Регулируемый блок питания для светодиодов

Содержание

Блок питания для светодиодной ленты

Диоды являются самым простым современным способом организовать дешевое освещение. Предлагаем рассмотреть, как сделать и подключить своими руками блок питания для светодиодной ленты, а также расчет мощности и подбор устройства.

Назначение блока питания

Светодиодные ленты – это прекрасная альтернатива мощному освещению, к примеру, от лампы накаливания или энергосберегающего светильника. Подобрать светодиоды не сложно, больше всего проблем вызывает их подключение к сети. Для того чтобы организовать удобную и красивую диодную подсветку, Вам понадобится специальный блок питания.

Фото — Блок питания для светодиодной ленты

Блок питания, также известный как малогабаритный трансформатор или проводник, является одним из наиболее важных компонентов системы LED и предназначен для питания светодиодов. Его размеры маленькие, поэтому Вы без проблем сможете крепить прибор под подвесным потолком или в мебели. Использование неправильного типа устройства электропитания может не только навредить светодиодной ленте, но и стать причиной возгорания жилища. Важно также знать, какое входное напряжения переменного тока Вам необходимо, и быть уверенным, что выбранный аппарат соответствует этим параметрам. Для сооружения корпуса в основном используется пластик, который противостоит многим внешним разрушающим факторам (его можно использовать на улице, во влажных комнатах). Рассмотрим, как правильно выбрать блок питания:

  1. Определите нужное напряжение.

Постоянное напряжение, которое требуется светодиодной продукции до работы имеет ключевое значение при выборе модели трансформатора и его уровня питания. В основном в магазинах предлагается контроллер нерегулируемый, т.е. он всегда выдает одно и то же напряжение. Это не означает, что яркость ламп не будет контролироваться, напротив, данный показатель контролируется специальным ШИМ-диммером, который значительно упрощает работу блока питания. Наиболее популярны модели со встроенным диммером марок Feron (для RGB ленты LB005 30W 12V), Led Lamp, 450W GEMBIRD ATX (120mm fan) CCC-PSU, Arlight, ARPV LV-35-12, NS-LV-50-12(12V, 4A, 50W), HTS-100, YGY-121000, ZC-BSPS 12V3,3A=40W jaZZway.

  1. Определите ​​общую длину ленты освещения.

После того как Вы определили напряжение светодиодного продукта, который хотите использовать, нужно рассчитать расстояние всей светодиодной ленты.

  1. Подобрать мощность бока питания.

Подбор мощности для любого блока питания светодиодной ленты производится согласно специальной таблице, рекомендуем Вам ознакомиться с инструкцией выбранной фирмы. Очень важно не экономить на приспособлении с нужной мощностью.

Перед тем, как установить маломощный или многоканальный трансформатор, нужно подсчитать некоторые параметры. Если Вы знаете длину светодиодной ленты и мощность, то необходимо перемножить эти показатели и добавить к ним 10-5 процентов погрешности. Полученное число будет являться показателем теплового потока Вт/м2, и в зависимости от него нужно подбирать блок питания. Это поможет уберечь себя и свою семью от коротких замыканий и перегораний кабеля.

Теперь осталось только собрать блок питания и ленту в одну рабочую систему. Если Вы не используете компьютерный трансформатор, то Вам нужно:

Взять небольшой кусочек проволоки и короткий зеленый, и черный провод. Так мы разметим кабеля фазы и заземления. Подключите электричество в желтый и черный провода. Предположим, Желтый = 12 + Красный = 5В + черный = Земля. Для чистоты установки Вам, возможно, понадобится полностью разобрать трансформатор. Вырежьте все провода, оставляя пару черных шнуров, зеленый кабель и некоторые желтые.

Фото — Подключение блока питания

Снимите зеленый и черный шнуры, скрутите их вместе и отложите в сторону. Проверьте правильность соединения черных и желтых проводов, после чего подключите прибор в сеть. Убедитесь, что прибор герметичный, кабель выхода хорошенько запаян, а другие места контактов не соприкасаются.

Фото — Компактный блок питания для светодиодной ленты

После окончания работы, наденьте корпус на место, включите напряжение, проверьте правильность последовательности горения светодиодов. Как видите, подключения трансформатора своими руками – это достаточно простая задача.

Видео: подключение светодиодной ленты к блокам питания

Как сделать блок питания

Самостоятельно сделать блок питания для светодиодов достаточно просто. Для ленты на 20 ячеек Вам понадобится:

  1. Трансформатор на 12 Вольт, который может передавать ток на 1 А;
  2. Диодный мост с конденсатором;
  3. Микросхема КР142ЕН8Б (или 7812), которая будет необходима для радиатора (ели блок питания гудит, то это проблема именно данной детали).

Соединяем все приспособления по стандартной схеме и подключаем самодельный проводник к ленте. Собрать блок можно в старый корпус от обычного мини-трансформатора, в нем же и скрыт провод. Для удобства ниже представлена схема цепи блока питания для светодиодной ленты:

Фото — Схема цепи блока питания для светодиодной ленты Фото — Схема светодиодной ленты с блоком Фото — Подключение светодиодной ленты к сети

Обзор цен

Правильно соединить все части схемы не каждому под силу, поэтому часто более выгодно приобрести уже готовый трансформатор. Купить компактный и герметичный блок питания можно в любом магазине электрических товаров.

ГородЦена блока питания на SLG-BP-50-24
Барнаул350
Брянск300
Воронеж320
Красноярск300
Одесса350
Саранск300
Тверь300
Уфа320
Харьков350

Стоимость приборов может варьироваться в зависимости от производителя (Китай будет дешевле), или дополнительного функционала (с дистанционным управлением, датчиками движения и т.д.). При необходимости вполне возможна самостоятельная переделка прибора под свой вкус и потребности.

Регулируемый блок питания для светодиодов

Интернет-магазин ЭТМ –
это более 1,25 млн. позиций от 520 поставщиков

Поможем сделать покупку

Пн-Пт с 7 00 до 20 00

Сб с 7 00 до 18 00

Вс с 8 00 до 17 00

Найдено в категориях:

  • Блоки питания и драйверы для светодиодов (15)

Фильтр

Аксессуар для светильника

Блок аварийного питания

Блоки питания EM

Комплекты для переоснащения

Светодиодная лента и Блоки питания

ACCESSORIES LEADER UM

Входное напряжение, В

Выходное напряжение, В

Пульсация светового потока, %

Номинальное напряжение, В

Максимальный ток нагрузки

На монтажные элементы

Диаметр внутренний, мм

Сечение жилы, мм2

Диапазон рабочих температур

Тип источника света

Мощность ламп, Вт

Внешняя отдельной поставки

Цвет оптического отсека

Наличие блока аварийного питания

Световой поток, Лм

Тип работы аварийного светильника

Время работы в аварийном режиме, ч

Директива 2014/35/EC, Директива 2014/30/ЕС

Найдено в категориях:

  • Блоки питания и драйверы для светодиодов (15)

Блок питания LED STRIP PS 40вт 12в (202003040)

  • Код товара 6416891
  • Артикул 202003040
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания 150вт 12в IP66 для LED ленты (202023150)

  • Код товара 9986122
  • Артикул 202023150
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания 100вт 12в IP66 для LED ленты (202023100)

  • Код товара 4086922
  • Артикул 202023100
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания LED STRIP PS 400вт 12в (202003400)

  • Код товара 9605420
  • Артикул 202003400
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания LED STRIP PS 150вт 12в (202003150)

  • Код товара 3334600
  • Артикул 202003150
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания 200вт 12в IP66 для LED ленты (202023200)

  • Код товара 9072489
  • Артикул 202023200
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания 60вт 12в IP66 для LED ленты (202023060)

  • Код товара 5147627
  • Артикул 202023060
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания 40вт 12в IP66 для LED ленты (202023040)

  • Код товара 3787203
  • Артикул 202023040
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания LED STRIP PS 30вт 12в (202003030)

  • Код товара 9245916
  • Артикул 202003030
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания LED STRIP PS 15вт 12в (202003015)

  • Код товара 2430659
  • Артикул 202003015
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания 30вт 12в IP66 для LED ленты (202023030)

  • Код товара 75906
  • Артикул 202023030
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Блок питания 15вт 12в IP66 для LED ленты (202023015)

  • Код товара 9436681
  • Артикул 202023015
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Драйвер LED,100w,12v (202003100)

  • Код товара 9437842
  • Артикул 202003100
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Драйвер LED,60w,12v (202003060)

  • Код товара 7402685
  • Артикул 202003060
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Драйвер LED STRIP PS 250W 12V (202003250)

  • Код товара 680924
  • Артикул 202003250
  • Производитель GAUSS/Светодиодная лента и Блоки питания

Сделано
в России

Блок питания 150Вт для LED-ленты

  • Код товара 8278851
  • Артикул —
  • Производитель Атон
Читайте также:  Индивидуальные испытания приборов измерения и контроля вибрации

Сделано
в России

Блок питания Mean Well 12v/100Вт для LED-ленты

  • Код товара 9869851
  • Артикул —
  • Производитель no name

Блок питания для светодиодных лент 24В 200Вт IP67

  • Код товара 3010640
  • Артикул D7L200ESB
  • Производитель no name

Блок питания 150Вт-12В-IP67 для светодиодных лент и модулей DC 12В, металл (SQ0331-0140)

  • Код товара 2841368
  • Артикул SQ0331-0140
  • Производитель TDM ELECTRIC

Сделано
в России

Блок питания 100Вт-12В-IP67 для светодиодных лент и модулей DC 12В, металл (SQ0331-0139)

  • Код товара 7525695
  • Артикул SQ0331-0139
  • Производитель TDM ELECTRIC

Сделано
в России

ЭТМ предлагает светотехнику для защиты от коронавируса

В нашем ассортименте появились УФ светильники-рециркуляторы, а также облучатели и лампы для них. Более 30 позиций для различных сфер применения: офисы, промышленные предприятия, образовательные и медицинские учреждения, гостиницы и рестораны.

Пульт дистанционного управления FW-WSO2 от Евроавтоматика F&F

Для работы со всеми устройствами семейства F&Wave. Пульт позволяет дистанционно управлять освещением, плавно регулировать яркость освещения, управлять жалюзи/роллетами, воротами и другими устройствами.

Блок питания для светодиодов. Виды и параметры выбора

В последнее время можно наблюдать стремительное развитие новых источников освещения – светодиодов. По сравнению с обычными источниками света, такими как лампы накаливания или газонаполненные светильники, светодиодные имеют ряд преимуществ. Эти преимущества, в основном, связаны с их экономичностью и надежностью, а подробнее об этом можно прочитать тут.

Для сравнения различных источников света обычно используют энергетические и качественные показатели. В качестве энергетического показателя обычно используется коэффициент светоотдачи, а в качестве качественных показателей – коэффициент цветопередачи, цветовая температура и вид спектра излучаемого света.

Лампы накаливания имеют отличное качество света, но малую светоотдачу, газонаполненные светильники имеют хорошую светоотдачу, но плохое качество света.

Светодиоды же имеют отличные энергетические характеристики и прекрасный коэффициент цветопередачи. Кроме того, являясь твердотельным изделием, светодиод имеет прочную конструкцию и большую надежность. Со сравнительной характеристикой светодиодов и ламп накаливания можно ознакомиться в этой статье.

Для того чтобы светодиодный источник света нормально работал, для него нужен стабильный источник питания.

Основные требования к источнику питания для светодиодов

Основные качества, которым должен отвечать источник питания для светодиодов следующие:

  • надежность;
  • энергоэффективность;
  • электромагнитная совместимость;
  • электробезопасность.

Светодиоды являются надежными приборами. Их разработчики заявляют, что срок службы светодиодов не менее 50000 часов. Следовательно, и срок службы блоков питания светодиодов должен быть на соответствующей высоте.

Использование светодиодов связано с внедрением энергосберегающих технологий. Для того чтобы общая эффективность светодиодной системы освещения не снизилась, и источники питания должны иметь достаточно высокий кпд.

В светодиодном светильнике единственным источником электромагнитных помех является блок питания. Поэтому от его характеристик зависит общая электромагнитная совместимость светодиодного светильника.

В светодиодной системе освещения единственным элементом, к которому подводится сетевое напряжение в 220В, является блок питания. Поэтому электробезопасность системы целиком зависит от его конструкции.

Различные блоки питания для светодиодов

Кроме того, поведение блока питания для светодиодных светильников влияет и на их светотехнические характеристики. Эти характеристики зависят, в частности, от того, какой ток будет протекать через светодиод. Если этот ток будет изменяться во времени или пульсировать, то и качество освещения будет невысоким.

Особенности питания светодиода

Особенностью работы светодиода является то, что у него имеется нелинейная зависимость тока от напряжения. При увеличении по какой-либо причине номинального напряжения на светодиоде резко возрастает его ток, что может привести к его выходу из строя.

В связи с этим часто в недорогих светодиодных светильниках последовательно со светодиодом включается ограничивающий резистор, который при скачках напряжения не позволяет увеличиваться току.

Платой за такое ограничение является потеря мощности на резисторе. В результате кпд такого светильника уменьшается.

Блоки питания и драйверы

Блоки питания для светодиодных ламп представляют собой устройство, предназначенное для обеспечения электропитания какого-то электронного устройства. Обычные блоки питания обеспечивают постоянное стабилизированное напряжение на выходе в независимости от скачков входного сетевого напряжения и перепадов тока потребления.

Электропитание светодиодов чаще всего осуществляется с помощью блока, обеспечивающего на выходе постоянный ток. Его называют драйвером. Можно считать, что драйвер – это маркетинговое обозначения источников стабилизированного тока для питания светодиодов. Таким образом, источник постоянного напряжения обозначается как блок питания для светодиодов 12v, а источник стабилизированного тока – драйвер.

Блоки питания

Блоки питания бывают трансформаторные и импульсные.

Основным элементом трансформаторного блока питания является, естественно, трансформатор. Для рассматриваемых потребителей этот трансформатор – понижающий. Он понижает напряжение с сетевого в 220В до требуемого в 12 или 24В. Низкое напряжение подается на выпрямитель. Пульсирующее напряжение подается на фильтр из конденсаторов и дросселя, а затем на схему стабилизации. На выходе блока питания получается постоянное напряжение.

Преимуществом трансформаторного блока питания для светодиодов 12в является его простота, развязка от сети и способность выдерживать режим холостого хода. Недостатками такого блока питания является большой вес трансформатора, малый кпд и чувствительность к перегрузкам.

Схема трансформаторного блока питания

Импульсный блок питания для светодиодов также использует трансформатор. Но благодаря тому, что трансформатор работает на более высоких частотах, его размер и вес в несколько раз меньше обычного трансформатора для сети в 50 Гц. В импульсном блоке питания так же присутствует развязка от сети, и он так же очень чувствителен к перегрузкам. А еще он может выйти из строя и при холостом ходе.

Схема импульсного блока питания

Драйверы

Драйвер – это импульсный источник тока для питания светодиодов. Основным параметром драйвера является стабилизированное значение выходного тока.

Драйверы бывают однокаскадными и двухкаскадными. Наиболее распространенным и надежным является схема двухкаскадного драйвера. Она состоит из двух каскадов. Один из них представляет собой корректор коэффициента мощности, а второй – схему стабилизации выходного тока. Наличие блока корректора обусловлено тем, что драйвер является импульсным устройством, который должен соответствовать требованиям ГОСТ по подавлению гармоник входного тока. Такой двухкаскадный драйвер может обеспечить коэффициент мощности до 0,92 — 0,96, а пульсацию светового потока до 1%.

Однако двухкаскадная схема драйвера довольно дорога, и поэтому в более простых случаях, например, в ЖКХ, используют однокаскадную схему.

При различных условиях естественного освещения часто требуется регулировка яркости свечения светодиодных светильников. Такая регулировка может осуществляться с помощью диммера, о котором подробнее тут. Димминг может быть аналоговым или цифровым. В первом случае выходной ток драйвера, а, следовательно, и яркость светильников регулируется с помощью управляющего напряжения, а во втором – с помощью широтной модуляции.

Схема подключения драйвера к светодиоду

Сравнение типов питания светодиодов

При питании светодиодов с помощью драйвера они могут работать в полную мощность, поскольку нет необходимости понижать напряжение из-за опасения их выхода из строя.

При питании светодиодов с помощью блока питания для светодиодной панели и светильников часть мощности тратиться при нагревании ограничивающих резисторов.

При питании светодиодов от драйвера срок службы их больше, так как ток в этом случае никогда не превышает допустимый.

Так как драйвер – это специальный прибор, предназначенный для определенного тока и определенной мощности, то для него надо специально подбирать определенное количество светодиодов с определенной мощностью.

Обычные блоки питания можно использовать для различных потребителей, а использование драйверов ограничено определенными приборами – светодиодами.

Более предпочтительно использовать драйверы в следующих случаях:

  • используется схема без резисторов, например, на отдельных диодах;
  • не надо иногда отключать от драйвера часть светодиодов;
  • светодиоды приобретаются в местах, где возможна квалифицированная помощь по расчету необходимого числа светодиодов и драйвера.

Лучше использовать блоки питания в случаях:

  • имеются светодиоды с встроенными резисторами;
  • имеется блок питания;
  • нужно иногда отключать часть подключенных светодиодов.

Блоки питания для светодиодных лент

Для подсветки помещений и уличных украшений часто используются светодиодные ленты. Они представляют собой ленту, на которой располагаются светодиоды и ограничивающие токи резисторы.

Для питания таких лент используются импульсные блоки питания с напряжением 12 или 24В. Чтобы подобрать подходящий блок питания надо рассчитать мощность, требуемую для питания ленты заданной ленты. Эту мощность можно рассчитать в соответствии с таблицей, в которой указана мощность светодиодов, размещенных на 1 м ленты данного типа.

Про подключение блока питания светодиодной ленты и его схему можно прочитать тут.

Порядок выбора источника питания для светодиодов

При выборе светодиодной системы необходимо делать комплексный подход к выбору светодиодов и системы питания.

