Соединение зигзагом в трехфазного трансформатора

Схемы соединения обмоток трансформатора Звезда Треугольник Зигзаг. Что это такое.

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки.

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки. Дело в следующем: каждый асинхронный двигатель имеет своё индивидуальное номинальное напряжение питания. Исходя из этого выбирается и соответствующая обмотка, которая является индивидуальной к каждому двигателю.

Основные виды обмоток

Существует довольно большое количество видов обмоток. **Схема соединений распределительного трансформатора** однофазного вида предполагает применение таких видов:

1) треугольник (Δ-соединение) – три фазные обмотки соединяются последовательно в кольцо или треугольник;

2) звезда (Y-соединение) – это соединение в виде звезды, которая соединяет все три обмотки их концами с одной стороны в одной нейтральной точке, называемой звездой;

3) зигзаг – (Z-соединение) – это соединение зигзагом.

Среди многих других факторов, на выбор соединений влияет мощность, которой обладает **Распределительный трансформатор**. Например, для наиболее высоких напряжений часто выбирается Y-соединение. Он лучше всего защищает прибор от перенапряжения, а также напрямую заземляет его. При соединении треугольником и звездой чаще всего комбинируют оба соединения, каждое из которых присутствует на трансформаторе по его разным сторонам.

Особенно это актуально в случаях, когда одну сторону планируют для зарядки. Обычно эту сторону и обматывают звездой. А треугольник в таких случаях даёт баланс между ампером и витком для оптимального уровня полного сопротивления нулевой последовательности. Обмотка треугольником не пропускает ток в сердечник.

Выбор обмоток с учётом напряжения оборудования

Все асинхронные электродвигатели обладают своим номинальным напряжением питания. Поэтому соединения **Звезда**, **Треугольник**, или же их комбинации **Звезда – Звезда**, **Звезда – Треугольник** – выполняют не только соединительную функцию, но определяют напряжение питания.

Известно, что напряжение обмоток, которые соединяются в звезду, в три раза больше, чем напряжение обмоток, которые соединяют в треугольник. Следовательно, применять каждый вид нужно только там, где это оптимально. Тогда правильные соединения обмоток смогут гарантировать правильную работу двигателя в течение многих лет, препятствовать его перегреву, изнашиванию.

Например, если электродвигатель нужно подключить в сеть с напряжением 380 В, с его номиналомUном = 220/380 В все обмотки соединяются в звезду. Если номинал двигателя Uном равняется 380/660 В, то обмотки заключаются в треугольник.

Выведение обмоток и их маркировка

Надо отметить, что **Группа соединений силового трансформатора** типов Δ и Y – это важнейшая составляющая не только работы всего двигателя. Важнейшую роль здесь играет и обеспечение оптимального взаимодействия трансформатора с другим оборудованием. Правильное выведение свободных обмоток – залог такого успешного “сотрудничества”. Выводы обмоток выводятся на клеммник в таком виде, чтобы соединение схемы было предельно простым. Соединение концов в звезду, предполагает, что при этом перемычки устанавливаются по горизонтали в один ряд, их соединяют три клеммы. Соединяя обмотки в треугольник, следует перемычки устанавливать вертикально, соединяя три пары контактов.

Неопытные мастера могут столкнуться с проблемой маркировки обмоток. Она обязательна, так как при выводе концы могут перепутаться. Особенно это актуально при схемах **Звезда** и **Треугольник**. Например, при обмотке стартора делается 3 обмотки, каждая имеет 2 вывода, всего 6.

Сначала нужно определить при помощи омметра выводы для каждой катушки. Ставим обозначения: для первой катушки это С1-С4, для второй С2-С5, для третьей С3-С6. Так, С1, С2, С3 – это начала катушек, всё остальное – концы. Далее соединяем концы второй и третьей катушек с их началами, подводим переменный ток 220 В.

Измеряем наличие напряжения в 3-й катушке. Если его нет, катушки соединены встречно, а значит, С1-С4, С2-С5 подписаны верно. Если напряжение обнаружено, меняем маркировку 1-й или 2-й катушки. Проверяем, если третья обмотка обесточена, 1 и 2 являются правильными. Маркировка 3 катушки определяется так: конец С6 соединяем с любым другим – С4, С5. Если на не подключенной обмотке есть напряжение, меняем надпись на 3-й обмотке. Если напряжения нет, то всё правильно.

Для того, чтобы правильно сделать соединение обмоток, необходимо как можно тщательнее изучить все нюансы по данной тематике. На самом деле, в этом нет ничего сложного. Если же вы испытываете трудности в том, чтобы со всем этим самостоятельно разобраться, лучше доверить такую работу опытным специалистам, ведь с электричеством не шутят.

Соединение зигзагом в трехфазного трансформатора

Трехфазный трансформатор, устройство трехфазного трансформатора, принцип работы трехфазного трансформатора, соединения обмоток трехфазных трансформаторов, группы соединений обмоток трехфазных трансформаторов, гармоники в трехфазных трансформаторах

Для трансформации электрической энергии в трехфазных цепях переменного тока используют как однофазные трансформаторы (в каждой фазе свой однофазный трансформатор), так и специальные трехфазные трансформаторы.

