Соединение токоведущих шин

Содержание

Болтовые контактные соединения

Соединение между собой проводников прямоугольного сечения выполняется с помощью болтов, шпилек или сжимов. Число болтов определяется размерами шин. Силу сжатия контактных поверхностей целесообразнее обеспечивать применением нескольких болтов меньшего сечения, чем одного болта большего сечения, так как в первом случае количество контактных пятен получается больше. В результате переходное сопротивление соединения уменьшается и происходит более равномерное распределение тока по контактной площади. Плоские и штыревые контактные выводы электротехнических устройств выполняют согласно ГОСТ 21242-75.

Соединения нескольких параллельных шин фазы между собой выполняют путем укладки их в переплет, а не попарно, так как в последнем случае контактная поверхность получается значительно меньшей, а переходное сопротивление — большим.

При прохождении электрического тока детали контактного соединения нагреваются и вследствие нагрева расширяются. Особенно значительный нагрев и расширение происходят при коротком замыкании. Расширение не одинаково по всему контактному соединению, так как его детали имеют разные коэффициенты линейного расширения.

Болты соединений медных и алюминиевых шин работают в неблагоприятных условиях, поскольку коэффициент линейного расширения стального болта меньше, чем медной или алюминиевой шины: кроме того, болты при коротком замыкании всегда нагреваются значительно меньше, чем шины.

В режиме короткого замыкания на болты действуют дополнительные силы, которые, складываясь с силой затяжки болта, могут привести к остаточным деформациям и ослаблению контактного соединения при понижении температуры. Чем больше толщина пакета шин, тем большие механические напряжения возникают в стягивающих болтах. Эти напряжения могут быть снижены применением тарельчатых пружин.

Тарельчатые пружины электротехнического назначения изготавливаются по ГОСТ 17279-71 двух типов:

– Ш— пружины для поддержания контактного давления в соединениях шин,

– К — пружины для поддержания контактного давления в соединениях кабельных наконечников с выводами электрооборудования, имеющими уменьшенную контактную плоскость по сравнению с шинами

Основные параметры пружин приведены на рис.1.

Рис. 1. Тарельчатая пружина.

Допускается выполнять соединения без применения тарельчатых пружин, но с установкой со стороны алюминия утолщенной шайбы под головку болта или под гайку. Размеры нормальных (ГОСТ 11371-78) и увеличенных (ГОСТ 6958-78) шайб приведены в справочных таблицах.

Длина перекрытия (нахлеста) соединяемых элементов в контактном соединении при одном или четырех болтах редко превышает ширину шины, а при двух болтах составляет от 1,5 до 2 размеров ширины шины.

Уменьшение переходного сопротивления контактного соединения достигается повышением давления и понижением жесткости.

Рис 2. Контактное соединение шин с продольным разрезом.

Для уменьшения жесткости контактного соединения на шинах делают продольные разрезы шириной 3— 4 мм, длиной 50 мм (рис. 2).

Болты в соединении выбирают, исходя из требующихся удельных давлений между контактными поверхностями кажущейся плотности тока и допустимых растягивающих усилий для болтов. Рекомендуемые удельные давления в контактных соединениях, МПа, в зависимости от материала контактного соединения приведены ниже.

Медь луженая – 0,5 – 10,0

Медь, латунь, бронза нелуженые – 0,6- 12,0

Сталь луженая – 10,0 – 15,0

Сталь нелуженая – 60,0

Длина болтов выбирается таким образом, чтобы после сборки и затяжки соединений оставалось не менее двух ниток свободной резьбы.

Затяжку болтов контактных соединений производят гаечным ключом, обеспечивая значения крутящих моментов, приведенные в справочных таблицах.

Затяжку болтов на соединениях с тарельчатыми пружинами производят в два приема. Вначале болт затягивают до полного сжатия тарельчатой пружины, затем соединение ослабляют поворотом ключа в обратную сторону на 1/4 оборота для болтов Мб и М12 и на 1/6 оборота для остальных болтов.

Рис. 3. Соединение медной жилы с плоским выводом из меди или сплава алюминия: а — для болтов до М8, б — для всех размеров болтов, 1 — вывод, 2 — наконечник, 3 — шайба, 4 — болт, 5 — шайба пружинная, 6 — гайка, 7 — жила.

Присоединение плоских проводников к плоским выводам из меди или алюминиевого сплава (рис. 3) производится с помощью стальных болтов (ГОСТ 7798-70), гаек (ГОСТ 5915-70) и шайб (ГОСТ 11371-78), а к выводам из алюминия — с применением средств стабилизации контактного давления: тарельчатых пружин или крепежных изделий из медных или алюминиевых сплавов с коэффициентом линейного расширения (18—21) х 10-6 °С-1 (рис. 4).

При сборке соединения с тарельчатыми пружинами со стороны алюминиевого вывода ставят увеличенную, а со стороны медной лапки наконечника — нормальную шайбу. В соединениях с тарельчатыми пружинами контргайки не применяют.

Рис. 4. Соединение медной жилы с плоским выводом из алюминия: а — с применением тарельчатых пружин, б — с применением крепежных деталей из цветных металлов, 1 — вывод, 2 — медный наконечник, 3 — шайба пружинная, 4 — болт стальной, 5 — гайка стальная, 6 — шайба стальная увеличенная, 7 — пружина тарельчатая, 8 — жила медная, 9 — болт из цветного металла, 10 — гайка из цветного металла, 11 — шайба из цветного металла.

Если тарельчатые пружины или болты и гайки из цветных металлов необходимых размеров отсутствуют подсоединение можно выполнять с применением увеличенной шайбы при условии, что переходное сопротивление и температура нагрева соединения окажутся в заданных пределах.

Рис. 5. Присоединение двух наконечников к плоскому выводу.

В тех случаях, когда контактные соединения эксплуатируется в помещении с относительной влажностью более 80% и температурой не ниже 20°С или в химически активной среде, оно выполняется с помощью переходных медно-алюминиевых пластин. Непосредственное соединение медной жилы с алюминиевым выводом может выполняться в том случае, когда алюминиевый вывод имеет защитное металлопокрытие.

Рис. 6. Переходные детали для подключения к выводам более двух наконечников.

При выполнении подсоединения, к плоскому выводу двух жил кабеля наконечники следует располагать по обеим сторонам плоского зажима (рис. 5) для того, чтобы обеспечить наименьшее переходное сопротивление и сохранить более равномерное токораспределение. Если к выводу нужно подсоединить более двух наконечников или отверстие вывода не соответствует отверстию наконечника, используют переходные детали. К переходной детали наконечники подсоединяются симметрично (рис. 6).

Присоединение плоских медных проводников и наконечников к штыревым контактным выводам оборудования выполняется при помощи стандартных гаек из меди и ее сплавов. Соединения при номинальных токах до 30 А выполняют с помощью стальных гаек, покрытых оловом, никелем или кадмием.

Рис. 7. Присоединение наконечника к штыревому выводу: 1 — наконечник, 2 — гайка медная увеличенная, 3 — гайки стальные, 4 — штыревой вывод, 5 — жила.

Рис. 8. Соединение двух наконечников со штыревым выводом: 1 — наконечники, 2— гайки, 3— штыревой вывод.

Алюминиевые плоские проводники при токах до 250 А присоединяются так же, как медные, а при токах от 250 до 400 А для присоединения применяют увеличенные упорные гайки (рис. 7).

Присоединение двух наконечников к штыревому выводу (рис. 8) необходимо выполнять симметрично, а при подсоединении более двух наконечников используют переходные детали.

При токах более 400 А следует использовать медно-алюминиевые наконечники или армировать (плакировать) концы шин.

Подсоединение круглых проводников к плоским и штыревым выводам производится после формирования их в виде кольца с помощью шайб-звездочек. Лапки шайб-звездочек при закручивании винта или гайки не должны касаться поверхности вывода или упорной гайки, чтобы колечко жилы было надежно прижато к зажиму.

Кольцо провода укладывается под головку болта или гайки так, чтобы оно при закручивании болтов или гаек не выдавливалось из-под них (рис. 9). В тех случаях, когда алюминиевая однопроволочная жила оконцована кольцевым наконечником (пистоном), шайба-звездочка не применяется.

Рис. 9. Соединение алюминиевой жилы сечением до 10 мм2 с выводами: а — плоским, б — штыревым, 1 — винт, 2 — шайба пружинная, 3 — шайба-звездочка, 4 — жила, изогнутая в кольцо, 5 — зажим плоский, 6 — штыревой вывод, 7 — гайка.

Рис. 10. Соединение медной жилы сечением до 10 мм2 с выводами: а, б — плоским, в, г — штыревым, 1 — винт, 2 — шайба пружинная, 3— шайба, 4 — однопроволочная жила, изогнутая в кольцо, 5 — плоский зажим, 6 — штыревой зажим, 7 — гайка, 8 — жила, оконцоваииая плоским или кольцевым наконечником.

Медные жилы сечением до 10 мм2 соединяются с плоскими и штыревыми выводами с помощью винтов, шайб, пружинных шайб и гаек (рис. 10). При подсоединении жил, оконцованных наконечником (пистоном), шайба не используется.

Рис. 11. Соединение алюминиевой многопроволочной жилы с цилиндрическим зажимом: а — с применением штифтового наконечника, б — после сплавления конца жилы в монолит с добавкой легирующих присадок, 1 — корпус, 2 — прижимный винт, 3 — штифтовой наконечник, 4 — жила многопроволочная, 5 — конец жилы, сплавленный в монолит.

С винтовыми зажимами для втычного присоединения алюминиевые или медные многопроволочные жилы могут соединяться после оконцевания штифтовым наконечником или после сплавления конца жилы в монолит с добавкой легирующих присадок.

Монтаж и эксплуатация шин

МОНТАЖ И ЭКСПЛУАТАЦИЯ ШИН

ОТБРАКОВКА ШИН И ЗАЖИМОВ

Шины до начала монтажа должны быть тщательно осмотрены с целью выявления имеющихся в них дефектов и решения вопроса о пригодности их к монтажу.

Дополнительно по теме

Отбраковка жестких и гибких шин

Способ устранения дефектов

Прямоугольные и круглые жесткие шины

Волнистость шины (изгиб плашмя)

Правка на плите молотком из твердых пород дерева

Поперечная кривизна (изгиб на ребро)

Не более 1 мм на 1 м шины

Вмятины и выемки, уменьшающие сечение шины

Допускается уменьшение сечения шины вследствие вмятин и выемок не более 1 % от общего сечения для меди, 1,5% для алюминия

При повышении допуска до 10% сечение шины в дефектном месте усиливается путем наложения болтовых накладок. При уменьшении сечения свыше 10% дефектное место вырезается

Читайте также:  Как рассчитать мощность ТЭНа для нагрева воды?

Раковины на шинах

Допускаются раковины диаметром не более 5 мм и глубиной не более 0,15 мм для алюминия и не более 0,55 мм для меди

При раковинах диаметром свыше 5 мм и глубиной более 0,15 мм и 0,55 мм дефектное место вырезается

Допуск не дается

Дефектное место вырезается

Слоистость и хрупкость металла

Допуск не дается

Дефект неустраним, шина бракуется

Продольные и поперечные трещины независимо от размера

Допуск не дается

Дефект неустраним, шина бракуется

Круглые многопроволочные гибкие шины (провода)

Обрыв отдельных проволок

Допускается обрыв только одной проволоки при условии использования дефектного участка шины на спуск или петлю

На место обрыва накладывается проволочный бандаж

Узлы (барашки), вмятины, перекрутки, надрезы проволоки

Допуск не дается

Дефектные места вырезаются

Неверное направление повива

Допуск не дается

Дефект неустраним, провод бракуется

Коррозия внутренних поверхностей повивов

Допуск не дается

Дефект неустраним, провод бракуется

Раскрутка провода против повива

Допуск не дается

Дефект неустраним, провод бракуется

Обработка жестких и гибких шин

Технические условия, способы проверки, допуски

Обработка и зачистка медных и алюминиевых шин. Снятие пленок окисла, устранение неровностей с контактных поверхностей и зачистка жестких шин

Обработка медных и алюминиевых шин производится грубым напильником или специальными фрезами на шино-фрезном станке. Алюминиевые шины после обработки зачитаются под слоем вазелина. Непосредственно перед установкой контактная поверхность алюминиевой шины вторично зачищается мягкой стальной щеткой

После обработки контактная поверхность шины должна быть шероховатой и при проверке стальным угольником и щупом 0,05 X 10 мм последний не должен проходить на глубину более 5 мм с любой стороны соприкасающихся поверхностей. Уменьшение сечения шины на обработанном участке не должно быть более 2%

Зачистка многопроволочных гибких шин (проводов)

Поверхность гибкого провода, а при сильном окислении каждая проволока очищается мягкой стальной щеткой и покрывается тонким слоем технического вазелина, не содержащего кислот и щелочей

Отсутствие кислот в вазелине проверяется путем подогрева его до 80-90° С в присутствии отполированной медной пластинки; спустя 12 часов пластинка не должна темнеть

Отсутствие щелочей определяется путем смешивания вазелина с концентрированной серной кислотой – вазелин не должен чернеть

Лужение контактных поверхностей медных и стальных шин

Для лужения медных и стальных шин применяется припой ПОС-30, а в качестве флюса – канифоль или мазь (канифоль, разведенная в денатурированном спирте). Для ответственных контактов и при больших рабочих токах применяется припой ПОС-90

Толщина слоя ппипоя не должна превышать 0,1- 0,15 мм

Контактные поверхности медных и стальных шин подвергаются лужению:

а) медных – при прокладке их в сырых помещениях и на открытом воздухе

б) стальных – независимо от места их прокладки и характера окружающей среды

Гнутье медных, алюминиевых и стальных шин

Гнутье шин производится на специальном станке по шаблонам, заготовленным и проверенным по месту установки шин. Шаблоны изготовляются из стержней жесткой проволоки или катанки 4- 5 мм

Полосы шин гнутся на плоскость без подогрева, а на ребро с подогревом изгибаемого участка: алюминий до 250° С, медь до 350° С, сталь до 600° С. При гнутье шин должны быть соблюдены следующие радиусы изгиба:

гнутье на ребро; сталь – а; медь-1,5 а, алюминий-2 а; гнутье на плоскость – 2 б (а-ширина полосы в мм; б – толщина полосы в мм).

Для круглых шин диамметром до 16 мм:

медь и сталь – 50 мм;

алюмииий – 70 мм;

диамметром до 30 мм:

медь и сталь-100 мм;

алюминий – 150 мм.

Расстояние от начала изгиба шины до ближайшего контактного соединения должно быть не менее 50 мм, а до оси первого опорного изолятора – не менее 100 мм

Шины РУ соединяются между собой болтами, сжимными накладками, зажимами или сваркой.

Выбор способа соединения зависит от материала, формы и размеров шин, величин рабочих токов и окружающей среды.

Плоские шины соединяются между собой болтами с гайками, сжимными накладками или сваркой.

При болтовом соединении шин надежный контакт в месте соединения их создается надлежащим затягиванием болтов.

Наибольшие допустимые силы затягивания болтов и усилия от руки на ключ при соединении шин

Диаметр болта в мм

Площадь нормальной шайбы в мм кв

Наибольшая сила в кг затягивания болтов при температуре в °С

Усилие в кг от руки на ключ при окружающей температуре в °С

Затягивать болты необходимо специальным ключом с регулируемым усилием. При завертывании болтов и гаек обычными (гаечными, разводными и др.) ключами применение рычага не допускается во избежание смятия металла шин под гайками и болтами.

При затягивании болтов усилие контролируется ключом с регулируемым усилием, а плотность прилегания – щупом 10×0,2 мм, который йе должен входить между контактными поверхностями шин на глубину более 5-6 мм.

Эскизы болтовых соединений прямоугольных шин.

1. Обозначения: А-алюминий, С – сталь, М-медь.

2. Крепежные детали, применяемые для болтовых соединений шин, должны иметь антикоррозийное покрытие. В закрытых распределительных устройствах могут применяться вороненые крепежные детали.

Применение алюминиевых болтов, гаек и шайб в качестве крепежных деталей для болтовых соединений шин недопустимо.

3. При рабочем токе шин свыше 5000 А следует применять болты из немагнитных материалов.

Размеры болтовых соединений прямоугольных шин “внахлестку”

Ширина главной шины Н1 в мм

Ширина ответвляемой шины Н2 в мм

Конструктивные размеры контактного соединения в мм

№ эскиза на рисунке

Крепление шин на изоляторах

а) однополосных плоских и круглых шин: 1 – болт; 2 – шайба пружинящая; 3 – шайба нормальная стальная; 4 – шина; 5 – планка шинодержателя; 6 – скоба стальная, б) многополосных плоских шин: 1 – шина; 2 – планка стальная или из немагнитного металла толщиной 6-8 мм; 3 – планка стальная толщиной 8-10 мм; 4 – шпилька стальная 1/2″; 5 – прокладка “сухарь”, равная толщине шины; 6 – прокладка из электрокартона толщиной 1,5-2 мм.

Установка и крепление жестких шин

Технические условия, допуски и нормы

Установка и крепление однополюсных шин прямоугольного или круглого сечения

Однополосные шины устанавливаются на головках изоляторов и закрепляются при установке на плоскость —одним болтом, пропущенным сквозь отверстие в шине, или двумя болтами с применением шинодержателя

Круглые шины крепятся с помощью скоб и винтов

При установке однополосной шины “на плоскость” и креплении ее одним болтом отверстие в шине для крепежного болта в целях обеспечения свободного перемещения шины вдоль оси должно иметь овальную форму. Шина крепится к головке изолятора с применением пружинящей и стальной шайб, подкладываемых под головку крепежного болта

При установке многополосных шин в шинодержателях для повышения жесткости шин и улучшения условий их охлаждения между полосами должны вставляться прокладки – «сухари», равные толщине шины

Установка и крепление многополосных шин прямоугольного сечения

При рабочих токах, превышающих допускаемые для однополосных шин, применяют многополосные пакеты, состоящие из нескольких полос шин, закрепленных в шинодержателях «на плоскость или на «ребро»

Для повышения жесткости пакета и создания между шинами необходимого зазора, улучшающего условия их охлаждения, между шинами устанавливают распорные прокладки типа ПРШ

Между планкой шинодержателя и шинами должен сохраняться зазор 1—1,5 мм. Пии длине одной фазы сборной шины 20 мм и более, когда удлинение их может быть значительным, предусматриваются специальные компенсирующие устройства, воспринимающие на себя эти удлинения

При рабочем токе шин свыше 1500 А детали крепления шин в шинодержателях рекомендуется изолировать прокладками из электрокартона, а при токах свыше 2000 А, кроме того, применять детали из немагнитных материалов

Все детали распорных прокладок должны иметь антикоррозийное покрытие

Дополнительно по теме

Изоляторы ИО-10, ИОР-10, ИП-10/630

РВ, РВО, РВФЗ, РЛНД

Описание предохранителей ПК, ПР, ПН. Номенклатура предохранителей

Описание предохранителей ПК, ПР, ПН. Номенклатура предохранителей

Приводы ПР-10, ПР(А)-17, ПП-67, ППМ, ППВ-10, ПЭ-11

Соединение токоведущих шин

ВЫБОР ТОКОВЕДУЩИХ ЧАСТЕЙ И ИЗОЛЯТОРОВ

РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ

Выбор токоведущих частей

Токоведущие части в распределительных устройствах 35 кВ и выше электростанций и подстанций обычно выполняются гибкими сталеалюминевыми проводами АС или АСО. Гибкие провода применяются также для соединения блочных трансформаторов с ОРУ. При напряжении 500 кВ могут быть применены полые алюминиевые провода марки ПА. При номинальных напряжениях 750 и 1150 кВ следует применять только провода марки ПА. При этом число проводов в фазе получается минимальным, уменьшается расход алюминия и число гирлянд изоляторов, упрощается монтаж. В некоторых конструкциях открытых распределительных устройств часть или вся ошиновка и сборные шины могут выполняться жесткими из алюминиевых труб.

Соединение генераторов и трансформаторов с закрытым или комплектным распредустройством 6…10 кВ осуществляется гибким подвесным токопроводом, шинным мостом или закрытым комплектным токопроводом. Гибкие токопроводы для соединения генераторов и трансформаторов с РУ 6…10 кВ выполняются пучком проводов, закрепленных по окружности в кольцах-обоймах. Два провода из пучка – сталеалюминевые. Онинесут в основном механическую нагрузку от собственного веса, гололеда и ветра. Остальные провода – алюминиевые. Они являются только токоведущими. Сечения отдельных проводов в пучке рекомендуется выбирать возможно большими (500, 600 мм2),так как это уменьшает их число и стоимость токопровода.

Все соединения внутри закрытого распредустройства 6…10 кВ, включая сборные шины, выполняются жесткими голыми алюминиевыми шинами прямоугольного или коробчатого сечения. При токах до 3000 А в закрытых распредустройствах 6…10 кВ применяются однополосные и двухполосные алюминиевые шины. При больших токах рекомендуются шины коробчатого сечения, так как они обеспечивают лучшие условия охлаждения и меньшие потери от эффекта близости и поверхностного эффекта.

Проводники линий электропередач, длинных связей блочных трансформаторов с ОРУ, токопроводы генераторного напряжения выбираются по экономической плотности тока

, (4.1)

где – ток нормального режима (без перегрузок); – нормированная плотность тока, А/мм2.

Сечение, выбранное по экономической плотности тока, проверяется на нагрев (по допустимому току) в послеаварийном и ремонтном режимах работы электроустановки.

Механический расчет однополосных жёстких шин прямоугольного, круглого, трубчатого или иного профиля, расположенных в одной плоскости.

Определяется наибольшее усилие, возникающее при трехфазном коротком замыкании, Н:

, (4.7)

где ударный ток, А; а – расстояние между соседними фазами, м; l – пролет шины (расстояние между соседними изоляторами одной фазы), м.

Максимальный изгибающий момент на шину при числе пролетов свыше двух (шина рассматривается как многопролетная балка, свободно лежащая на опорах), .

, (4.8)

Напряжение в материале шины, возникающее при воздействии изгибающего момента, МПа

, (4.9)

где W – момент сопротивления шины относительно оси, перпендикулярной действию усилия, см 3 (табл. 4.1).

Таблица 4.1

Шины динамически устойчивы, если

, (4.10)

где – допустимое механическое напряжение в материале шин.

Читайте также:  Датчик света для вывески

В электроустановках широко применяют шины прессованные из алюминиевого сплава, закалённые и естественно состаренные (марка АД31Т) или закалённые и искусственно состаренные (марка АД31Т1). Допустимое механическое напряжение в материале шин марки АД31Т МПа, марки АД31Т1 МПа [4].

Если при расчете окажется, что напряжение в материале шин больше допустимого, то следует принять меры к изменению одной или нескольких величин, входящих в выражение для определения .

Методика механического расчёта шин двухполосных, коробчатого сечения, шин, расположенных в вершинах треугольника даётся в [4, 5].

Гибкие шины крепятся на гирляндах подвесных изоляторов с дос­таточно большим расстоянием между фазами. Так, для сборных шин приняты расстояния: при 35 кВ – 1,5 м; 110 кВ – 3 м; 220 кВ – 4 м; 330 кВ – 4,5 м; 500 кВ – 6 м; 750 кВ – 10 м.

При таких расстояниях силы взаимодействия между фазами невелики,поэтому расчета на электродинамическое действие для гибких шин обычно не производят. Но при больших токах короткого за­мыкания провода в фазах могут схлестнуться. Согласно ПУЭ [1] на электродинамическое действие тока короткого замыкания проверяют­ся гибкие шины распределительного устройства при 20 кА и провода ВЛ при iу 50 кА. Порядок проверки на схлестывание указан в [4].

Проверка по условиям коронирования делается для гибких про­водников при напряжении 35 кВ и выше. Порядок расчета рассмот­рен в [4]. Можно использовать также приведенные в ПУЭ [1] минимально допустимые по условиям короны сечения проводов воздуш­ных линий электропередач: для напряжения 110 кВ – АС 70/11; 150 кВ – АС 120/9; 220 кВ – АС 240/39; 330 кВ – АС 600/72; 3 х АС 150/24; 2 х АС 240/39; 500 кВ – 3 х АС 300/66; 2хАС 700/86.

На отдельных участках электрических схем применяются комплектные токопроводы. Такими участками являются: связь между генератором и блочным трансформатором, отпайка к трансформатору собственных нужд от связи генератор-трансформатор, связь между трансформаторами собственных нужд и распределительным устройством 6 кВ, соединение трансформатора на подстанции с распределительным устройством 6…10 кВ. В этом случае токопровод выбирается при условии, что

, (4.11)

, (4.12)

. (4.13)

Особенности применения нулевых шин

Как известно, система электропитания конечного потребителя строится по схемам, рекомендованным Правилами устройства электроустановок (ПУЭ). На объект подводится силовой кабель, дальнейшая разводка происходит в распределительном щитке. Для удобства монтажа и упорядочения линий электропитания, вводы с разными значениями объединяются в контактные группы. Шина с фазой, нулевая шина — это контактная колодка, в которой присутствует возможность надежного подключения нескольких проводников для питания электроустановок.

Требования, предъявляемые к нулевой шине

  • Для групповой сети, шина должна быть единым проводником, без возможности коммутации между ее частями.
  • Сопротивление должно быть одинаковым по всей длине.
  • В пределах одной групповой линии, допускается объединение проводников PE (защитное заземление) и N (рабочий нуль).
    При этом после разделения ввода PEN на шины PE и N, конечные потребители подключаются на разные шины.

Важно! Использование одной шины для подключения рабочего нуля и заземления, запрещено! Это принципиальный вопрос, необходимо понимать разницу между разделением и объединением PE и N.

С момента разделения, линии заземления и нуля могут быть проложены в одном силовом кабеле, но проводники должны быть изолированы.

  • Вне зависимости от способа подключения (трехфазное или однофазное), сечение нулевого проводника должно соответствовать сечению любого из фазных проводников. То же требование предъявляется к сечению самой шины.
  • Сечение соединительных проводов от шины до конечной электроустановки, не может быть выше, чем сечение входного силового провода.
  • Если шина представляет собой конструкцию с отверстиями для подключения проводников, действительным сечением считаются геометрические параметры в самой тонкой части.
  • Требований по обязательному изготовлению нулевой рабочей шины из определенного металла не существует. Однако на практике, применяется медь или латунь. При расчете сечения алюминиевых шин, по отношению к медным, применяется коэффициент 1.52.
  • Для удобства рассмотрим однофазную схему, которая применяется в большинстве квартир многоэтажных домов. Две основные линии: фаза и нуль, присутствуют всегда. Они заводятся в прибор учета (счетчик электроэнергии), а на выходе становятся доступными для дальнейшей разводки. В зависимости от применяемой системы, может быть установлена либо только нулевая шина, либо нулевая и заземляющая.

    Почему применяются разные системы заземления

    1. Схема, не противоречащая современным Правилам устройства электроустановок (ПУЭ): TN-S. К вам в распределительный щиток заходят три проводника (напомним, речь идет об однофазной схеме).
      На установке, производящей электроэнергию (в нашем случае — трансформаторная подстанция), шина нулевая с заземлением представляют собой глухо заземленную нейтраль. Соединение с защитной землей происходит лишь в этой точке. Затем по изолированным проводникам, в щиток заводятся две шины. Эта система является самой безопасной с точки зренияНулевая и заземляющая шины разделены на уровне вводного устройства в объект. На уровне конечного распределительного щитка (группы потребителей) шины снова объединять запрещено. В случае повреждении нулевой шины на пути от генерирующего оборудования до потребителя, заземление остается в целости и сохранности.
    2. Устаревшая, но широко применяемая в зданиях старой постройки схема TN-C. Заземление не выведено отдельным проводником, в щитке присутствует лишь нулевая шина.Соединять с нулем проводник заземления, запрещено Правилами устройства электроустановок. Поэтому в данной схеме подключения «земли» в привычном понимании просто нет.

    Для чего нужна нулевая шина

    Силовой и нулевой провода, необходимо распределить от щитка до каждого индивидуального потребителя (или группы потребителей). Типовая схема квартирного щитка выглядит так:

    Все силовые провода коммутируются защитными автоматами. А рабочий нуль соединяется с каждым потребителем напрямую. Для того чтобы выполнить групповое соединение без проблем на единственном контакте, разработана нулевая шина.

    • Обеспечивается оперативное подключение нескольких равнозначных линий.
    • Все контакты находятся под визуальным контролем.
    • Появляется возможность эффективного использования автоматов: нулевой проводник размыкать автоматом не обязательно. Значит, коммутационное оборудование может состоять из одной линии.
    • Гарантируется неразрывная цепь нуля от силового кабеля на входе, до каждой электроустановки.
    • Грамотное разделение электропроводки в рамках одной системы.
    • Технически правильное подключение устройств защитного отключения (УЗО), возможно лишь в случае организации нулевой шины в соответствии с ПУЭ.

    Какими бывают нулевые шины

    По сути, это усиленный проводник открытого типа (в контактной зоне), на который можно с помощью винтовых или иных соединителей завести нулевые проводники. Типичная конструкция — прямоугольный брусок из прочного металла с хорошей проводимостью: чаще всего латунь, или иные сплавы на основе меди.

    Размещается эта контактная колодка внутри распределительных устройств. Вне зависимости от конструкции, после монтажа не должно быть доступа к токоведущим частям. В генерирующей установке, нуль является глухо заземленным. А в точке подключения, любое прикосновение к открытым проводникам может быть опасным. Поэтому в щитках, где после открытия крышки открывается доступ ко всем элементам, применяются относительно защищенные конструкции.

    Если щиток после монтажа всегда закрыт для доступа, за исключением выключателей защитных автоматов, можно использовать полностью открытые нулевые рейки.

    Такие колодки непосредственно монтируются на корпус (внутри) щитка из пластмассы, или через диэлектрические проставки, на металлическую коробку.

    Поскольку большинство распределительных щитов выполнены с применением DIN реек, разумно устанавливать любое клеммное оборудования подобной конструкции.

    Установив такую рейку в одном ряду с дифференциальными автоматами, несложно аккуратно подключить каждый абонентский кабель внутри щитка.

    Существуют клеммы быстрого монтажа: по типу WAGO. Есть соблазн не «мудрить» с винтовыми зажимами, а выполнить соединение «по-быстрому».

    Но такие зажимы не являются на 100% надежными. К тому же, качество контактов невозможно проверить визуально. Еще одна проблема — в разъемах WAGO нет возможности извлечь один проводник, не разрушив всю линейку.

    Какого производителя выбрать

    На самом деле, предпочтения тому или иному логотипу не связаны с качеством. Фурнитуру для монтажа электропроводки выпускают все известные электротехнические предприятия. И если у вас вся розеточная сеть, защитные автоматы и проводка, произведены фирмой IEK, ABB, Legrand или Schneider Elerctric — есть смысл нулевые рейки и шины защитной земли покупать с таким же логотипом.

    Экстремально дешевые изделия «noname», могут просто треснуть при эксплуатации, обеспечив гарантированные проблемы для дорогостоящего электрооборудования.

    Видео по теме

    Характеристика и особенности ошинковки трансформатора своими руками

    В России ошиновку трансформаторов со стороны высшего напряжения чаще всего выполняют многожильным алюминиевым проводом со стальным сердечником. При этом его закрепляют на изоляторах для воздушных ЛЭП, применяя соответствующую арматуру. Но устройства, изготовленные таким образом, не отличаются компактностью. Поэтому их не всегда удается выполнить согласно габаритным ограничениям техзадания. Альтернативой этому способу является метод жесткой ошиновки. Выбор типа ошиновки зависит от рабочих параметров трансформатора и должен учитывать технико-экономическое обоснование установки.

    Ошиновка трансформатора: что это такое?

    Ошиновкой трансформаторной подстанции или распределительного устройства (РУ) называется конструкция, служащая для передачи электроэнергии в границах своей электрической установки. В ее состав входят проводники, изоляторы, разветвители и удерживающие их элементы, а иногда и защитные кожухи.

    Шины могут быть как жесткими, так и гибкими. Это зависит от параметров и вида устройства. В жесткой шинной конструкции шинами служат отрезки металлических полос или труб. Они закрепляются на опорных изоляторах либо в шинодержателях. Гибкая ошиновка образуется при использовании многожильных проводников без оболочки, подвешенных на линейных изоляторах. Расшиновкой трансформатора называют полный или частичный демонтаж его шинной конструкции. Чаще всего она выполняется для замены или ремонта оборудования.

    Для чего выполняют ошиновку трансформатора

    Шинная конструкция трансформатора необходима для подачи на него высокого и снятия с него пониженного напряжения. То есть она является связующим звеном между трансформатором и кабельными вводами электрических сетей.

    Какие материалы применяют

    Ошиновку трансформаторов разной мощности выполняют по различным типовым проектам с применением разных материалов.

    Для трансформатора малой мощности

    Токопроводы ошиновки маломощных трансформаторов изготавливаю из алюминиевых шин, проводов или кабелей. Соединение их с медными крепежными элементами трансформаторных выводов делают, используя медно-алюминиевые переходники. Выводы вторичной обмотки соединяют с распредщитом многожильным алюминиевым или медным изолированным проводом, открыто проложенным по стальной полосе.

    Для силового трансформатора

    Ошиновку трансформаторов большей мощности делают гибким алюминиевым кабелем. Отрезки, которого соединяют прессуемыми натяжными зажимами. При этом ввод в распределительные устройства выполняется алюминиевыми шинами.

    Изоляторы

    Состоят из керамики высшего качества покрытой глазурью. В зависимость от области применения делятся на группы.

    • Аппаратные, используемые в аппаратуре.
    • Стационарные – для распределительных устройств. По назначению различают проходные и опорные изоляторы. Опорные используют для крепления жестких токопроводов. Проходные для подсоединения электрических сетей к шинным конструкциям устройств.
    • Линейные – для воздушных ЛЭП.

    Как правильно выполнить ошиновку своими руками

    Перед началом сборки следует убедиться в исправности изоляторов и удалить заусенцы с крепежных элементов. При сборке шинного модуля нельзя деформировать токопроводы, совмещая их с точками крепления. Иначе на изоляторы или шинодержатели, используемые для их крепления, будет действовать нагрузка, значительно превышающая расчетную. В процессе сборки следует контролировать правильность соединения фазных шинопроводов и их чередования. По окончании монтажа участок входа провода в зажим и зазор между ними необходимо герметизировать несколькими слоями эмали или свинцового сурика, разведенного на олифе.

    Каким критериям должна отвечать правильная ошиновка

    При переменном токе устройства, превышающем 600 А элементы шинодержателей не должны образовывать замкнутого магнитного контура вокруг шины. Для чего хотя бы одна из накладок или один стягивающий их болт должны быть из немагнитного материала.

    Изгиб плоской шины на ребро выполняется радиусом не меньше удвоенной ширины. Загиб на плоскость – не меньше двойной толщины.

    Гибкие шины не должны быть перекручены и иметь расплетки или лопнувшие жилы.

    Как проверить правильность: тестирование и испытания

    Для оценки состояния шинного модуля по окончании сборки проводят несколько испытаний.

    Измерение сопротивления изоляции

    Сопротивление всех типов изоляционных материалов измеряют мегомметром на 2,5 тыс. В. Для измерения готовую шинную конструкцию отключают от такой аппаратуры, как трансформаторы, разрядники, токовые автоматы и от подобных им. Выводы прибора подключают к шинопроводу и к заземлению устройства. Проверяя шины одной фазы, две других следует замкнуть на «землю». При различии сопротивлений изоляции фаз более, чем в несколько раз необходимо осмотреть фазу с меньшим сопротивлением.

    Испытание повышенным напряжением

    Проверка проводится с отключением той же аппаратуры что и при измерении сопротивления изоляции. Оборудование для этого испытания не должно иметь выдержки времени отключения при КЗ.

    Контроль соединения шин

    Качество сварки шинопроводов проверяется при помощи УЗИ сканера. А при отсутствии прибора внешним осмотром сварного шва. Контроль резьбовых соединений проводят, измеряя электрическое сопротивление пятна контакта. А также выборочно проверяя момент затяжки, или разбирая соединение для осмотра.

    Способы оконцевания жил кабелей и проводов с помощью наконечников

    В каждом электрическом щитке имеется не менее десятка соединений проводов. Перед их подключением необходимо выполнить оконцевание кабеля. Данная мера обязательна для надежной работы электроустановки.

    Что такое оконцевание

    Оконцевание проводов — это один из максимально простых и надежных способов подключения проводов к клеммным колодкам, автоматическим выключателям и прочему электротехническому оборудованию. Данный тип соединения распространен в бытовых и промышленных сетях. Это обусловлено преимуществами, которых позволяет добиться оконцевание:

    • надежное контактное пятно;
    • удобство монтажа;
    • низкое переходное сопротивление соединения;
    • общая эстетичность проводки.

    Силовые кабели с наконечниками

    Главное преимущество оконцевания жил кабелей — это низкое переходное сопротивление полученного контакта. Если его не использовать, то провод не сможет должным образом прижаться винтом к шине клеммника. Это приведет к слишком высокому сопротивлению контакта. Плохое соединение начнет греться или вовсе отгорит.

    Оконцевание производится с помощью наконечников. Внешне они напоминают медные или алюминиевые колпачки. С одной стороны в них вставляется заранее зачищенный от изоляции провод, а с другой имеется отверстие для крепления под винт. Наконечник служит в качестве надежного переходника между кабелем и устройством, к которому он подключается.

    Для чего нужна оконцовка

    Опасность кроется в чрезмерном перегреве места соединения. Без оконцевания контакт получится ненадежным. Такое соединение начнет нагреваться и покрываться слоем окисла. Образовавшийся оксид еще сильнее повысит переходное сопротивление. В точке соединения начнет выделяться все большое количество теплоты. Процесс подобен наращиванию снежного кома. Но итог один — соединение отгорит.

    И хорошо, если проводник просто отвалится с положенного места и на этом все закончится. В некоторых случаях изоляция кабеля может воспламениться от перегрева и привести к пожару. А отвалившийся провод способен коснуться заземленного корпуса установки или электрощита и спровоцировать короткое замыкание.

    Как оконцевать провод без наконечника

    Применение наконечников — это удобный способ оконцовки провода. Однако они не всегда есть под рукой. В таком случае оконцовка кабеля производится без наконечников. Зачищенную от изоляции и грязи токоведущую жилу вручную сгибают в форме кольца (ушка) под болт. Для формовки соединения следует применять длинногубцы с округлой внешней стороной. Полученное соединение менее надежно, чем наконечник заводского исполнения.

    Если провод медный, то ушко под болт можно залудить припоем. Загибать кольцо необходимо по направлению закручивания винта, чтобы в процессе затяжки ушко закручивалось вокруг болта, а не наоборот.

    Дополнительная информация. Современный алюминиевый провод не отличается пластичностью. Его жилы более хрупкие, чем у медного кабеля. Это следует помнить при оконцевании и формовке соединительных колец. Алюминиевый провод нужно гнуть минимальное количество раз.

    Распространенные виды наконечников

    В электромонтажной практике встречаются десятки видов соединителей. Такое разнообразие обусловлено широким списком используемых проводов. Под каждый тип кабеля подбирается свой наконечник. Он должен соответствовать по материалу и сечению токоведущей жилы.

    Важно. Для оконцевания алюминиевых проводов следует использовать переходники из такого же материала. Это правило распространяется и на медные жилы. Прямое соединение меди с алюминием недопустимо.

    Медные наконечники ТМ

    Производятся из цельнотянутой трубки. На это указывает буква — Т. Трубка сделана из меди — М. Полная маркировка выглядит следующим образом ТМ 35-10-9. Здесь:

    • Т — трубка;
    • М — медная;
    • 35 — сечение кабеля, для которого предназначен этот наконечник, кв. мм;
    • 10 — диаметр (марка) крепежного винта, мм;
    • 9 — диаметр хвостовика, то есть отверстия, в которое вставляется жила кабеля.

    Если размеры позволяют, модель наконечника указывается на его поверхности. Если он слишком мал, то на корпусе изделия отштамповывается номинальное сечение подключаемого кабеля. Например, цифра «4» рядом с крепежным отверстием означает, что в наконечник следует вставлять жилу сечением 4 кв. мм.

    Медные с лужением ТМЛ

    Медь — хороший проводник электрического тока. Однако часто на наконечниках ТМ встречается зеленоватый налет. Это слой оксида меди, который никуда не годится для надежной передачи тока. Для борьбы с этим явлением наконечники дополнительно покрываются защитным антикоррозионным покрытием из олова. В результате получается изделие ТМЛ. Буква «Л» здесь обозначает лужение. В остальном же маркировки ТМ и ТМЛ схожи.

    Наконечники для провода луженые

    Защитный слой препятствует окислению медного наконечника. Поэтому его допустимо применять в более влажных помещениях. За счет повышенной надежности ТМЛ пригоден для подключения ответственных потребителей электроэнергии.

    Медные луженые с контрольным окном ТМЛ (о)

    Перед установкой токоведущей жилы в наконечник с нее снимается защитный слой изоляции. При этом имеется пара тонкостей:

    1. Зачищенная жила должна полностью войти в трубку и упереться в ее окончание. В полости наконечника не должно остаться пустоты.
    2. Кабель должен зачищаться на минимальную длину. Чтобы у хвостовика наконечника не осталось оголенного участка провода без изоляции.

    Для контроля перечисленных условий применяются соединители ТМЛ (о). Маленькая буква «о» в конце маркировки означает, что на поверхности предусмотрено смотровое отверстие. Окно позволяет визуально оценить, зашел ли кабель на должную глубину.

    Алюминиевые наконечники ТА

    Данный тип соединителей изготовлен из алюминиевой трубки. На это указывает буква «А». Наконечники ТА предназначены для ответвления алюминиевых проводов от аналогичных по материалу токоведущих шин.

    ТА отличаются продолжительным сроком службы. Алюминий обладает повышенной устойчивостью к влаге из воздуха и практически не разрушается от нее. Такой материал в несколько раз дешевле меди, поэтому подчас люди выбирают именно алюминиевые крепежи.

    Кабельные наконечники алюминиевые

    ТА выпускаются для проводов сечением от 16 кв. мм и выше. А также они требуют использования кварц-вазелиновой смазки для дополнительной защиты поверхности.

    Медно-алюминиевые ТАМ

    В строении этих соединителей применяются два металла: медь и алюминий. Они соединяются между собой посредством фрикционной диффузии. Один металл проникает в другой на молекулярном уровне. Поэтому удается избежать высокого переходного сопротивления.

    ТАМ обладают уникальным свойством. Они используются для соединения жил из алюминия с медными шинами распределительных устройств. В остальном они ничем не отличаются от других трубчатых модификаций. Для их подключения используется винт, а обжатие производится при помощи пресса.

    Прочие типы наконечников

    Перечисленных типов крепежей недостаточно для выполнения всех электротехнических задач. Поэтому на практике часто встречаются и другие типы наконечников:

    1. ПМ — кабельные наконечники под пайку. Их изготавливают из листовой меди марки М1. Помимо пайки данный тип наконечника пригоден и для опрессовки. Выпускаются для кабелей сечением от 2,5 до 240 кв. мм.
    2. НШП — штифтовой плоский. Используется для подключения медных кабелей. Выполнен из меди. Основное назначение — подключение проводки к автоматическим выключателям. Внутри имеет кольцевые насечки для улучшения контакта с токоведущей жилой.
    3. НШВ — штыревой втулочный. Распространены в современном оборудовании. Выполнены из электротехнической меди с защитным покрытием. Используются для подключения многожильных медных проводов сечением от 0,25 до 150 кв. мм.
    4. НШВИ — штыревой втулочный изолированный. Оснащены дополнительной изолирующей юбкой из пластика.

    Инструменты для оконцевания

    Для надежного обжатия трубки под кабель придется воспользоваться специальным инструментом. В зависимости от сечения кабеля он подразделяется на две категории:

    • пресс-клещи — для наконечников до 10 кв. мм;
    • гидравлический пресс — от 16 кв. мм и выше.

    Оконцеватель проводов обеспечивают равномерный обжим трубки минимум с четырех сторон. Такой метод позволяет добиться наилучшего контакта. В комплекте с гидравлическим прессом предусмотрены насадки для сжима. Их следует выбирать в зависимости от сечения обжимаемого наконечника.

    Важно! После опрессовки наконечника его следует защитить от влаги из воздуха. На участок, в который вставляется провод, наматывается несколько слоев изоляционной ПВХ ленты. Еще удобнее использовать термоусаживаемую трубку. Ее цвет подбирается в соответствии с назначением провода. Фаза A — желтый, B — зеленый, C — красный.

    Пайка наконечников

    Некоторые наконечники подразумевают крепеж с помощью пайки. Как правило, эти модели выпускаются в луженом исполнении. Если наконечник рассчитан на малое сечение до 10 кв. мм, то его получится припаять при помощи обычного паяльника. Если же трубка большая, то следует воспользоваться газовой горелкой. При этом сам проводник предварительно зачищается и залуживается оловянно-свинцовым припоем. Метод подходит только для медных наконечников и кабелей. По качеству такое соединение уступает разве что сварке.

    Надежное подключение кабеля требует оконцевания его жил. Для проводов большого сечения следует применять наконечники. Тонкие можно оконцевать и без них. Для этого достаточно сделать аккуратное кольцо с помощью длинногубцев или пассатижей.

    Наконечник подбирается с учетом материала и сечения токоведущей жилы. Для качественного оконцевания желательно использовать специальный пресс или монтажные клещи. При их отсутствии или малом объеме работ допустимо прибегнуть к пайке наконечника.

    Рейтинг
    ( Пока оценок нет )
    Загрузка ...
    Adblock
    detector