  1. Необходимо выбрать тип источника питания светодиодов – блок питания или драйвер.
  2. Необходимо определить мощность источника питания. Для этого необходимо вычислить полную потребляемую мощность цепи, подключаемой к источнику питания. При этом мощность источника питания должна быть равна или больше необходимой мощности потребления.
  3. Драйверы светодиодов необходимо выбирать так, чтобы они соответствовали номинальным мощностям и токам светодиодов.
  4. Для осуществления бесперебойного питания светодиодов в различных внешних условиях источники питания должны изготавливаться в корпусах с различной степенью защиты от влаги и тепла. В необходимых случаях источники питания для светодиодов должны иметь определенный класс защиты. Класс защиты определяется 2 цифрами, стоящими после букв IP. Например, IP65 означает защиту от пыли и сильных струй воды.

Как подобрать блок питания для светодиодной ленты

Светодиодные ленты рассчитаны на относительно невысокое напряжение питания 5, 12, 24 или 36В. У нас в сети 220В, поэтому подключение подсветки напрямую к розетке невозможно. Чтобы система LED освещения работала, подключать ее нужно только через блок питания (драйвер, трансформатор). Это сравнительно недорогое устройство, которое преобразует 220 В сети в напряжение, которое необходимо ленте. Так трансформатор обеспечивает надежную и долговечную работу LED подсветки. Когда покупатель определился с системой освещения, обычно появляется вопрос о том, как подобрать блок питания для светодиодной ленты. Эта статья как раз посвящена решению данной проблемы.

Для выбора нужно знать параметры вашей LED подсветки и предлагаемых БП. К основным характеристикам драйверов относятся:

  • напряжение;
  • мощность;
  • класс защиты;
  • габариты;
  • наличие диммирования.

Рассмотрим каждый из этих параметров подробнее, чтобы вы смогли наверняка рассчитать, какой блок питания нужен для светодиодной ленты в вашем случае.

Выбор напряжения питания

Для начала при выборе драйвера стоит узнать напряжение питания LED ленты. Обычно распространены изделия с напряжением 12 или 24В. Трансформатор должен иметь такое же значение. Принцип здесь простой:

  • откройте технические характеристики ленты и найдите нужный вам параметр;
  • допустим, лента питается от напряжения 12В;
  • тогда выбирайте блок питания 12В.

Для светодиодной подсветки с напряжением 24В, соответственно, подходит БП на 24В.

Как узнать минимальную мощность блока

Следующий критерий выбора – значение мощности драйвера. Это очень важный момент, так как от расчета мощности блока питания для светодиодной ленты зависит, сколько он проработает.

Читайте также:  Расчет электрических цепей со смешанным соединением конденсаторов

У каждой ленты своя яркость, а значит и своя потребляемая мощность на 1 погонный метр. Обычно, чем ярче диоды, тем выше показатель потребляемой мощности. Обычно вы можете найти этот параметр перед покупкой в характеристиках LED ленты на сайте. А если вы уже купили подсветку, то смотрите значение на упаковке, например, 4,2 или 28,8 Вт/м.

Теперь приведем пример того, как рассчитать мощность блока питания для светодиодной ленты:

  1. Допустим, у нас есть 10 метров ленты с потреблением 9,6 Вт/м.
  2. Определяем потребление следующим образом: 10 м * 9,6 Вт = 96 Вт.
  3. К полученному значению прибавляем 15–20% запаса мощности – обязательное условие, чтобы БП прослужил достаточно долго. Запас в 20% рассчитывается следующим образом: 96 Вт * 0,2 = 19,2 Вт. Теперь прибавляем это значение: 96 Вт + 19,2 Вт = 115,2 Вт.
  4. Согласно расчетам, для работы 10 м ленты с удельным потреблением 9,6 Вт нужен трансформатор питания мощностью не меньше 115 Вт. Полученное значение нужно сравнить с параметрами имеющихся на рынке драйверов.
  5. Заходим в каталог интернет-магазина LedRus и выбираем ближайший по мощности трансформатор с округлением в большую сторону. В нашем случае идеально подходит БП на 120 Вт, но можно поставить и более мощный драйвер. Трансформатор с меньшей нагрузкой проработает дольше, но он может быть больше и стоить дороже, поэтому слишком мощный БП тоже не лучший вариант.

Теперь, зная эту схему на примере, вы можете рассчитать блок питания для светодиодной ленты самостоятельно с учетом параметров своей подсветки. Методика определения получается сравнительно простая.

Обратите внимание! Все БП мощностью от 250 Вт имеют встроенный вентилятор, который шумит при работе. Вы слышали, какие звуки издает кулер системного блока компьютера? Вентилятор драйвера работает примерно так же, и этот шум придется слышать всякий раз, когда вы включаете свет. Если вас это не устраивает, вместо одного мощного драйвера можно установить блоки мощностью поменьше, которые идут без кулера. Например, вместо трансформатора на 500 Вт можно подключить два БП по 250 Вт без системы охлаждения. Как видите, при любой ситуации есть выбор.

Класс IP защиты

Следующий шаг подбора блока питания для светодиодной ленты заключается в выборе класса ip защиты. Этот параметр показывает, насколько драйвер защищен от внешних воздействий, то есть пыли, грязи и влаги.

Блоки питания выпускают со следующими классами защиты:

  • IP20-33 – открытые БП с минимальной защитой. Такие модели обычно имеют перфорированный (дырявый) корпус, из которого хорошо отводится тепло. Эти драйвера подходят только для сухих отапливаемых помещений, но даже в таком случае это не лучший вариант, так как внутренние части прибора не защищены от пыли, мелких предметов, шерсти домашних животных и т. п. Все это негативно влияет на систему в целом. Зато открытые драйверы наиболее экономичные.
  • IP65 – закрытые БП (обычно в пластиковом корпусе). Такой вариант хорошо подходит для размещения внутри помещений или автомобилей. Такой драйвер внешне напоминает БП от ноутбука. Прибор хорошо защищен от проникновения воды под любым углом, поэтому подходит для комнат с высокой влажностью. Если собираетесь организовать подсветку в ванне или на кухне, стоит купить как раз такой драйвер. Но трансформатор с классом ip65 нельзя использовать для наружного применения и погружения под воду.
  • IP67-68 – герметичные БП с максимальной защитой. Корпус обычно выполнен из алюминия и полностью герметичен. Попадание влаги или пыли ему не грозит, благодаря чему трансформатор одинаково хорошо подходит для размещения внутри и снаружи зданий. Такие драйвера используют для подсветки наружных рекламных вывесок, фасадов зданий, а также в условиях очень высокой влажности. Устройства выдерживают погружение под воду на определенную глубину и время, а также работают при широком диапазоне температур от -25 до +85 градусов.

Таким образом, выбор блока питания для светодиодной ленты в данном случае зависит от условий размещения. Если вы организуете подсветку на улице или в комнатах с высоким уровнем влажности, стоит однозначно выбирать герметичный прибор. А для закрытых помещений с нормальной влажностью можно сэкономить и взять открытый БП.

Габариты

Когда вы решили, какой блок питания выбрать для светодиодной ленты по напряжению, мощности и классу защиты, самое время задуматься о его габаритах. Размеры драйвера имеют немаловажное значение, если его нужно спрятать. Производители позаботились об этом и предусмотрели несколько вариантов БП с разными габаритами, но одинаковыми параметрами.

При оценке размеров возможны следующие варианты:

  • габариты устраивают, устройство помещается, например, за карниз или под плинтус – оставляем как есть;
  • слишком большой прибор, непонятно, куда его спрятать – можно сделать специальную нишу, полку или полость в стене, которая закрывается декоративной дверцей;
  • все равно не помещается – выводим трансформатор в техническое помещение.

Стоит учитывать, что мощный драйвер может иметь достаточно большие габариты, так что в порой разумнее пересмотреть схему подключения подсветки. Возможно, один трансформатор стоит заменить несколькими маленькими БП с меньшей мощностью, которые намного легче спрятать. Кроме того, существуют модели драйверов с одинаковыми параметрами, но разной формой: прямоугольные широкие или вытянутые в длину, квадратные. В продаже также бывают компактные БП, но они стоят дороже обычных.

Обратите внимание! Устанавливать трансформатор нужно в месте, где предусмотрена циркуляция воздуха для естественного охлаждения прибора. Кроме того, нужно предусмотреть удобный доступ к устройству для обслуживания и замены. При правильном выборе БП прослужит долго, но случаи выхода из строя все же нельзя полностью исключать.

Выбор сечения кабеля для подключения

Устанавливать драйвер стоит не вплотную к LED ленте, а на некотором расстоянии от нее, но не больше 15–20 метров. Чем дальше трансформатор от источников света, те большее сечение кабеля требуется.

Если прибор находится на значительном расстоянии, нужно учитывать потери мощности, которые может создать соединяющий провод. Зависимость в этом случае простая: кабели с большим сечением дают меньшие потери мощности.

Диммирование

Сейчас многие пользователи отдают предпочтение LED лентам с диммером. Устройство позволяет менять интенсивность подсветки, регулируя количество энергии, которое передается от сети к подсветке.

Владельцы светодиодных лент часто ищут диммируемые БП, полагая, что яркость светодиодного освещения можно менять с помощью реостатного диммера, который располагается в цепи перед блоком. Это распространенная ошибка, так как LED лента в действительности управляется отдельными контроллерами и диммерами, которые устанавливаются между трансформатором и источником света. То есть диммируемые БП не нужны, так как управление осуществляется после блока.

Однако спрос порождает предложение, и теперь в продаже широко распространены диммируемые драйверы. Но их использование сопровождается сложностями, так как такие БП работают нестабильно и менее надежны, чем стандартные устройства. Кроме того, диммирование происходит не плавно, а рывками, а пользователь не может снизить яркость ниже определенного порога в 10-30% от общей яркости источника света.

Так происходит, потому что основное количество современных LED лент с классическими диммерами работают некорректно. Старые диммеры рассчитаны на более мощные источники света, они не воспринимают минимальную нагрузку от светодиодов на сниженной яркости. «Регуляторы» начинают работать, только когда потребление источника света преодолевает какой-то порог, который индивидуален для каждого диммера.

Регулируемый блок питания – очень просто, по силам даже школьнику. Подробно

И вновь я рад приветствовать Вас Высокоуважаемые мастера самодельщики!

Сегодня, я хочу поговорить с Вами о старых и, казалось бы бесполезных, пылящихся в углу квартиры или гараже, комплектующих вашего старого компьютера. В частности о стареньком компьютерном блоке питания, не нужном в ваших глазах трудяги, но выдающим до сих пор свои 12В постоянного напряжения.

Блок питания компьютера, большой уверенностью могу заявить, это идеальное устройство для любого мастера самодельщика. Из компьютерного блока питания можно сделать неплохой регулируемый источник постоянного напряжения.

Сегодня цена лабораторного блока питания доходит до десяти тысяч рублей. Но, есть неплохой вариант, просто переделать компьютерный блок питания в регулируемый лабораторный блок питания. Он конечно будет не такой точный, но для работы домашнего мастера самодельщика вполне подойдет. И обойдется это ВАМ примерно в 350-400 рублей. Затратив полтора-два часа своего времени вы получите блок питания на: 3,3 В, 5 В и регулируемое напряжение 12-35 Вольт, довольно приличной мощности.

Регулируемые блоки питания хороши тем, что дают возможность мастеру самодельщику и просто потребителю регулировать выходное напряжение. Такие блоки питания могут применяться в различных целях например: для проверки ламп накаливания, светодиодов, зарядки аккумуляторов и для питания различных электрических и электронных устройств в вашей мастерской.

И если обобщить, блок питания с регулировкой напряжения на данном современном этапе – абсолютно необходимая вещь для любого настоящего мужчины, с руками растущими не из п@пы. Этот нехитрый прибор, благодаря своим техническим свойствам, может легко преобразовывать напряжение и ток, имеющееся в вашей электрической сети до уровня, который подойдет для потребления конкретного электронного прибора.

Хочу предложить бюджетный вариант регулируемого блока питания, как заметил выше, по комплектующим, это обойдется вам 350-400 рублей, согласитесь 400 рублей это значительно меньше чем 10 тысяч.

Данный блок питания, я уверен, по силам сделать любому начинающему мастеру, имеющему хотя бы представление, что ток бегает по проводам. В статье я подробно изложу порядок изготовления блока питания, а если Вас заинтересует этот прибор, подробно проведу по монтажу всех проводов и систем данного прибора в видео ролике инструкции.

Идея регулируемого блока питания очень проста. Сейчас в китайских интернет магазинах появились преобразователи постоянного напряжения. В нашем случае за основу взят повышающий преобразователь заявленной мощностью 150 вт. (Наши Китайские друзья конечно, как всегда завышают данные параметры, но 100 вт. наверняка есть), с фиксированным питанием от 10 до 30В и выходным регулируемым напряжением от 12 до 35В. Ссылки на Алиэкспресс где можно приобрести данный преобразователь и комплектующие для нашего блока питания выложены в видео ролике.

Запитав данный преобразователь от нашего компьютерного блока питания 12-ю вольтами постоянного напряжения, на выходе мы получим регулируемое напряжение 12-35В. Так же в компьютерном блоке питания присутствуют фиксированные напряжения 3.3В и 5В. Их мы тоже снимем на наш прибор.

Уже стало традицией в наших статьях поговорить немного о соблюдении техники безопасности. Мой Вам совет: никогда не проверяйте наличие электричества на язык и у Вас будет прекрасная Голливудская улыбка и хорошая, легко усваиваемая речь. Не суйте руки и ноги в те места куда собака не сует свой хвост, и вы еще станцуете цыганочку и сыграете на фортепьяно.
По технике безопасности, в основном, все.

Читайте также:  Автоматическое плавное включение света

Приступаем к изготовлению нужной самоделки.

В начале тем кто любит больше смотреть чем читать, видео ролик инструкция как сделать регулируемый блок питания из старого компьютерного блока:

Видео ролик изготовления блока питания:

Видео ролик подключения вольтамперметра DSN-VC288

на 100В и 10А (подробное описание дам в отдельной статье):

Инструменты, которые пригодятся при изготовлении нашего прибора:

1. Паяльник.
2. Отвертки.
3. Сверлильный станок или дрель.
4. Сверла.
5. Напильник или надфиль.
5. Наждачная шкурка.
6. Канцелярский нож.
7. Гаечные ключи.
8. Измерительный инструмент, как минимум линейка.
9. Начертательный инструмент, карандаш.
10. Кернер.
11. Пассатижи или плоскогубцы.
12. Отрезная машинка (болгарка) с отрезным кругом и шлифовальным.

Нужные Расходные материалы:

1. Припой.
2. Паяльная кислота.
3. Болты и гайки.
4. Монтажные провода.
5. Повышающий преобразователь напряжения.
6. Вольтамперметр 100В, 10А.
7. Вилочки, разъемчики и прочая мелочь.
8. Выключатель.
9. Переменный резистор.
10. Термоусадочные трубки.

Порядок изготовления регулируемого блока питания:


















1. Найти старый, рабочий компьютерный блок питания.
2. Вскрыть, основательно, но аккуратно почистить от накопившейся пыли и грязи.
3. Выпаять из связки лишние провода, оставить черный минус питания, желтый 12В плюс, оранжевый 3.3В плюс, красный 5В плюс, и зеленый для включения блока питания.
4. На лицевой панели блока питания высверлить и развернуть напильником отверстия для монтажа приборов контроля, ручек управления и разъемов снятия напряжения с нашего прибора.
5. Выпаять из повышающего преобразователя напряжения подстроечный резистор, на его место впаять переменный резистор 10 ком.
6. Провести пайку проводов блока питания, подробно показано в видео ролике, не пугайтесь, все очень просто, главная проблема не обжечь пальцы паяльником :-).
7. На лицевой панели разместить и закрепить вольтамперметр, ручку управления, выключатель и разъемы снятия напряжения.
8. Подключить подготовленные провода к вольтамперметру, ручке управления, выключателю и разъемам снятия напряжения.
9. Подключенный через монтажные провода повышающий преобразователь напряжения разместить и зафиксировать в нашем блоке питания. Штатное место показано в видеоролике.
10. Собрать корпус получившегося блока питания.
11. Подключить блок питания к сети 220В.
12. Щелкнуть тумблером включения прибора.
13. На вольтамперметре должно высветится напряжение.
14. Провести настройку и тестирование регулируемого блока питания под нагрузкой.

Технический анализ:

1. бюджетные затраты на комплектующие конструкции.
2. достаточная компактность.
3. Простота изготовления.
4. Простота эксплуатации.

1. Недостаточная точность прибора, от 10 мА.
2. Напряжение регулируется от 12В. 3.3 и 5В фиксированное напряжение. Но над этим работаем.

Драйвер и импульсный блок питания. Отличия, принцип работы. Что лучше выбрать?

Многие довольно часто путают блоки питания и драйвера, подключая светодиоды и светодиодные ленты не от тех источников что нужно.

В итоге через небольшой промежуток времени они выходят из строя, а вы и не подозреваете в чем была причина и начинаете ошибочно грешить на «некачественного» производителя.

Рассмотрим подробнее в чем их отличия и когда нужно применять тот или иной источник питания. Но для начала кратко разберемся в типах блоков питания.

Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

Частота сети при этом, привычные нам всем 50 Герц.

Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

У такой схемы 3 главных достоинства:

    ее простота
    незамысловатость конструкции
    относительная надежность

Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.

    во-первых это большой вес и приличные габариты
    как следствие первого недостатка – большой расход металла на сборку всей конструкции
    ну и ухудшает все дело низкий косинус фи и низкий КПД

Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача – создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме – импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие – это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

    маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе
    КПД от 90 до 98%
    напряжение питания можно подавать в большом разбросе
    при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

    усложненность сборочной схемы
    сложная конструкция
    если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер – это устройство похожее на блок питания.

Светодиоды “питаются” электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод – это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику – вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная.

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут “кушать” разный ток.

А температурный диапазон работы светодиодных светильников очень большой.
Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково – выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

Безусловно и у драйверов есть свои неоспоримые недостатки:

    во-первых они рассчитаны только на определенный ток и мощность

А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже.

    узкоспециализированность на светодиодах

Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

Основное же предназначение драйверов – это светодиоды.

А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства – эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector