · 1,2 = 3,5 Вт.

Степень защиты

Существуют драйверы в закрытом и открытом исполнении. В первом случае устройство имеет корпус, который защищает от влаги и пыли. Открытый драйвер лучше встраивать непосредственно в корпус светильника, если тот обладает хорошей защитой от окружающей среды. Если же у светильника есть вентиляционные отверстия или он будет установлен в таком помещении, как гараж, лучше выбрать драйвер с собственным корпусом.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector