Рассчитать токи во всех ветвях электрической цепи

Содержание

Расчет электрических цепей

Для вычисления рабочих параметров радиотехнических устройств и отдельных схем применяют специальные методики. После изучения соответствующих технологий результат можно узнать быстро, без сложных практических экспериментов. Корректный расчет электрических цепей пригодится на стадии проектирования и для выполнения ремонтных работ.

Категории элементов и устройств электрической цепи

Для условного изображения определенной цепи применяют специальную схему. Кроме отдельных физических компонентов, она содержит сведения о направлении (силе) токов, уровнях напряжения и другую информацию. Качественная модель показывает реальные процессы с высокой точностью.

Компоненты электрической цепи:

  • источник постоянного или переменного тока (Е) – аккумулятор или генератор, соответственно;
  • пассивные элементы (R) – резисторы;
  • компоненты с индуктивными (L) и емкостными (С) характеристиками;
  • соединительные провода.

На рисунке обозначены:

  • ветви – участки цепи с одним током;
  • узлы – точки соединения нескольких ветвей;
  • контур – замкнутый путь прохождения тока.

При решении практических задач выясняют, как узнать силу тока в отдельных ветвях. Полученные значения используют для анализа электрических параметров. В частности, можно определять падение напряжения на резисторе, мощность потребления подключенной нагрузки. При расчете цепей переменного тока приходится учитывать переходные энергетические процессы, влияние частоты.

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.

Закон Ома для участка цепи

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении. Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом. Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи. При последовательном соединении Rэкв = R1 + R2 +…+ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + … + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Второе правило Кирхгофа действительно для любых комбинаций пассивных компонентов в отдельных ветвях. Его часто применяют для итоговой проверки. Чтобы уточнить корректность выполненных действий, складывают падения напряжений на отдельных элементах. Следует не забывать о том, что дополнительные источники ЭДС делают результат отличным от нуля.

Метод преобразования электрической цепи

Как определить силу тока в отдельных контурах сложных схем? Для решения практических задач не всегда нужно уточнение электрических параметров на каждом элементе. Чтобы упростить вычисления, используют специальные методики преобразования.

Расчет цепи с одним источником питания

Для последовательного соединения пользуются рассмотренным в примере суммированием электрических сопротивлений:

Rэкв = R1 + R2 + … + Rn.

Контурный ток – одинаковый в любой точке цепи. Проверять его можно в разрыве контрольного участка мультиметром. Однако на каждом отдельном элементе (при отличающихся номиналах) прибор покажет разное напряжение. По второму закону Кирхгофа можно уточнить результат вычислений:

E = Ur1 + Ur2 + Urn.

В этом варианте в полном соответствии с первым постулатом Кирхгофа токи разделяются и соединяются во входных и выходных узлах. Показанное на схеме направление выбрано с учетом полярности подключенного аккумулятора. По рассмотренным выше принципам сохраняется базовое определение равенства напряжений на отдельных компонентах схемы.

Как найти ток в отдельных ветвях, демонстрирует следующий пример. Для расчета приняты следующие исходные значения:

По следующему алгоритму будут определяться характеристики цепи:

  • базовая формула для трех элементов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3.

  • подставив данные, вычисляют Rобщ = 10 * 20 * 15 / (10*20 + 20*15 +10*15) = 3000 /(200+300+150) = 4,615 Ом;
  • I = 12/ 4,615 ≈ 2,6 А;
  • I1 = 12/ 10 = 1,2 А;
  • I2 = 12/20 = 0,6 А;
  • I3 = 12/15 = 0,8 А.

Как и в предыдущем примере, рекомендуется проверить результат вычислений. При параллельном соединении компонентов должно соблюдаться равенство токов на входе и суммарного значения:

I = 1,2 + 0,6 + 0,8 = 2,6 А.

Если применяется синусоидальный сигнал источника, вычисления усложняются. При включении в однофазную розетку 220V трансформатора придется учитывать потери (утечку) в режиме холостого хода. В этом случае существенное значение имеют индуктивные характеристики обмоток и коэффициент связи (трансформации). Электрическое сопротивление (ХL) зависит от следующих параметров:

Вычисляют ХL по формуле:

Чтобы находить сопротивление емкостной нагрузки, подойдет выражение:

Следует не забывать о том, что в цепях с реактивными компонентами сдвигаются фазы тока и напряжения.

Расчет разветвленной электрической цепи с несколькими источниками питания

Пользуясь рассмотренными принципами, вычисляют характеристики сложных схем. Ниже показано, как найти ток в цепи при наличии двух источников:

  • обозначают компоненты и базовые параметры во всех контурах;
  • составляют уравнения для отдельных узлов: a) I1-I2-I3=0, b) I2-I4+I5=0, c) I4-I5+I6=0;
  • в соответствии со вторым постулатом Кирхгофа, можно записать следующие выражения для контуров: I) E1=R1 (R01+R1)+I3*R3, II) 0=I2*R2+I4*R4+I6*R7+I3*R3, III) -E2=-I5*(R02+R5+R6)-I4*R4;
  • проверка: d) I3+I6-I1=0, внешний контур E1-E2=I1*(r01+R1)+I2*R2-I5*(R02+R5+R6)+I6*R7.

Дополнительные методы расчета цепей

В зависимости от сложности устройства (электрической схемы), выбирают оптимальную технологию вычислений.

Метод узлового напряжения

Основные принципы этого способа базируются на законе Ома и постулатах Кирхгофа. На первом этапе определяют потенциалы в каждом узле. Далее вычисляют токи в отдельных ветвях с учетом соответствующих электрических сопротивлений (отдельных компонентов или эквивалентных значений). Проверку делают по рассмотренным правилам.

Читайте также:  Фоновый источник света

Метод эквивалентного генератора

Эта технология подходит для быстрого расчета тока в одной или нескольких контрольных ветвях.

В данной методике общую цепь представляют в виде источника тока с определенным напряжением и внутренним сопротивлением. Далее выполняют вычисления по контрольной ветви с применением стандартного алгоритма.

Видео

Решение задач по электротехнике (ТОЭ)

Срок выполненияот 1 дня
Ценаот 100 руб./задача
Предоплата50 %
Кто будет выполнять?преподаватель или аспирант

УЗНАТЬ СТОИМОСТЬ РАБОТЫ
Теоретические основы электротехники являются фундаментальной дисциплиной для всех электротехнических специальностей, а так же для некоторых неэлектротехнических (например, сварочное производство). На этой дисциплине основываются все спец. предметы электриков. Несмотря на большой объем дисциплины и кажущуюся сложность, она основана всего на нескольких законах. В этой статье я постараюсь рассмотреть решение основных задач, встречающихся в данном курсе.

Законы Кирхгофа. Расчет цепей постоянного тока

В электротехнике существует два основных закона, на основании которых, теоретически можно решить все цепи.

Первый закон Кирхгофа выглядит следующим образом.
Сумма токов, входящих в узел, равна сумме токов, отходящих от узла.

Для данного рисунка имеем:
I1 + I2 + I4 = I3 + I5.

Второй закон Кирхгофа.
Сумма напряжений вдоль замкнутого контура равна сумме ЭДС вдоль этого же контура. Для схемы на рисунке (стрелкой обозначим направление вдоль контура, которое будем считать условно положительным).

Начиная с узла, где сходятся токи I1, I3, I4 запишем все напряжения (по закону Ома):
-I1⋅R1 — I1⋅R2 – в первой ветви (знак минус означает, что ток имеет направление противоположное выбранному направлению контура).
I3⋅R3 – во второй ветви (знак «плюс», направление совпадает).

Теперь запишем ЭДС:
E2 — E3 (знак «минус» у E3, потому что направление ЭДС противоположно направлению контура).

В соответствии с законом Кирхгофа напряжения равны ЭДС:
-I1⋅R1 — I1⋅R2 + I3⋅R3 = E2 — E3.

Как видите, все довольно просто.

В большинстве случаев перед студентами стоит задача рассчитать величины токов во всех ветвях, зная величины ЭДС и резисторов. Для расчета сложной, разветвленной цепи постоянного тока, например этой, найденной на просторах интернета, воспользуемся следующими действиями.

Для начала задаемся условно положительными направлениями токов в ветвях (это значит, что ток может течь и в противоположном направлении, тогда он будет иметь отрицательное значение).

Составляем систему уравнений по второму закону Кирхгофа для каждого замкнутого контура так, чтобы охватить каждый неизвестный ток (в данной схеме имеем 3 таких контура). Направления контуров выбираем для удобства по часовой стрелке (хоть это и необязательно):

По первому закону Кирхгофа составляем столько уравнений, чтоб охватить все неизвестные токи (в данной схеме для любых трех узлов):

Итого, имеем систему из 6 уравнений. Чтобы решить такую систему можно воспользоваться программой MathCad. Решается она следующим образом:

Это скриншот программы. Знак «равно» в уравнения должен быть жирным (вкладка «булевы», CTRL + “=/+”).
MathCad может решать системы любого порядка (например, схема имеет 10 независимых контуров). Но, во-первых, функция “Given” не работает с комплексными числами (об этом позже), во-вторых, не всегда есть под рукой компьютер или условие задачи поставлено так, что требуется решить схему другим методом.

Данный метод решения задач называется методом непосредственного применения законов Кирхгофа. Большинство студентов старших курсов (уже прослушавших курс ТОЭ), инженеров-электриков, даже преподавателей и докторов наук могут решать схемы только этим методом, т.к. другие методы применяются крайне редко.

Переменный ток.

Переменный синусоидальный ток (или напряжение) задается уравнением:

Здесь Im – амплитуда тока.
ω – угловая частота, находится как ω = 2⋅π⋅f (обычно в условии задается либо f, либо ω)
φ – фаза.

Обычно в задачах условия задают либо в таком формате, либо в действующем значении. Амплитудное больше действующего всегда в √2 раз. Если в условии задано просто значение (например, E1 = 220 В), то это значит, что дано действующее значение.

Если же в условии дано «250⋅sin(314t – 15°), В», то его нужно перевести в действующее комплексное значение.

Про комплексные числа можно подробнее прочитать на нашем сайте.

Для перевода величин к действующим необходимо:

,

Точечка над I означает, что это комплекс.

Чтобы не путать с током, в электротехнике комплексная единица обозначается буквой «j».

Для заданного напряжения имеем:

В решении задач обычно оперируют действующими значениями.

В переменном токе вводятся новые элементы:

Катушка индуктивностиL – [Гн]
Конденсатор [емкость]С – [Ф]

Их сопротивления (реактивные сопротивления) находятся как:


(сопротивление конденсатора — отрицательное)

Например, имеем схему, она подключена на напряжение 200 В, имеющего частоту 100 Гц. Требуется найти ток. Параметры элементов заданы:

Чтоб найти ток, необходимо напряжение разделить на сопротивление (из закона Ома). Здесь основная задача – найти сопротивление.

Комплексное сопротивление находится как:

Напряжение делим на сопротивление и получаем ток.

Все эти действия удобно проводить в MathCad. Комплексная единица ставится «1i» или «1j». Если нет возможности, то:

  1. Деление удобно производить в показательной форме.
  2. Сложение и вычитание – в алгебраической.
  3. Умножение – в любой (оба числа в одинаковой форме).

Также, скажем пару слов о мощности. Мощность есть произведение тока и напряжения для цепей постоянного тока. Для цепей переменного тока вводится еще один параметр – угол сдвига фаз (вернее его косинус) между напряжением и током.

Предположим, для предыдущей цепи нашли ток и напряжение (в комплексной форме).

Также мощность можно найти и по другой формуле:

В этой формуле — сопряженный комплекс тока. Сопряженный – значит, что его мнимая часть (та, что с j) меняет свой знак на противоположный (минус/плюс).
Re – означает действительная часть (та, что без j).

Это были формулы для активной (полезной) мощности. В цепях переменного тока существует так же и реактивная мощность (генерируется конденсаторами, потребляется – катушками).

Реактивная мощность цепи:

Im – мнимая часть комплексного числа (та, что с j).

Зная реактивную и активную мощность можно подсчитать полную мощность цепи:

Для упрощенного расчета цепей постоянного и переменного тока, содержащих большое число ветвей, пользуются одним из упрощенных методов анализа цепей. Рассмотрим подробнее метод контурных токов.

Метод контурных токов (МКТ)

Данный метод подходит для решения схем, содержащих больше узлов, чем независимых контуров (например, схема из раздела про постоянный ток). Принцип решения состоит в следующем:

    Выделяем независимые контуры (их должно быть столько, чтоб охватить все неизвестные токи). Контурные токи обычно называют I11, I22 и т.д.

Определяем контурные сопротивления (сумма сопротивлений вдоль контура):

Далее определяются общие контурные сопротивления (те, что относятся одновременно к 2 контурам), они берутся со знаком минус:

Также определяем контурные ЭДС (алгебраическая сумма ЭДС вдоль контура):

Далее составляются уравнения (если имеем 4 контура, то система будет из 4 уравнений с 4 контурными токами в каждом, если из 5, то 5 и т.д.):

Данная система легко решается методом Крамера. Также в сети есть много онлайн-калькуляторов.

  • Зная контурные токи, можно найти токи в ветвях:
    I1 = I11 (в первой ветви протекает только контурный ток I11)
    I2 = I33 – I22 (направления контурного тока I33 совпадает с направлением I2, направление I22 – противоположно, поэтому берем со знаком минус)
    По аналогии находим остальные токи.
  • Данный метод, как и другие (например, метод узловых потенциалов, эквивалентного генератора, наложения) пригоден для цепей как постоянного, так и переменного тока. При расчете цепей переменного тока сопротивления элементов приводятся к комплексной форме записи. Система уравнений решается также в комплексной форме.

    Литература

    Из литературы можно порекомендовать Бессонова Л.А. «Теоретические основы электротехники: Электрические цепи». Также много информации в интернете на сайтах, посвященных электротехнике.

    Решение электротехники на заказ

    И помните, что наши решатели всегда готовы помочь Вам с ТОЭ. Подробнее.

    Расчет разветвленной линейной электрической цепи постоянного тока с несколькими источниками электрической энергии

    Для электрической цепи рис. 1, выполнить следующее:

    1. Составить уравнения для определения токов путем непосредственного применения законов Кирхгофа. Решать эту систему уравнений не следует.
    2. Определить токи в ветвях методом контурных токов.
    3. Построить потенциальную диаграмму для любого замкнутого контура, содержащего обе ЭДС.
    4. Определить режимы работы активных элементов и составить баланс мощностей.
    Читайте также:  Регистратор солнечной энергии

    Значения ЭДС источников и сопротивлений приемников:
    E1 = 130 В, Е2 = 110 В, R1 = 4 Ом, R2 = 8 Ом, R3 = 21 Ом, R4 = 16 Ом, R5 = 19 Ом, R6 = 16 Ом.

    Смотрите также
    Пример решения схемы методом контурных токов № 1
    Пример решения схемы методом контурных токов № 2
    Пример решения схемы методом контурных токов № 3
    Пример решения схемы методом контурных токов № 4
    Пример решения схемы методом контурных токов № 5
    Посмотреть видео “Метод контурных токов 2” (пример решения конкретной задачи)

    1. Произвольно расставим направления токов в ветвях цепи, примем направления обхода контуров (против часовой стрелки), обозначим узлы.


    Рис. 2

    2. Для получения системы уравнений по законам Кирхгофа для расчета токов в ветвях цепи составим по 1-му закону Кирхгофа 3 уравнения (на 1 меньше числа узлов в цепи) для узлов 1,2,3:




    По второму закону Кирхгофа составим m – (р – 1) уравнений (где m – кол-во ветвей, р – кол-во узлов ), т.е. 6 – (4 – 1) = 3 для контуров I11, I22, I33:



    Токи и напряжения совпадающие с принятым направлением обхода с «+», несовпадающие с «-».
    Т.е. полная система уравнений для нашей цепи, составленная по законам Кирхгофа:





    3. Определим токи в ветвях методом контурных токов. Зададимся направлениями течения контурных токов в каждом контуре схемы и обозначим их I11, I22, I33 (см. рис. 2)

    4. Определим собственные сопротивления трех контуров нашей цепи, а так же взаимное сопротивление контуров:

    (Ом)
    (Ом)
    (Ом)
    (Ом)
    (Ом)
    (Ом)

    5. Составим систему уравнений для двух контуров нашей цепи:

    Подставим числовые значения и решим.

    (А)
    (А)
    (А)

    Определим фактические токи в ветвях цепи:
    (А) направление совпадает с выбранным
    (А) направление совпадает с выбранным
    (А) направление совпадает с выбранным
    (А) направление тока потивоположно выбранному
    (А) направление совпадает с выбранным
    (А) направление совпадает с выбранным

    6. Проверим баланс мощностей:

    (ВА)
    Небольшая разница в полученных результатах является результатом погрешности при округлении числовых значений токов и сопротивлений.

    7. Построим потенциальную диаграмму контура изображенного на рис. 3. В качестве начальной точки примем узел 1.

    Рис.3

    Для построения потенциальной диаграммы определим падения напряжения на каждом сопротивлении, входящем в выбранный контур.
    (В)
    (В)
    (В)
    (В)
    Потенциал увеличивается если обход осуществляется против направления тока, и понижается если направление обхода совпадает с направлением тока. На участке с ЭДС потенциал изменяется на величину ЭДС. Потенциал повышается в том случае, когда переход от одной точки к другой осуществляется по направлению ЭДС и понижается когда переход осуществляется против направления ЭДС.

    Рис. 4. Потенциальная диаграмма. ЗАКАЗАТЬ РАБОТУ!

    Определить токи в ветвях сложной цепи.

    Решение

    Рассчитать токи во всех участках цепи легче всего методом постепенного свертывания цепи, т.е. упрощения электрической цепи.

    1. Резисторы R2 и R3 соединены параллельно: R23 =

    1. Резисторы R1, R23, R4 cоединены последовательно. Эквивалентное сопротивление всей

    цепи равно сумме этих сопротивлений:

    1. Ток в неразветвленных участках цепи :

    I = I1 = U / RЭ = 120 / 80 =1,5 A

    4. Напряжение между узлами сопротивлений R2 и R3 :

    U23 = I × R23 = 1,5 × 12 = 18 B

    5. Ток в цепи с резистором R2 :

    6. Ток в цепи с резистором R3 :

    7. Ток в цепи с резистором R4 равен току в неразветвленной части цепи, т.к. R1 , R23 и R4

    соединены последовательно: I4 = I1 = 1,5 A.

    8. Напряжение на резисторе сопротивлением R1:

    1. Напряжение на резисторе цепи сопротивлением R4 :

    1. По закону сохранению энергии мощность, отдаваемая источниками, должна равняться мощности, рассеиваемой на всех сопротивлениях цепи.

    Выражение баланса мощностей имеет вид : Σ РИ = Σ РН, где Σ РИ – алгебраическая сумма мощностей, отдаваемых источниками; Σ РН – арифметическая сумма мощностей, потребляемых в сопротивлениях цепи.

    РИ = U×I = 120 × 1,5 = 180 Вт ; Р1 = U1× I = 90 × 1,5 = 135 Вт ;

    Р23 = U23 × I = 18 × 1,5 = 27 Вт ; Р4 = U4 × I = 12 × 1,5 = 18 Вт

    180 Вт = 135 + 27 + 18 = 180 Вт

    Задание для Задачи 1.

    определить эквивалентное сопротивление цепи, токи в неразветвлённых участках и в ветвях цепи, напряжения на резисторах цепи. Составить баланс мощностей

    2. Расчёт сложных цепей методом узловых и контурных уравнений

    Пример расчёта методом узловых и контурных уравнений (по правилам Кирхгофа).

    Задача. Рассчитать токи в цепи, представленной на рисунке, если Е1 = 48 В, Е2 = 36 В,

    1. Определяем количество ветвей цепи : три ветви.

    2. Произвольно задаемся положительными направлениями токов в ветвях (указываем на схеме стрелками) и направлениями обходов в контурах ( по часовой стрелке).

    3. Определяем количество уравнений, составленных по 1 и 2 правилам Кирхгофа (число уравнений равно числу неизвестных токов в цепи): m = 3 (три уравнения )

    4. Определяем число независимых уравнений, составляемых по первому правилу Кирхгофа: (n −1) уравнений, где n − количество узлов в цепи (два); n −1 = 2 − 1 = 1.

    5. Определяем число уравнений, составленных по второму правилу Кирхгофа : m − (n − 1) = 3 − (2 − 1) = 3 − 2 + 1 = 2 .

    6. Составляем систему уравнений : 7. Подставляем числовые значения:

    8. Приведем уравнения к нормальному виду : 9. Вторую и третью строку сократим :

    10. Решаем данную систему способом подстановки ( можно решать различными способами) :

    откуда 70 I1 = 31,5 I1 = 31,5 / 70 = 0,45 A; I1 = 0,45 A

    11. Подставим значение тока I1 в уравнение 10 I1 − 10 I2 = 3 и определим ток второй ветви :

    I2 = (10 ∙ 0,45 −3) / 10 = 0,15 A ; I2 = 0,15 A

    12. Подставим значения токов I1 и I2 в уравнение I1 + I2 = I3 , определим ток третьей ветви :

    13. Поскольку все токи получились положительными, направления всех действительных токов совпадают с

    направлениями токов предполагаемых.

    Задание для Задачи 2.

    Определить токи в ветвях сложной цепи.

    Вариант 1

    3. РАСЧЁТ потенциалов точек ЭЛЕКТРИЧЕСКой ЦЕПи ПОСТОЯННОГО ТОКА

    Расчет потенциалов точек электрической цепи. Потенциальная диаграмма.

    Задача.Рассчитать потенциалы точек и построить потенциальную диаграмму для цепи, показанной на рисунке, если Е1 = 36 В, R01 = 6 Ом, Е2 = 12 В, R02 = 3 Ом, R1 = 20 Ом, R2 = 14 Ом, R3 = 5 Ом.

    1. Определяем величину тока в цепи :

    Ток будет направлен по направлению Е1, т.к. Е1> Е2, т.е. по часовой стрелке.

    2. Примем потенциал точки Аза нулевой φА = 0 ( принять за начальный потенциал можно потенциал

    любой точки, разность потенциалов от этого не изменится.)

    3. Поскольку действительный ток в цепи течет по часовой стрелке, т.е. от точки А к точке В потенциал

    точки А больше потенциала точки В на величину падения напряжения на сопротивлении R1:

    4. Определяем потенциал точки С цепи:

    5. Определяем потенциал точки D цепи :

    у источника потенциал зажима D больше потенциала зажима С ( + > − ) :

    6. Определяем потенциал точки E :

    φD− φE=UDE= I R2; откуда φE = φD − I R2 = 23 − 0,5∙ 14 = 23 − 7 = 16 В

    7. Определяем потенциал точки F :

    φE − φF = E2 ; откуда φF = φE − E2 = 16 − 12 = 4 В

    8. Определяем потенциал точки Q :

    φF − φQ=UFQ = I R02; откуда φQ = φF − I R02 = 4 − 0,5∙ 3 = 4 − 1,5 = 2,5 В

    7. Определяем потенциал точки M :

    φQ− φM = UQM = I R3; откуда φM = φQ − I R3 = 2,5 − 0,5∙ 5 = 2,5 − 2,5 = 0 В

    Разумеется, потенциалы точек А и М равны 0, поскольку обе точки являются однопотенциальными

    8. Построение потенциальной диаграммы.

    По горизонтальной оси откладываются сопротивления цепи с указанием точек, причем сопротивления откладываются не от начала координат, а складываются, т.к. сопротивления в цепи соединены последовательно. Например, для точки В, еще через 6 Ом − точка С ( R01 = 6 Ом ). Поскольку между точками С и D включен идеальный источник( внутреннее сопротивление его вынесено между точками В и С) , сопротивление между ними равно нулю, следовательно по сопротивлениям С и D − одна точка , а по потенциалам − это совершенно различные точки, поскольку между ними находится Е1.

    Аналогичным образом откладываются остальные точки цепи. По вертикали откладываются потенциалы точек. Цепь состоит из линейных элементов, поэтому точки соединяются прямыми линиями С помощью потенциальной диаграммы можно определить ток, протекающий в любом сопротивлении цепи :

    I = ΔU / R. Чем круче идут линии графика, тем больший ток протекает по данному сопротивлению.

    Читайте также:  Замена лампочек на светодиоды в автомобиле

    Расчет электрических цепей постоянного тока методом эквивалентных преобразований

    Расчет электрических цепей постоянного тока методом эквивалентных преобразований

    Основными законами, определяющими расчет электрической цепи, являются законы Кирхгофа.

    На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока, позволяющих сократить вычисления при расчете сложных схем.

    Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

    Преобразуют параллельные и последовательные соединения элементов, соединение «звезда » в эквивалентный «треугольник » и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

    В данной статье по теоретическим основам электротехники рассмотрены примеры расчета линейных электрических цепей постоянного тока с использованием метода эквивалентных преобразований типовых схем соединения источников и потребителей энергии, приведены расчетные формулы.

    Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований

    Задача 1. Для цепи (рис . 1), определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R1 = R2 = 0,5 Ом, R3 = 8 Ом, R4 = R5 = 1 Ом, R6 = 12 Ом, R7 = 15 Ом, R8 = 2 Ом, R9 = 10 Ом, R10= 20 Ом.

    Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:

    Задача 2. Для цепи (рис . 2, а), определить входное сопротивление если известно: R1 = R2 = R3 = R4= 40 Ом.

    Рис. 2

    Исходную схему можно перечертить относительно входных зажимов (рис . 2, б), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивленияможно воспользоваться формулой:

    где R – величина сопротивления, Ом;

    n – количество параллельно соединенных сопротивлений.

    Преобразуем соединение «треугольник » f−d−c в эквивалентную «звезду ». Определяем величины преобразованных сопротивлений (рис . 3, б):

    По условию задачи величины всех сопротивлений равны, а значит:

    На преобразованной схеме получили параллельное соединение ветвей между узлами e–b, тогда эквивалентное сопротивление равно:

    И тогда эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:

    Задача 4. В заданной цепи (рис . 4, а) определить методом эквивалентных преобразований входные сопротивления ветвей a−b, c–d и f−b, если известно, что: R1 = 4 Ом, R2 = 8 Ом, R3 =4 Ом, R4 = 8 Ом, R5 = 2 Ом, R6 = 8 Ом, R7 = 6 Ом, R8 =8 Ом.

    Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d, а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

    Ветвь a−b разрывают, и т.к. сопротивление Ra–b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис . 4, б):

    Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей Rcd и Rbf. Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает ( «закорачивает ») из схемы сопротивления R1, R2, R3, R4 в первом случае, и R5, R6, R7, R8 во втором случае.

    Задача 5. В цепи (рис . 5) определить методом эквивалентных преобразований токи I1, I2, I3 и составить баланс мощностей, если известно: R1 = 12 Ом, R2 = 20 Ом, R3 = 30 Ом, U = 120 В.

    Эквивалентное сопротивлениедля параллельно включенных сопротивлений:

    Эквивалентное сопротивление всей цепи:

    Ток в неразветвленной части схемы:

    Напряжение на параллельных сопротивлениях:

    Токи в параллельных ветвях:

    Баланс мощностей:

    Задача 6. В цепи (рис . 6, а), определить методом эквивалентных преобразований показания амперметра, если известно: R1 = 2 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 40 Ом, R5 = 10 Ом, R6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

    Если сопротивления R2, R3, R4, R5 заменить одним эквивалентным сопротивлением RЭ, то исходную схему можно представить в упрощенном виде (рис . 6, б).

    Величина эквивалентного сопротивления:

    Преобразовав параллельное соединение сопротивлений RЭ и R6 схемы (рис . 6, б), получим замкнутый контур, для которого по второму закону Кирхгофа можно записать уравнение:

    Напряжение на зажимах параллельных ветвей Uab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием RЭ и R6:

    Тогда амперметр покажет ток:

    Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис . 7, а), если R1 = R2 = R3 = R4 = 3 Ом, J = 5 А, R5 = 5 Ом.

    Преобразуем «треугольник » сопротивлений R1, R2, R3 в эквивалентную «звезду » R6, R7, R8 (рис . 7, б) и определим величины полученных сопротивлений:

    Преобразуем параллельное соединение ветвей между узлами 4 и 5

    Ток в контуре, полученном в результате преобразований, считаем равным току источника тока J, и тогда напряжение:

    Возвращаясь к исходной схеме, определим напряжение U32 из уравнения по второму закону Кирхгофа:

    Тогда ток в ветви с сопротивлением R3 определится:

    Величины оставшихся неизвестными токов можно определить из уравнений по первому закону Кирхгофа для узлов 3 и 1:

    Метод эквивалентных преобразований

    Метод контурных токов.Решение задач

    Один из методов анализа электрической цепи является метод контурных токов. Основой для него служит второй закон Кирхгофа. Главное его преимущество это уменьшение количества уравнений до m – n +1, напоминаем что m – количество ветвей, а n – количество узлов в цепи. На практике такое уменьшение существенно упрощает расчет.

    Основные понятия

    Контурный ток – это величина, которая одинакова во всех ветвях данного контура. Обычно в расчетах они обозначаются двойными индексами, например I11, I22 и тд.

    Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.

    Контурная ЭДС – это сумма всех ЭДС входящих в этот контур.

    Собственным сопротивлением контура называется сумма сопротивлений всех ветвей, которые в него входят.

    Общим сопротивлением контура называется сопротивление ветви, смежное двум контурам.

    Общий план составления уравнений

    1 – Выбор направления действительных токов.

    2 – Выбор независимых контуров и направления контурных токов в них.

    3 – Определение собственных и общих сопротивлений контуров

    4 – Составление уравнений и нахождение контурных токов

    5 – Нахождение действительных токов

    Итак, после ознакомления с теорией предлагаем приступить к практике! Рассмотрим пример.

    Выполняем все поэтапно.

    1. Произвольно выбираем направления действительных токов I1-I6.

    2. Выделяем три контура, а затем указываем направление контурных токов I11,I22,I33. Мы выберем направление по часовой стрелке.

    3. Определяем собственные сопротивления контуров. Для этого складываем сопротивления в каждом контуре.

    Затем определяем общие сопротивления, общие сопротивления легко обнаружить, они принадлежат сразу нескольким контурам, например сопротивление R4 принадлежит контуру 1 и контуру 2. Поэтому для удобства обозначим такие сопротивления номерами контуров к которым они принадлежат.

    4. Приступаем к основному этапу – составлению системы уравнений контурных токов. В левой части уравнений входят падения напряжений в контуре, а в правой ЭДС источников данного контура.

    Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Для первого контура уравнение будет выглядеть следующим образом:

    Ток первого контура I11, умножаем на собственное сопротивление R11 этого же контура, а затем вычитаем ток I22, помноженный на общее сопротивление первого и второго контуров R21 и ток I33, помноженный на общее сопротивление первого и третьего контура R31. Данное выражение будет равняться ЭДС E1 этого контура. Значение ЭДС берем со знаком плюс, так как направление обхода (по часовой стрелке) совпадает с направление ЭДС, в противном случае нужно было бы брать со знаком минус.

    Те же действия проделываем с двумя другими контурами и в итоге получаем систему:

    В полученную систему подставляем уже известные значения сопротивлений и решаем её любым известным способом.

    5. Последним этапом находим действительные токи, для этого нужно записать для них выражения.

    Контурный ток равен действительному току, который принадлежит только этому контуру. То есть другими словами, если ток протекает только в одном контуре, то он равен контурному.

    Но, нужно учитывать направление обхода, например, в нашем случае ток I2 не совпадает с направлением, поэтому берем его со знаком минус.

    Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

    Например, через резистор R4 протекает ток I4, его направление совпадает с направлением обхода первого контура и противоположно направлению второго контура. Значит, для него выражение будет выглядеть

    А для остальных

    Так решаются задачи методом контурных токов. Надеемся что вам пригодится данный материал, удачи!

    Рейтинг
    ( Пока оценок нет )
    Загрузка ...
    Adblock
    detector