Рассмотрим случай использования однофазных трансформаторов в трехфазной цепи. Возьмем три одинаковых однофазных трансформатора, предназначенных для включения в соответствующие фазы трехфазной системы (рис. 1, а).

Рис. 1 Преобразование трех однофазных трансформаторов в трехстержневой

Для удобства дальнейшего анализа обе обмотки на каждом из трансформаторов – первичную и вторичную – поместим на одном из стержней, оставив второй свободным от обмоток (рис. 1, б). Если первичные обмотки всех трех трансформаторов подключены к фазам симметричной системы напряжений, то по обмоткам протекает такая же симметричная уравновешенная система токов холостого хода

которая создает аналогичную уравновешенную систему основных потоков. Сумма потоков в любой момент времени тождественно равна нулю (рис. 1, в):

Совместим свободные от обмоток стержни трансформа, торов, как показано на рис. 1, г. В соответствии с (2) суммарный поток через три совмещенных стержня всегда равен нулю, по этому их можно изъять, не нарушая режима работы. В реальных условиях устранение трех стержней создает существенную экономию электротехнической стали, поэтому единый трехфазный трансформатор (рис. 1 д) по сравнению с трехфазной группой однофазных трансформаторов оказывается более предпочтительным. Трехфазный трансформатор можно упростить, преобразовав его конструкцию в плоскую, как показано на рис. 1, е. Получим так называемый трехстержневой трансформатор. Сечение всех трех его стержней одинаково (не следует путать эту конструкцию магнитопровода с Ш-образным сердечником однофазного броневого трансформатора, где сечение среднего стержня в два раза больше сечения бокового стержня). Пути потоков для всех трех фаз показаны на рис. 2.

Рис. 2 Магнитопровод трехстержневого трансформатора

При этом оказывается, что длины путей потоков для фаз A и C будут равными между собой, но большими, чем для потока фазы B. При равенстве сечений и однородности магнитопровода это соответствует различным магнитным сопротивлениям на пути потоков и, следовательно, различным м.д.с. в фазах. Необходимо, однако, заметить, что возникшая несимметрия сказывается только при работе трансформатора вхолостую; уже при небольших нагрузках несимметрия настолько сглаживается, что становится практически неощутимой.

Рис. 3 Соединения обмоток трехфазных трансформаторов: а – звездой; б – треугольником; в – зигзагом

Обмотки трехфазных трансформаторов можно соединять звездой или треугольником. При соединении звездой (на схемах обозначают знаком Y) начала либо концы всех трех обмоток соединяют в одну точку (рис. 3, а); при соединении обмоток треугольником (обозначают знаком Δ) конец фазы предыдущей обмотки соединяется с началом следующей (рис. 3, б). Иногда используют также соединение обмоток типа зигзаг (обозначают знаком , схема соединения показана на рис. 3, в), представляющее собой комбинацию двух первых способов соединения. В обмотках, соединенных звездой и зигзагом, общую (ее часто называют также нулевой) точку обычно выводят на клеммный щиток, чтобы иметь возможность использовать не только линейное, но и фазное напряжения. Этот вывод используют также для заземления подключения защитных устройств, измерений. На схемных обозначениях в этом случае ставят индекс Y или . Схемные обозначения соединений обмоток трансформатора обычно показывают дробью: в числителе – обозначение соединения обмотки ВН, в знаменателе – НН, например Y/Y, Y/Δ. При соединении звездой величины фазных и линейных токов равны, а линейное напряжение в раз больше фазного; при соединении треугольником линейные и фазные напряжения равны, а линейный ток в раз больше фазного (рис. 4).

Рис. 4 Напряжения и токи в обмотке трехфазного трансформатора при соединении звездой (а) и треугольником (б)

В соответствии с общепринятым обозначением фаз трехфазной системы большими буквами латинского алфавита А, В и С также обозначают и начала обмоток высшего напряжения; концы их обозначают тоже большими буквами X, Y и Z соответственно. Начала и концы обмоток НН обозначают так же, но малыми буквами.

Понятия начала и конца какой-либо обмотки существенны для потребителей, которым важна не только величина вторичного напряжения, но и величина его фазового сдвига по отношению к первичному. В таких случаях маркировка выводных зажимов и понятие о началах и концах обмоток приобретают конкретный смысл, потому что при неправильном подключении фазовый сдвиг выходного напряжения по отношению к первичному изменится на 180°.

Рис. 5 Фазовый сдвиг линейных напряжений в трехфазном трансформаторе

Еще большую важность приобретает вопрос о началах и концах обмоток и их маркировке в трехфазных трансформаторах. С этой целью введено понятие о группах соединений обмоток трансформаторов, в основу которого положена величина фазового сдвига линейного вторичного напряжения по отношению к соответствующему линейному первичному напряжению, отсчитанная по ходу часовой стрелки от вектора ВН к вектору НН. На рис. 5 показан отсчет угла фазового поворота векторов линейных напряжений ab по отношению к АВ для трансформатора Y/Δ. В данном случае величина фазового сдвига оказалась равной 330°. Анализ возможных комбинаций переключений начал и концов обмоток при различных соединениях показывает, что величина фазовых сдвигов всегда кратна углу 30°. Именно эта величина взята в качестве единицы фазового смещения векторов линейных напряжений. Так, например, сдвиг в 180° соответствует шести единицам, в 330° – 11 единицам, в 0° – 0 единицам. Эта величина и определяет группу соединений обмоток трансформаторов. Например, при соединении обмоток высшего и низшего напряжений в звезду трансформатор может быть охарактеризован так: соединение обмоток звезда – звезда с нулевой группой соединений, схемная запись Y/Y–0; более краткая характеристика: звезда – звезда – нуль. Если теперь на вторичной стороне в общую точку соединить противоположные зажимы, поменяв местами начала и концы фазных обмоток, то группа трансформатора изменится на шестую (звезда – звезда шесть, обозначение Y/Y–6).

Читайте также:  Автомобильный стробоскоп-фонарик на pic

При симметричном питающем напряжении и равномерной нагрузке фаз трехфазного трансформатора по отношению к каждой из фаз, а значит, и к трансформатору в целом, будут справедливы уравнения, формулы, диаграммы и схемы замещения, полученные для однофазных трансформаторов. Исключение составляет режим холостого хода трехфазного трансформатора, при котором проявляются особенности, вызванные схемами соединений обмоток.

Выше было установлено, что из-за нелинейности кривой намагничивания магнитопровода ток холостого хода в трансформаторе будет несинусоидальным даже при синусоидальном приложенном напряжении. При этом ток можно рассматривать как сумму гармонических составляющих: основной (первой) гармонической, изменяющейся с периодом, равным периоду изменения тока T, и гармонических высших порядков. Составляющие гармоники высших порядков являются нечетными, из них наиболее существенна гармоническая третьего порядка. Ее частота равна 3f, а период, соответственно, в три раза меньше периода первой гармонической. Поскольку токи в фазах трансформатора сдвинуты на одну треть периода, то гармонические составляющие третьего порядка во всех трех фазах будут совпадать во времени и не могут образовать уравновешенную систему, т. е. сумма их в любой момент времени не будет равна нулю.

Если существует путь, по которому могут замкнуться третьи и кратные им гармоники тока, то они будут в общей кривой тока. Такой несинусоидальный ток, как было выяснено выше, соответствует синусоидальной форме потока. В качестве пути, по которому замыкаются высшие гармонические тока, может быть использован нулевой провод, подсоединенный к общей точке звезды.

Если же при соединении звездой нулевой провод отсутствует, то третьи и кратные им гармонические в кривой тока существовать не могут, и ток холостого хода превращается практически в синусоидальный.

Гармоники потока, кратные трем, в трехстержневых трансформаторах возникают во всех фазах и поэтому не могут замкнуться по контуру трехстержневого трансформатора, они замыкаются от ярма к ярму вне основного магнитопровода – через воздух или масло, стенки бака и другие конструктивные элементы. Поскольку магнитное сопротивление на этих путях весьма значительно, то величины третьих гармонических потоков будут относительно небольшими. Поэтому фактическое искажение основного потока также не очень значительно, амплитуды наведенных им э.д.с. отличаются от амплитуды основной гармоники не более чем на 5 –10%.

Следует, однако, иметь в виду, что третьи гармонические потока, замыкаясь через стенки бака и другие конструктивные металлические элементы, наводят в них вихревые токи, которые дополнительно нагревают эти элементы. По указанным причинам трансформаторы с соединением обмоток Y/Y–0 применяют в силовых трансформаторах небольшой мощности.

Принцип действия трансформатора

Принцип работы трансформатора связан с принципом электромагнитной индукции. Ток поступающий на первичную обмотку создает в магнитопроводе магнитный поток.

Работа трансформатора основана на явлении электромагнитной индукции. На одну из обмоток, называемую первичной обмоткой подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе, сдвинутый по фазе, при синусоидальном токе, на 90° по отношению к току в первичной обмотке. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° по отношению к магнитному потоку. Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик, и определяется в основном её индуктивным сопротивлением. Напряжение индукции на вторичных обмотках в режиме холостого хода определяется отношением числа витков соответствующей обмотки w2 к числу витков первичной обмотки w1: U2=U1w2/w1.

При подключении вторичной обмотки к нагрузке, по ней начинает течь ток. Этот ток также создаёт магнитный поток в магнитопроводе, причём он направлен противоположно магнитному потоку, создаваемому первичной обмоткой. В результате, в первичной обмотке нарушается компенсация ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке, до тех пор, пока магнитный поток не достигнет практически прежнего значения. В этом режиме отношение токов первичной и вторичной обмотки равно обратному отношению числа витков обмоток (I1=I2w2/w1,) отношение напряжений в первом приближении также остаётся прежним.

Схематично, выше сказанное можно изобразить следующим образом:

U1 > I1 > I1w1 > Ф > е2 > I2.

Магнитный поток в магнитопроводе трансформатора сдвинут по фазе по отношению к току в первичной обмотке на 90°. ЭДС во вторичной обмотке пропорциональна первой производной от магнитного потока. Для синусоидальных сигналов первой производной от синуса является косинус, сдвиг фазы между синусом и косинусом составляет 90°. В результате, при согласном включении обмоток, трансформатор сдвигает фазу приблизительно на 180°. При встречном включении обмоток прибавляется дополнительный сдвиг фазы на 180° и суммарный сдвиг фазы трансформатором составляет приблизительно 360°.

Схема соединения обмоток

Выводы начала обмоток однофазных трансформаторов согласно ГОСТ обозначают буквами А, а, а концы — Х, х. Прописные буквы относятся к обмоткам ВН, а строчные — к обмоткам НН.

Начала и концы обмоток фаз (фазных обмоток) трехфазных трансформаторов соответственно обозначают: А, В, С, X, У, Z — для обмоток ВН и а, b, с, x, у, z — для обмоток НН. При наличии третьей обмотки (среднего напряжения) применяют обозначения: Аm, Хm — для однофазных трансформаторов и Аm, Вm, Сm, Xm, Ym, Zm– для трехфазных. Нулевой вывод обозначают 0, 0m.

Соединение обмоток по схеме звезды и треугольника

Обмотки трехфазных трансформаторов в большинстве случаев соединяются по схеме звезды (обозначениеY или У) (рис 1.1), либо по схеме треугольника (обозначение ? или Д) (рис. 1.2). При соединении обмоток в звезду линейное напряжение Uл в v3 раз больше фазного Uф(Uл =v3 Uф), а линейный ток Iл равен фазному Iф (Iл=Iф). При соединении обмоток в треугольник Uл = Uф и Iл = v3/ф. Эти соотношения справедливы при симметричном режиме.

Рис. 1.1. Схема соединений обмотки ВН в звезду и обмоткн НН в звезду с выведенной нулевой точкой

Рис. 1.2. Схема соединений обмоток ВН и НН в треугольник

Схемы соединений обмоток трансформатора обозначаются в виде дроби Y/Y, Y/Д или У/У, У/Д и т.д. Числитель этой дроби указывает схему соединений обмоткн ВН, а знаменатель — обмотки НН. При выборе схемы соединений обмотки учитывается ряд обстоятельств. При высоких напряжениях предпочитают обмотку соединять в звезду и заземлять ее нулевую точку. При этом напряжение выводов и проводов линии электропередачи относительно земли уменьшается в v3 раз, что приводит к снижению стоимости изоляции. Обмотки НН соединяют в звезду и выводят нулевую точку (обозначение Y или Ун) в том случае, если от этой обмотки предполагается питание осветительной или смешанной осветительно-силовой нагрузки. Тогда осветительные лампы включают между одним из линейных проводов и нулевым проводом (на фазное напряжение), а трехфазные двигатели — к трем фазам па линейное напряжение.

При номинальном напряжении обмотки НН выше 400 В предпочитают соединять в треугольник, так как при этом улучшаются условия работы трансформатора при несимметричной нагрузке и уменьшается влияние высших гармоник.

Соединение обмоток по схеме зигзага

Иногда в специальных трансформаторах применяется также соединение обмоток по схеме зигзага(обозначение Z) (рис. 1.3). В этой схеме обмотка каждой фазы состоит из двух равных частей, размешенных на разных стержнях и соединенных между собой последовательно и встречно.

При встречном включении частей ЭДС обмотки фазы увеличивается в v3 раз по сравнению с согласным их включением и будет во столько же раз больше ЭДС каждой части (рис. 1.4). Соотношения между линейными и фазными напряжениями и токами при такой схеме получаются такими же, как и при соединении в звезду.

Рис. 1.3. Схема соединений обмотки в зигзаг

Рис. 1.4. Векторная диаграмма напряжений при соединении обмотки по схеме зигзага

Если предположить, что при соединении в звезду обмотка каждой фазы состоит из двух половин, расположенных на одном стержне, то фазное напряжение в этом случае будет в 2 раза больше напряжения каждой по

зигзага. Поэтому при одних и тех же значениях фазного и лине половины и, следовательно, в 2/v3 раз больше, чем при соединении по схеме напряжений расход обмоточного провода для схемы зигзаг в 2/v3 раз больше, чем при соединении в звезду.

Вопрос Схемы соединений обмоток трехфазных трансформаторов

При соединении обмоток трехфазных трансформаторов применяют различные схемы соединения. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН в звезду с выведенной нейтралью (Y0), а для обмоток НН — в треугольник (А).

а) Соединение обмоток в звезду
Если соединить концы или начала обмоток трех фаз вместе, то получится соединение в звезду. На рис. 3,а показаны обмотки НН, соединенные в звезду. В нулевой точке соединены все концы обмоток у, z, а к началам а, Ьу с— подводится напряжение от трехфазной сети или генератора. На рис. 3,6 показано то же соединение обмоток НН в звезду, но только в нулевую точку соединены другие концы обмоток, которые прежде присоединялись к сети. При независимой друг от друга работе трансформаторов подобное «переворачивание» одной из обмоток, соединенной в звезду, не имеет значения, по параллельная работа таких трансформаторов, как это будет доказано далее, невозможна. В звезду могут быть соединены различные обмотки трансформатора как ВН и СН, так и НН. Нулевая точка звезды может быть выведена на крышку трансформатора (рис. 3,б).
По схеме звезда или звезда с выведенной нулевой точкой соединяются обычно обмотки ВН как повышающих, так и понижающих трансформаторов различной мощности.

Рис. 3. Соединение обмотки НН в звезду.
а — одна схема соединения; б — другая схема соединения; в — соединение в звезду с выведенной нулевой точкой; г — векторная диаграмма линейных э. д с.
Обмотки ВН при напряжениях 110 кВ и выше предпочтительно соединять в звезду с выведенной нулевой точкой, что дает возможность заземления нейтрали. При этом можно выполнить один конец каждой из фаз, прилегающий к нейтрали, с пониженной изоляцией.

Читайте также:  Бортовая система контроля с речевым выводом информации

Обмотки НН соединяются в звезду с выведенной нулевой точкой у понижающих трансформаторов тогда, когда напряжение этой обмотки 230 или 400 В при мощностях до 560 кВА. В звезду без выведения нулевой точки обмотки НН соединяются крайне редко, например, у понижающих трансформаторов мощностью 1 000—5 600 кВА при сочетании напряжений обмоток ВН и НН 10 000/6 300 В.
Обычно обмотки НН повышающих трансформаторов, а также большей части понижающих мощных соединяются в треугольник.
Векторная диаграмма линейных э. д. с. для соединения обмоток в звезду строится следующим образом. Откладываем в масштабе вектор ах (рис. 3,г). Так как мы знаем, что концы обмоток л*, //, г электрически соединены, то из точки х под углом 120° к ах откладываем в том же масштабе вектор by. Далее из точки у под углом 120° к вектору by откладываем вектор сг.
При соединении обмотки в звезду с выведенной пулевой точкой можно получить два напряжения (фазное и лилейное). Если измерять напряжение между нулем и какой-либо фазой, то получим напряжения, называемые фазными ((Уф). На рис. 3,г они изображены векторами ха, yb и гс.
Напряжения, измеренные между фазами а и ft, b и с, с и а, называются линейными (междуфазными) напряжениями (U). Эти напряжения па рис. 5-3,г изображены в масштабе ab, be и са. Так как в треугольнике abx угол между векторами ха и yb равен 120°, то зависимость между линейным и фазным напряжениям будет U = = Uфv3 , т. е. линейное напряжение в v3 раз больше фазного. Если трансформатор, обмотки НН которого включены в звезду, имеет линейное напряжение 220 в, то фазное напряжение будет:

б) Соединение обмоток в треугольник
Если соединить конец фазы а (точку х) с началом фазы с, конец фазы с (точка z) с началом фазы b и конец фазы b (точка у) с началом фазы а, то получится соединение в треугольник (рис. 4,а). Соединение в треугольник можно осуществить (рис. 4,6) иначе, соединяя конец фазы а с началом фазы b, конец фазы b с началом фазы с и конец фазы с с началом фазы а.
Векторная диаграмма линейных э. д. с. при соединении обмоток в треугольник по схеме рис. 4,а будет равносторонним треугольником рис. 4,в и г. При соединении в треугольник фазные напряжения будут равны линейным.
В мощных трансформаторах принято одну из обмоток всегда соединять в треугольник. Делается это по следующим соображениям:
Как известно, намагничивающий ток трансформатора имеет несинусоидальную форму, т. е. содержит высшие гармонические. Наибольший удельный вес имеет третья гармоническая. Если все обмотки трансформатора соединить в звезду, то третья гармоническая в намагничивающем токе образоваться не может, так как она будет направлена во всех фазах одинаково: (3 • 120° = 360° = = 0°) и поэтому форма кривой фазного напряжения исказится, что может привести к нежелательным явлениям в эксплуатации. По этим соображениям принято одну из обмоток обязательно соединять в треугольник. Если же почему-либо требуется построить мощный двухобмоточный трансформатор или автотрансформатор с соединением обмоток звезда — звезда (например, трехфазный автотрансформатор), то он снабжается дополнительной третьей обмоткой, соединенной в треугольник, которая в некоторых случаях может даже не иметь внешних выводов.

Рис. 4. Соединение обмоток НН в треугольник.
а — первая схема соединения обмоток в треугольник, б — вторая схема соединения обмоток в треугольник; в — вектора линейных э. д. с фаз a, b и с; г —векторная диаграмма линейных э д с

Обычно в треугольник соединяется обмотка низшего напряжения.
В мощных трансформаторах номинальный ток обмотки НН часто составляет несколько тысяч ампер и конструктивно бывает легче выполнить соединение обмотки в треугольник, так как фазный ток при той же мощности получается в v 3 раз меньшим, чем при соединении в звезду.
В треугольник соединяются обмотки НН всех повышающих и понижающих двухобмоточных и трехобмоточных трехфазных трансформаторов мощностью 5 600 кВА и больше, понижающих трансформаторов мощностью до 5 600 кВА, имеющих на стороне НН напряжения 38,5; 11; 10,5; 6,6; 6,3; 3,3; 3,15 и 0,525 кВ, а также обмотки НН всех мощных однофазных двухобмоточных и трехобмоточных трансформаторов, предназначающихся для соединения в трехфазные группы. Обмотки ВН и СН силовых повышающих и понижающих трансформаторов обычно в треугольник не соединяются.
в) Соединение обмоток в зигзаг — звезду (равноплечий и неравноплечий зигзаг)
Равноплечий зигзаг может быть получен, если соединить по одной из трех схем рис. 5,а, бив концы и начала шести полуобмоток с одинаковыми числами витков (а следовательно, и э. д. е.), расположенных по две полуобмотки на каждой фазе трансформатора.

Рис. 5. Соединение обмотки НН в равноплечий зигзаг.
а —первая схема соединения; б — вторая схема соединения; в — третья схема соединения; г — векторная диаграмма э. д. с. звезды нижних полукатушек; д — векторная диаграмма линейных э. д. с.
Построим векторную диаграмму соединений обмоток в зигзаг согласно схеме рис. 5,а. Начнем построение с нижних полуобмоток, соединенных в звезду. Векторная диаграмма для этих полуобмоток представлена на рис. 5,г. Согласно схеме рис. 5,а начало а’ нижней полуобмотки электрически соединено с концом zr верхней.
Вектор г’с должен пойти в направлении, противоположном вектору zc’, а потому из точки а’г’ (рис. 5,д) откладываем вектор zrc в направлении, противоположном вектору zc’.

Аналогичным образом строим векторы остальных частей обмоток. Обмотка при соединении в зигзаг обычно выполняется двухслойной, причем каждый слой имеет свободные начала и концы.
Один из слоев обмотки наматывают правой намоткой, другой — левой. Делается это для удобства выполнения соединений в зигзаг. При соединении обмотки в зигзаг мы можем получить три различных напряжения.

Схема равноплечего зигзага применяется для нормальных силовых понижающих трансформаторов, для мощностей 25, 40, 63, 100, 160 и 250 кВА в случае, когда при большой несимметрии нагрузок фаз необходимо на стороне питания иметь схему звезды.
Неравноплечий зигзаг получается, если по схемам а, б и в (рпс. 5-5) соединить концы и начала полуобмоток с неодинаковым числом витков. На рис. 6,а и б даны две схемы соединения в неравноплечий зигзаг при отношении числа витков в полуобмотках 1 : 2.
Схема неравноплечего зигзага применяется иногда иностранными фирмами для трансформаторов специального назначения. В нормальных силовых трансформаторах наши заводы эту схему не применяют.
г) Соединение обмоток по схеме А
Если соединить обмотки трансформатора, как показано на рис. 7,а, то получится соединение по схеме А. Схему, как это видно из векторной диаграммы

Рис. 7. Соединение обмотки по схеме А.
а — схема соединений обмоток; б — векторная диаграмма.
(рис. 7,6), можно представить как треугольник а’Ьс’, у которого две стороны а’b и cfb имеют дополнительные витки (а’а и с’с).
Для того чтобы получить соединения обмоток, отвечающих векторной диаграмме рис. 7,6, принимают соотношения числа витков на фазах трансформатора, которые должны удовлетворять следующим трем условиям:

т. е. обмотка фазы с должна иметь 2/3 числа витков обмоток фаз а и b.
Нулевой вывод берется от середины обмотки фазы с, и, кроме того, число витков дополнительных участков фаз а и b должно быть одинаково и составлять Уз общего числа витков этих фаз.

Рис. 8. Соединение обмоток в скользящий треугольник.
а — схема соединений обмоток; б—векторная диаграмма.
Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.
д) Соединение обмоток в скользящий треугольник
На рис. 8 даны схема соединения обмотки и векторная диаграмма скользящего треугольника. Из рассмотрения схемы видно, что изменяя положение концов
а’b’с’ (рис. 8,а) и «скользя» ими по обмотке из крайнего верхнего положения к нижнему, можно перейти от треугольника к звезде. При этом могут быть получены все промежуточные положения. Это дает возможность, так же как в схеме неравноплечего зигзага, иметь различные углы сдвига фаз (ф).
Схема скользящего треугольника применяется иногда для трансформаторов, питающих электрические печи. В силовых трансформаторах эта схема не применяется.

2.5. СХЕМЫ И ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК

Каждая обмотка трехфазного трансформатора может быть соединена в звезду У, треугольник Д и зигзаг Z, а с выведенной нулевой точкой (нейтралью N) соответственно в Ун и ZH (рис. 2.13-2.15).

Схемы У/Ун и У/ZH применяют в трансформаторах, питающих силовую и осветительную нагрузку, схему У/Д применяют для питания силовой нагрузки при большем

Схема соединения обмоток У/Ун:

1 и 2 — устройство РПН; wQCii и и>рег — основная и регулировочная часть обмотки ВН; w2 — обмотка НН.

Схема соединения обмоток У/Д

диапазоне мощности и напряжений, чем схема У/Ун. Схему Д/Ун применяют в трансформаторах, установленных на обоих концах высоковольтных линий электропередач, при этом обмотка ВН соединяется Ун.

У трансформаторов со схемой У/ZH при несимметричной нагрузке значительно меньше нарушается симметрия фазных вторичных напряжений, чем у трансформаторов со схемой У/Ун. Недостаток схемы У/ZH связан с тем, что для получения одинакового со схемой У/Ун фазного вторичного напряжения необходимо в 2/1,73 раза увеличить число витков вторичной обмотки. Увеличенное число витков и размещение на одном стержне частей обмоток с разными по фазе токами, приводит к росту потока рассеяния, следовательно, и индуктивного сопротивления обмотки.

Читайте также:  Сцинтилляционные детекторы ионизирующего излучения

В трансформаторах предусмотрены две схемы регулирования напряжения изменением коэффициента трансформации — без возбуждения (ПБВ) и под нагрузкой

Схема соединения обмоток V/ZH: 1 — устройство ПБВ.

(РПН). Ответвления выполняют от наружной обмотки ВН, у которой больше количество витков, что повышает точность регулирования. При наибольшем первичном напряжении включены все витки обмотки. При понижении напряжения часть витков отключается. В этом случае поток Ф = U1/w1, следовательно, напряжение на обмотке НН практически остается неизменным по величине.

В схеме ПБВ переключатель на три (+5; 0; -5%) или пять положений (+5; +2,5; 0; -2,5; -5%) от ?/н размещают в баке под крышкой трансформатора, на которую выводят рукоятку с указателем положения. Регулирование напряжения осуществляют при отключении трансформатора от сети, что является недостатком схемы. Схему используют в основном для коррекции напряжения трансформаторов небольшой мощности при сезонных нагрузках.

Схема РПН позволяет изменять коэффициент трансформации в пределах от ±10 до ±16% . Управление может быть как ручным, так и автоматическим. В трансформаторах до 6300 кВА применяют быстродействующие переключатели (контакторы) с малогабаритными активными

токоограничивающими сопротивлениями и износостойкой контактной системой (рис. 2.16).

Предположим, что требуется перевести рабочий ток ответвления х2 на ответвление х3. В первоначальном положении ток проходит через подвижный контакт П2 и контакты 3 и 4 переключателя П. При переключении в первую очередь движется обесточенный контакт Пх на ответвление х3, а затем под воздействием мощных пружин переключатель П быстро переводится в положение, в котором он присоединяется к контактам 1 и 2.

В промежуточном положении, когда переключателем П замкнуты контакты 4 и 1, под воздействием напряжения AU в короткозамкнутой цепи помимо рабочего тока потечет ток короткого замыкания, ограниченный до безопасной величины последовательно включенными сопротивлениями RxuR2. Наряду с активными токоограничивающими сопротивлениями используют и системы РПН с токоограничивающими индуктивностями (реакторами).

Одним из условий параллельной работы трехфазных трансформаторов, к которым подводится единое напряжение, является совпадение их вторичных линейных ЭДС, что возможно при одинаковых коэффициентах трансформации и одинаковом сдвиге линейных ЭДС вторичной и первичной обмоток в каждом трансформаторе. Судить о сдвиге линейных ЭДС обмоток ВН и НН позволяет понятие о группе соединения обмоток трансформатора.

Группой соединения обмоток называется угловое смешение векторов линейных ЭДС обмотки НН по отношению к векторам соответствующих линейных ЭДС обмотки ВН. Это угловое смешение обозначается числом, которое при умножении на 30° дает угол расхождения векторов линейных ЭДС в градусах. В схемах обмоток трехфазного

Варианты групп соединения обмоток трансформатора

трансформатора углы между векторами ЭДС кратны 30°, и угол 30° принят за угловую единицу.

Рассмотрим, например, схему соединения обмоток трехфазного трансформатора У/У (см. рис. 2.17). Примем за положительное графическое направление ЭДС в фазных обмотках направление от конца к началу. При совпадении графических положительных направлений ЭДС группа соединения У/У-0. Если зажимы вторичной обмотки маркированы противоположно тому, то группа соеди-

Группы соединения обмоток трехфазпых трансформаторов

нения У/У-6. При произвольной маркировке зажимов вторичной обмотки получим, например, У/У-4 и У/У-10.

Всего возможно 12 вариантов групп соединения обмоток. Нулевая и четные группы 0, 2, 4, 6, 8, 10 будут в тех случаях, когда схемы соединения обмоток одинаковы, и нечетные группы 1, 3, 5, 7, 9, 11 — когда схемы соединений различны.

ГОСТ 11677 предусматривает изготовление силовых трансформаторов только с группами соединения обмоток 0 и 11 (рис. 2.18). Соединение вторичной обмотки в зигзаг с нулевым проводом (ZJ при С/ = 0,4 кВ применяют в трансформаторах, как правило, мощностью 25-250 кВА.

Силовые трансформаторы 10(6)/0,4 кв области применения разных схем соединения обмоток

Отсутствие у изготовителей и заказчиков определенного представления принципиальных отличий свойств силовых трансформаторов с малой мощностью и разными схемами соединения обмоток ведет к их неправильному использованию. При этом некорректный выбор схемы соединения обмоток ухудшает технические показатели электрических установок и понижает качество электроэнергии , а также приводит к возникновению серьезных аварий .

Отсутствие у изготовителей и заказчиков определенного представления принципиальных отличий свойств силовых трансформаторов с малой мощностью и разными схемами соединения обмоток ведет к их неправильному использованию. При этом некорректный выбор схемы соединения обмоток ухудшает технические показатели электрических установок и понижает качество электроэнергии, а также приводит к возникновению серьезных аварий.

Это отмечают проектировщики из Нижнего Новгорода Алевтина Ивановна Федоровская и Владимир Семенович Фишман . Они в своем материале делают акцент на разнице в реакции трансформаторов на несимметричные токи , которые содержат составляющую нулевой последовательности .

Схемы соединения обмоток и свойства трансформаторов

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливать с такими схемами соединения обмоток:

  • «звезда/звезда» – Y/Yн;
  • «треугольник–звезда» – D/Yн;
  • «звезда–зигзаг» – Y/Zн.

Ключевое отличие технических характеристик трансформаторов с разными схемами соединений обмоток – различная реакция на несимметричные токи, которые содержат составляющую нулевой последовательности. В основном это однофазные сквозные короткие замыкания и рабочие режимы с неравномерной загрузкой фаз.

Известно, что силовые трансформаторы 6 ( 10 )/ 0 , 4 кВ имеют трехстержневой стальной сердечник , с расположенными там первичной и вторичной обмотки фазы А , В и С . Магнитные потоки трех фаз в симметричных режимах циркулируют в сердечнике трансформатора и не выходят за его пределы .

Что происходит во время нарушения симметрии с преимуществом нагрузки одной фазы на стороне 0 , 4 кВ ? Подобные режимы работы исследуются с применением теории симметричных составляющих [ 2 ]. По ней каждый несимметричный режим работы трехфазной сети представлен как геометрическая сумма 3 симметричных составляющих тока и напряжения : составляющие прямой , нулевой и обратной последовательностей.

Максимальная однофазная несимметрия достигается в режиме однофазного короткого замыкания на стороне 0 , 4 кВ трансформатора со схемой соединения обмоток D / Yн .

Картина токов симметричных составляющих в обмотках в таком режиме показана на рис . 1 . В неповрежденных фазах на стороне 0 , 4 кВ геометрическая сумма трех симметричных составляющих тока приравнена нулю ( не учитываем рабочую нагрузку фаз ). В поврежденной фазе она достигает максимума и равняется току ОКЗ . Определяется она по формуле :

где Uл – линейное напряжение;

R1, R, X1, Х – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

Сопротивления прямой последовательности R 1 и X 1 трансформаторов с разными схемами соединения обмоток определяются теми же формулами и имеют несущественные различия:

В каталогах видно, что известные величины в этих формулах Ркз и Uк почти не зависят от схем соединения обмоток трансформатора, а значит, не влияют на сопротивление прямой последовательности. Сопротивления же нулевой последовательности трансформаторов с различными схемами соединения обмоток имеют принципиальные отличия.

Сопротивления нулевой последовательностивекторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток D/Yн (рис. 2).

В таких трансформаторах токи прямой, обратной и нулевой последовательностей текут и в первичной, и во вторичной обмотках. В то время как токи нулевой последовательности в первичной обмотке замыкаются внутри нее, не выходя при этом в сеть. Намагничивающие силы или ампер-витки, которые создают токи нулевой последовательности первичных и вторичных обмоток, имеют встречное направление и практически полностью компенсируют друг друга, обуславливая тем самым небольшую величину реактивных сопротивлений трансформатора. А сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R; Х1 = Х.
В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг».
Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R > R1; X >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п.

Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных силовых трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.

Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам УП МЭТЗ им. В.И. Козлова, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора.
В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя.
Так, если принять R1 = R, X1 = X, что характерно для трансформаторов со схемами соединения обмоток D/Yн, то получим:

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector