Свч осциллографический детектор

Рубрикатор

События

Наши новости

Новости

Подписка на новости

Опрос

Нужны ли комментарии к статьям? Комментировали бы вы?

Реклама

Освоение осциллографами LeCroy СВЧ-диапазона

Шиганов Алексей

Если говорить об опыте и практике инженерной мысли, то на сегодняшний день, образно говоря, «за спиной» остались значения в сотни мегагерц (МГц) и уже единицы гигагерц (ГГц). Потребности информационных и телекоммуникационных технологий сегодняшнего дня, а тем более завтрашнего, запросы передовых научных изысканий и устремлений в самых различных областях познания и отраслях производства ставят вопрос о соответствующих средствах измерений. Скорее, даже не о прикладных средствах измерений, к чему привыкли, а о многофункциональных программно-вычислительных комплексах на базе современных ПЭВМ, способных не только заглянуть за рубеж 5 ГГц, но и достоверно, точно и надежно работать в этой области частот с «высокоскоростными» и сложными сигналами.

Беглый анализ выпускаемого телекоммуникационного оборудования, средств связи и передачи данных говорит о «СВЧ-зации» нашей повседневной жизни, как о свершившемся факте, имеющем тенденцию к устойчивому росту.

Настоятельная необходимость и возможность освоения диапазона СВЧ вызвана рядом объективных причин, таких, как относительно слабое поглощение волн в ионосфере Земли, возможность концентрации энергии СВЧ в узком луче и др. Субъективные причины — большая информационная емкость диапазона СВЧ, способность энергетического взаимодействия с веществом (молекулами и атомами), практическое развитие нанотехнологий.

Что же сегодня нам предлагают производители такого рода приборов, именуемых (в кругах производителей и потенциальных потребителей) классом high end в области исследования формы и параметров СВЧ-сигналов? Как выясняется, таких производителей можно пересчитать по пальцам одной руки. Изготовление осциллографов в диапазоне 3–6 ГГц «осилили» три общепризнанных гранда: Tektronix, LeCroy и Agilent Technologies. Данные производители достаточно хорошо известны среди специалистов.

Согласно изучению сектора рынка СИ, проведенного компанией Prime Data (независимая организация по экспертной оценке в промышленности), и ее выводам, общий объем продаж цифровых осциллографов, за исключением достаточно простых моделей, вырос с $638 млн в 1994 году до $1051 млрд, достигнутого в 2000 году (самый высокий уровень). По итогам календарного 2002 года объемы реализаций на рынке немного снизились и составили около $808 млн. По оценке Prime Data, три самых крупных производителя цифровых осциллографов, без учета простых (портативных) моделей, в течение 2002 года осуществили продажи на рынке в следующем процентном соотношении: Tektronix («Tektronix») — 51,4%, LeCroy — 14,4% и Agilent Technologies — 14,2%.

В рамках ликвидации сложившегося дефицита информации о наиболее передовых технологиях, достижениях и применяемых ноу-хау хочется ознакомить с информацией об осциллографах и других уникальных приборах, предлагаемых компанией LeCroy. Помимо познавательного аспекта и расширения кругозора, попытаемся помочь читателю полезной информацией при выборе такого рода средства измерений.

Компания LeCroy не является новичком на рынке средств измерений. Она была образована в 1964 году, в настоящее время штаб-квартира находится в США, дочерние компании расположены по всему миру. Крупные и многопрофильные подразделения компании LeCroy функционируют в Швейцарии (Женева) и Японии (Токио), кроме того, в других европейских странах и странах азиатско-тихоокеанского региона есть ее представительства. Обладая мощностями и научным потенциалом по разработке и производству средств измерения, главным направлением компания выбрала создание многофункциональных анализаторов сигналов (схемотехника + прикладной софт + уникальные патентованные технологии). Годовой торговый оборот по итогам 2003 финансового и налогового года составил свыше $107 млн.

Прежде всего, хотелось конкретизировать круг специалистов, сфер научно-технической и производственной деятельности, для которых в первую очередь предназначена продукция компании LeCroy. Говоря одним словом, всюду, где необходимо наблюдение, регистрация и исследование сложных, предельно коротких по длительности (50–70 пс) электронных сигналов. Это относится к задачам по разработке, производству и эксплуатации приемопередающего оборудования ВОЛС и телекоммуникационной техники СВЧ-диапазона, развитию технологий беспроводного доступа и лазерно-оптических технологий, к областям исследований по тематике ядерной физики, а также в сфере обороны государства и безопасности общества.

Визитной карточкой компании LeCroy является выпуск современных цифровых запоминающих осциллографов (ЦЗО или английская аббревиатура DSO), которые уже успешно используются инженерами и конструкторами-разработчиками во всем мире. Россия, к сожалению, пока отстает от общемировых тенденций по освоению частотного спектра СВЧ, реализованного в конкретных измерительных приборах. В первую очередь это связано с весьма существенной стоимостью для российского потенциального потребителя таких, безусловно, уникальных комплексов.

Во всех новых разработках компании LeСroy для обработки входного сигнала применена революционная технология X-Stream, позволяющая в десятки и сотни раз быстрее обрабатывать входной сигнал, чем у аналогичных моделей конкурентов. А при исследовании СВЧ-сигнала с помощью ЦЗО, обладающих, как известно, рядом недостатков, остро встает проблема увеличения скорости захвата осциллограмм и уменьшения времени обработки входного сигнала при выводе на дисплей. Технология X-Stream позволяет решить эту техническую проблему.

Идея технологии X-Stream основана на том, что входной сигнал поступает на SiGe АЦП и оцифровывается в реальном времени с частотой 10 Гигавыборок в секунду. После чего сигнал разбивается на пакеты и хранится в быстрой КМОП-памяти (DRAM) тракта оцифровки. По двум высокоскоростным каналам сигнал из памяти передается в центральный процессор (ЦП). ЦП производит необходимую математическую обработку сигнала и вывод на ЖК-дисплей.

Программно-аппаратная реализация собственных уникальных технологий позволила обеспечить непревзойденную другими производителями скорость преобразования входного сигнала, выведения и продвижения цифрового потока данных (то есть X-Stream) после работы АЦП, а также синхронную и взаимоувязанную работу памяти DRAM и центрального процессора (фактически ПЭВМ) посредством использования шины PCI и 1-Гбит Ethernet. Такое ускорение продвижения данных, в конечном итоге формирующих на экране ЦЗО исследуемый сигнал в реальном формате времени, в том числе при наблюдении длительных (распределенных по времени) сигналов, позволяет задействовать значительные объемы памяти для обеспечения всестороннего и полного их анализа.

Кроме того, применение технологии X-Stream позволяет программные процедуры и задачи, написанные при помощи таких средств, как MATHLAB, Mathcad, Excel или Visual Basic, корректно помещать (инкапсулировать) в поток цифровых данных.

В таких отраслях промышленности, как радиоэлектроника, в сферах телекоммуникаций и связи, при производстве компьютерной техники и многих других, в которых необходимо тестировать и оценивать происходящие переходные, неустойчивые пикосекундные процессы используются осциллографы WaveRunner 6000, перекрывающие диапазон от 350 МГц до 2 ГГц, особенно необходимые для обеспечения точной фиксации сигнала и его последующей высокоскоростной обработки. Включаемые нажатием одной кнопки режимы управления Wavepilot и QuickZoom позволяют очень оперативно зафиксировать и исследовать высокочастотные импульсные сигналы. Понятная и предельно информативная лицевая панель управления WaveRunner 6000 дает возможность легко (практически интуитивно) осуществлять управление режимами и функциями. Это обеспечивает возможность оператору значительно снизить время, затрачиваемое на работу в меню прибора и сосредоточиться исключительно на процессе исследований. В режиме сбора данных осциллографы этой серии имеют диапазон частот дискретизации (выборок сигнала) от 2,5 до 5 Гв/с и до 200 Гв/с — для периодического сигнала. В целом пользовательский интерфейс очень понятен, удобен и позволяет применять прибор без длительной специальной подготовки или обучения персонала. В стандартной комплектации есть выходные интерфейсы GPIB, RS-232-C, USB (5), видеовыход SVGA, аудио (вх/вых) и Ethernet 10/100Base-T.

Неоспоримым преимуществом осциллографов LeCroy данной серии, и тем более серий WavePro и WaveMaster, является наличие самой большой внутренней памяти среди всех цифровых осциллографов аналогичного класса — 2 Мбайт (режим объединения каналов) в стандартной комплектации и до 24 Мбайт — набор опций. На рисунке представлен «флагман» цифровых запоминающих осциллографов серии WaveRunner — модель 6100, а в таблице — основные технические характеристики по всей серии WaveRunner 6000.

Читайте также:  Соединение зигзагом в трехфазного трансформатора

Другие статьи по данной теме:

Если Вы заметили какие-либо неточности в статье (отсутствующие рисунки, таблицы, недостоверную информацию и т.п.), просьба сообщить нам об этом. Пожалуйста укажите ссылку на страницу и описание проблемы.

Делаем простой детектор СВЧ-поля – Индикатор СВЧ Детектор Датчик

Делаем простой детектор СВЧ-поля » Индикатор СВЧ » Наука » Обзоры » Лучшее 2015

Делаем простой детектор СВЧ-поля

Категории: Наука, Обзоры

Вам интересно, в каком из ваших мобильных телефонов самый мощный передатчик, в нижней или верхней части вашего смартфона стоит передающая антенна, горизонтально расположена или вертикально, что больше излучает микроволновка или телефон?

Предлагаем вам сделать своими руками простенький детектор электромагнитного СВЧ-излучения. Этот детектор пригодится также в настройке и сравнении характеристик разных передатчиков и антенн, позволит определить в горизонтальной или вертикальной поляризации передается сигнал и т. д..

Категории и теги: Наука, Обзоры » Индикатор, СВЧ, Детектор, Датчик, Электромагнитного, Поля, Диод, Лампочка.

Итак, самое сложное — это найти СВЧ диод. Например, у меня завалялось несколько еще с советских времен.

Для нашего детектора подойдут диоды ГД507А, Д405, Д403, КД521, КД522, КД5хх, Д18, Д20, BAT62, 1N5711 и другие.

Чтобы определить, какой из имеющихся диодов является сверхвысокочастотным, понадобится цифровой или стрелочный микроамперметр или вольтметр, проводок длиной около 10-18 см, смартфон или мобильный телефон в режиме разговора и собственно диоды.

Собираем все, как указано на фото. Можно параллельно щупам тестера (мультиметра) подключить конденсатор, но на практике работоспособность сохраняется и без конденсатора.

Если ваш тестер показал какие-то микроамперы или микровольты, значит, это диод СВЧ, и в ваших руках уже простенький индикатор электромагнитного поля.

Для более усовершенствованной конструкции нам понадобится: два СВЧ диода, парочку керамических SMD конденсаторов от 500 пФ до 0,5 мкФ, светодиод для грубой индикации, ферритовый сердечник с одним витком двойного провода и маленький кусочек фольгированного стеклотекстолита. Эти детали можно одолжить с нерабочих компьютерных (и не только) комплектующих. А вообще схемку можно намного упростить, при этом она не потеряет свою работоспособность. Из инструментов понадобиться паяльник, олово и т. д.

На стеклотекстолите рисуем, например, маркером дорожки, предварительно очистив и обезжирив, потом погружаем фольгированной стороной вниз в раствор хлорного железа (1 часть на 3 части воды, купить можно в ближайшем магазине радиодеталей) или травим в растворе перекиси водорода и лимонной кислоты (в 100 мл 3% раствора перекиси водорода, купленной в аптеке, добавить 30 г лимонной кислоты из любого продуктового магазина и чайную ложку поваренной соли, во время травления желательно подогреть раствор до 50 градусов, только помните, что перекись в открытом состоянии долго не хранится, поэтому нужно все делать быстро).

После травления моем плату в воде и в спирте от краски. Если остались мелкие участки, незатронутые раствором, удаляем их скальпелем или другим подходящим инструментом.

В результате у меня получилось три разных датчика.

Для точного измерения я пользуюсь микроамперметром, подключенным к датчику.

Для грубого измерения просто смотрим на впаянный светодиод.

После припайки деталей нужно решить, на какую частоту настраивать датчик. Для этого с обоих сторон надо припаять отрезки провода определенной длины, например:

Частота – Длина штырей
2,4 Ггц – 31 мм – Wi-Fi
5,8 Ггц – 13 мм – Wi-Fi
900 Мгц – 83 мм – GSM
1,8 Ггц – 42 мм – GSM

На практике датчик, настроенный на частоту 2,4 Ггц с длиной обоих штырей по 31 мм, работает и на 900 Мгц, только измеряемые значения меньше. Чем толще используется проволока для штырей, тем шире получится частотный диапазон детектора.

Вместо штырей можно напрямую припаять СВЧ кабель или нужный вам разъем, штекер для прямого подключения разных антенн, например, антенну с круговой поляризации, как на фото.

Ещё более проще можно сделать датчик из 1 вольтовой лампочки типа СМН-1,5-12-1, припаяв к её контактам штырьки соответствующей длины.

Такую лампочку можно взять из старых наручных часов с подсветкою. Из минусов – достать такую лампочку оказалось достаточно сложно, замеряет она излучаемую мощность грубо, к тому же от слабых излучений ниже 0.2-0.5 Ватт лампочка вообще не засветится.

При помощи датчика на диодах, собранному по вышеуказанному методу, можно замерять излучаемую мощность даже ниже 10 мВатт.

В ближайшем будущем будет опубликовано несколько интересных статей с применением этого индикатора.

Если есть вопросы, задавайте здесь, в комментариях.

Теги: Индикатор, СВЧ, Детектор, Датчик, Электромагнитного, Поля, Диод, Лампочка

Новое по теме: Наука, Обзоры

Категория: Наука, Обзоры
| 20-05-2015, 18:42 | Просмотров: 58624 | Комментарии (6)

Реклама

Загрузка .

Комментарии:

Доброго дня!
А какой из приведенного списка диодов оказался. оптимальным для такой простой конструкции?

18 января 2017 12:15

Romuald

Сергей Ч.

ВалерийЕвс

Детектор высокочастотного сигнала

Поэтому, для всех кто занимается изготовлением различных радиожучков и прослушек, модуляторов и глушилок, а тем более для точной настройки передатчика (приведенной выше конструкции или любой другой в FM диапазоне) и получения от него максимальной мощности рекомендуется изготовить и использовать простейший детектор ВЧ.

Основное достоинство такого детектора ВЧ — это простота конструкции и отсутствие питания. Получается практически вечный прибор. Кроме того, на его изготовление потребуется всего лишь 1-2 часа.

Схема детектора ВЧ

Работа детектора ВЧ достаточно простая. При включении, радиопередатчик излучает радиоволны, которые фиксируются антенной детектора. При этом щуп детектора не касается антенны или платы передатчика, а ловит ВЧ излучение на некотором расстоянии. Так как схема детектора максимально упрощена и не имеет усилителя, то это расстояние мало. Наведенный в антенне ток выпрямляется, сглаживается и поступает на измерительный прибор, который ориентировочно показывает уровень мощности излучения передатчика. Таким образом, можно определить работоспособность схемы любого передатчика в диапазоне FM частот.

Основой детектора ВЧ служит измерительный прибор — микроамперметр на 50-100мкА. Для работы не так важно, будет это стрелочный прибор или цифровой мультиметр. Но при снятии показаний, стрелочный индикатор имеет некоторые преимущества. Так как магнитоэлектрическая система стрелочного прибора имеет инерционность, стрелка прибора сглаживает скачки сигнала и работа с прибором становится более комфортной.
Практически у каждого самодельщика в хозяйстве имеются стрелочные приборы — вольтметры, амперметры, микроамперметры, оставшиеся со старой техники. Чаще всего, если открыть корпус прибора, даже если он на большой ток или напряжение, и удалить шунт внутри него, этот прибор может превратиться в нужный вам микроамперметр. Останется только определить предел измерения этого прибора.

Конструкция ВЧ детектора может быть любой. Навесной монтаж на плате, закрепленной на приборе или небольшая пластмассовая коробочка, где разместится стрелочный индикатор и другие детали, с выведенной наружу антенной. В качестве антенны используем отрезок медного провода диаметром 0,8…1,0 мм и длиной 150…200 мм.

В устройстве используем два керамических конденсатора, первый на 51 pF (510), а второй на 15 nF (153), допустимы некоторые отклонения номиналов деталей.

Для схемы также нужны два высокочастотных кремниевых диода КД503А. Возможна замена на КД521, КД522 и др. или импортный аналог 1N4148. Рабочая частота диодов от 100 до 350 мГц. Отечественные высокочастотные диоды обычно выпускались в стеклянном корпусе с гибкими выводами. Такие диоды широко распространены и часто встречаются на платах с деталями. Прозвоните диоды мультиметром, прежде чем использовать.

Читайте также:  Мониторинг параметров пк на pic

Изготовление детектора ВЧ

1. Подбираем подходящий микроамперметр и детали согласно схеме. Изготовим монтажную плату из кусочка универсальной платы. Так как пользоваться ВЧ детектором будем лишь периодически, плату детектора сделаем функционально законченной и быстросъемной. Это позволит воспользоваться микроамперметром для других целей и в любое время, достаточно снять плату с прибора. Мобильность плате детектора даст отверстие в углу платы, просверленное для ее установки на резьбовой вывод микроамперметра. Возможен вариант крепления платы на оба вывода прибора. Размеры платы должны обеспечить возможность размещения схемы между выводами микроамперметра и желательно не выступать за пределы прибора.

2. Выполняем установку и пайку деталей на монтажную плату. Из отрезка медного провода диаметром 0,8…1,0 мм и длиной 150…200 мм изготовим приемную антенну детектора. Один конец антенны механически закрепим на плате (конец провода вставим в отверстие и зажмем с другой стороны) и выше припаяем ее в нужной точке. Для обеспечения безопасности при использовании детектора, другой конец антенны свернем кольцом.

3. Для размещения возможно крупных деталей при малых размерах платы и прибора, монтаж деталей возможен с обеих сторон платы. При отсутствии на плате дорожек для контакта с выводами прибора, их можно выполнить из монтажного провода.

4. Устанавливаем плату детектора на один из выводов прибора и имеющимися гайками закрепляем ее выводы на микроамперметре.

5. С помощью изготовленного ВЧ детектора, проводим измерения излучения от недавно собранного FM радиопередатчика. Так как детектор всегда готов к работе, подводим (не касаясь) его приемную антенну к передающей антенне включенного радиопередатчика. В зависимости от излучаемой мощности передатчика, стрелка детектора пропорционально отклоняется на соответствующий угол.

Повторяем те же настройки FM радиопередатчика, что и в указанной ранее статье. Но при наличии неискаженного звука в приемнике, проводим в этом диапазоне дополнительную настройку по максимальной мощности сигнала. Выполняем эту операцию на всех четырех этапах настройки. Таким образом, мы добиваемся громкого и качественного звука в приемнике, при максимальной мощности и дальности беспроводной передачи звука от FM радиопередатчика.

Для примера еще одно фото. На нем показано, как изменилась излучаемая мощность FM передатчика, при увеличении на нем напряжения питания с 5В до 7В.

Статьи

Пиковый детектор или кому это надо

Автор: Дедюхин А.А.
Дата публикации: 12.09.2005

Пиковый детектор или кому это надо!

А.A. Дедюхин, АО «ПриСТ»

Tektronix: «Не люблю я этих кошек!»
LeCroy: «Ты их просто не умеешь готовить!»
Вариации на тему рекламы напитка MOUNTIN DEW

В последнее время на сайтах некоторых компаний, производящих цифровые запоминающие осциллографы, появились рекомендации типа «Сравни, перед тем как купить» причем эти рекомендации сопровождаются «убедительными», с точки зрения авторов видео-роликами, снятыми в стиле кинофильма «Ведьмы из Блэр» так по качеству так и по содержанию.

Так, на сайте Tektronix, на странице http://www.tek.com/products/oscilloscopes/industry_comp.html >”The Reality Zone Compare Before You Buy” в ссылке «Found Glitches Faster With Peak Detect Mode» ( Найди глитч, быстрее используя пиковый детектор) диктор за кадром убеждает зрителя, что цифровые осциллографы Tektronix серии TDS-3000 по сравнению со своим ближайшим конкурентом осциллографом LeCroy серии WaveSurfer имеют существенное преимущество – наличие пикового детектора, позволяющего на больших временных развертках наблюдать кратковременные выбросы напряжения. И видео-ролик даже это демонстрирует. Рекомендуем сначала просмотреть его и потом читать дальше.

Повторим эксперимент. Подадим на вход осциллографа Tektronix TDS-3054 B этот замысловатый сигнал, но только добавим в него не один, а три последовательных пика. Эти пики не трудно зафиксировать при соответствующей развертке осциллографа, см. рисунок 1.

Рисунок 1
(здесь и далее щелчок по изображению – увеличение)

Переведем Tektronix в режим развертки 1 с/деление, осциллограф обеспечивает сбор информации в режиме стандартной выборки. Картинка приведена внизу. Никаких выбросов не видно.

Включим режим пикового детектора – четко видны положительные выбросы, зафиксированные осциллографом.

Смущает только одно – четкая и тонкая линия развертки без пикового детектора, стала широкой при включении пикового детектора. Попробуем рассмотреть, что зафиксировал пиковый детектор, для этого растянем сигнал. Картинка приведена внизу:

Как видно из рисунка выше, пиковый детектор зафиксировал одну точку над уровнем сигнала, напомним, что в сигнале, как было показано на рисунке 1, их было три пика. Увеличенная шумовая дорожка обусловлена воздействием пикового детектора. Алгоритм работы пикового детектора следующий – на определенном участке сигнала, на котором происходит дискретизация, обеспечивается регистрация экстремальных точек, как имеющих максимальную амплитуду, так и минимальную амплитуду. Поэтому если на определенном участке дискретизации сигнала будет несколько пиков сигнала, то пиковый детектор выберет только один пик сигнала. Увеличенная шумовая дорожка – это последствия поиска экстремальных значений на квазистационарном сигнале – одна точка к верху, другая к низу, что и приводит к увеличению шумовой дорожки. Для примера, внизу приведена растянутая осциллограмма рисунка 1. Как из нее видно точки дискретизации расположены ближе, по амплитуде друг к другу, что визуально уменьшает ширину луча без растяжки сигнала.

Теперь аналогичные опыты проведем с осциллографом LeCroy Wave Surfer. При развертке 1 с/деление осциллограмма приведена на рисунке 6.

Произведем выделение участка осциллограммы имеющие пики и осуществим растяжку. Результат приведен на рисунке 7 .

Растяжка четко индицирует три пика, при желании можно включить автоматические измерения и произвести измерения как амплитудных, так и временных параметров.

Вывод:

1. Как объяснить эти явления в осциллографах Tektronix и LeCroy? Причина – соотношение частоты дискретизации и длины внутренней памяти. Как известно, время развертки, частота дискретизации и длина памяти связаны соотношением:

[1] , где 10 это число отображаемых делений экрана.

Из формулы [1] следует, что частота дискретизации прямо зависит от длины внутренней памяти при фиксированной развертке:

Длина внутренней памяти у Tektronix TDS-3000 серии 10К, у LeCroy серии WaveSurfer 1М на канал. Соответственно на медленных развертках частота дискретизации у LeCroy в 100 раз выше, чем у Tektronix TDS-3000. Или объясняем по–другому, это означает. что на том временном промежутке, где Tektronix TDS-3000 индицирует 3 точки (изображая подобие пика сигнала), LeCroy WaveSurfer индицирует 200 точек и четко отображает форму сигнала. При такой частоте дискретизации и длине памяти WaveSurfer не нуждается в пиковом детекторе, что не скажешь про Tektronix, который пытается недостаток памяти и частоты дискретизации восполнить пиковым детектором в ущерб достоверности отображения сигнала.

2. Пиковый детектор предназначен только для индикации наличия пиков сигнала в его структуре. Длина памяти TDS-3000 серии составляет 10000 точек, а отображаемая часть экрана – не более 640 точек, для согласования режимом ввода в память и вывода на экран, при котором бы не терялись экстремальные значения сигнала и предназначен пиковый детектор. Но пиковый детектор не предназначен для идентификации формы пика и измерения его параметров из-за малой частоты дискретизации.

Мы же, в свою очередь, и дальше будем радовать жителей страны «Ведьм Блэр» техническими аспектами использования цифровых осциллографов. А потенциальным пользователям расширим совет от Tektronix: «Хорошо подумай и сравни, перед тем как купить».

У нас представлены товары лучших производителей

ПРИСТ предлагает оптимальные решения измерительных задач.

У нас вы можете купить осциллограф, источник питания, генератор сигналов, анализатор спектра, калибратор, мультиметр, токовые клещи, поверить средства измерения или откалибровать их. Также мы поставляем паяльно-ремонтное оборудование, антистатический инструмент, промышленную мебель. Мы имеем прямые контракты с крупнейшими мировыми производителями измерительного оборудования, благодаря этому можем подобрать то оборудование, которое решит Ваши задачи. Имея большой опыт, мы можем рекомендовать продукцию следующих торговых марок:

Свч осциллографический детектор

Техника и приборы

Детектор СВЧ поля с рупорной антенной. Часть 1.

Рассмотрим принцип работы детектора.
Простейшим приемником, как известно, является детекторный. И такие приемники диапазона СВЧ, состоящие из приемной антенны и диода, находят свое применение для измерения СВЧ мощности.
Самым существенным недостатком является низкая чувствительность таких приемников. Для того, чтобы уверенно обнаружить изменение тока диода под действием СВЧ поля, требуется амплитуда СВЧ на диоде в несколько десятков милливольт. Это очень низкая чувствительность, она соответствует обнаружению передатчика 10 мВт на расстоянии всего нескольких метров.
Чтобы резко повысить чувствительность детектора не усложняя СВЧ головки (т.е. без усилителей, преобразователей и т.п.), была разработана схема детекторного СВЧ приемника с модулируемой задней стенкой волновода.

СВЧ головка при этом почти не усложнилась, добавился только модуляторный диод VD2, a VD1 остался детекторным.
С некоторым приближением можно считать, что когда диод VD2 закрыт, он не влияет на процессы в волноводе, а когда открыт — полностью закорачивает волновод, т.е. играет роль короткозамкнутой задней стенки.

Рассмотрим процесс детектирования.
СВЧ сигнал принятый рупорной (или диэлектрической) антенной поступает в волновод. Поскольку задняя стенка волновода короткозамкнута, в волноводе устанавливается режим стоячих волн. Причем, если детекторный диод будет находиться на расстоянии полуволны от задней стенки — он будет в узле (т.е. минимуме) поля, а если на расстоянии четверти волны — то в пучности (максимуме). То есть, если мы будем электрически передвигать заднюю стенку волновода на четверть волны (подавая модулирующее напряжение с частотой 3 кГц на VD2), то на VD1, вследствие перемещения его с частотой 3 кГц из узла в пучность СВЧ поля, выделится НЧ сигнал с частотой 3 кГц, который может быть усилен и выделен обычным УНЧ.

Таким образом, если на VD2 подать прямоугольное модулирующее напряжение, то при падении СВЧ поля с VD1 будет снят продетектированный сигнал той же частоты. Этот сигнал будет противофазен модулирующему (что с успехом будет использовано в дальнейшем для выделения полезного сигнала из наводок) и иметь очень малую амплитуду.
То есть вся обработка сигнала будет производиться на НЧ, без дефицитных СВЧ деталей. Из СВЧ техники потребуется изготовить по чертежам головку, которая не требует никакой настройки.

Рассмотрим на примере рабочую конструкцию детектора СВЧ поля “Антирадар”.

Волновод и рупор выполняется из тонкой меди или луженой жести. Можно использовать и фольгированный стеклотекстолит, предварительно отполировав фольгу и покрыв ее спиртоканифольным флюсом (чтобы не окислялась).
Необходимо соблюдать особую осторожность при обращении с СВЧ диодами . Они боятся электростатического электричества и при пробое чувствительность по СВЧ полю падает на порядок и более. При проверке тестером, пробитый электростатикой диод ведет себя точно также, как и исправный. Поэтому при работе с СВЧ диодами надо соблюдать те же меры предосторожности, что и при работе с МОП транзисторами.

Принципиальная схема электронной начинки детектора СВЧ поля.

Комментарий.
Из чертежа рупорной СВЧ головки видно что длина волновода равна длине волны на которую изготавливается детектор, длина рупора примерно тоже. Модулирующий СВЧ диод находится на расстоянии λ/4 от задней стенки, а вот детекторный диод на расстоянии λ3/4 относительно задней стенки, то есть он был передвинут на λ/4 вперед от задней стенки. При таком положении детекторного диода он находится в пучности (максимум) СВЧ поля в тот момент когда через модулирующий диод ток не проходит и он не влияет, и в узле (минимум) при прохождении тока через модулирующий диод.

Соблюдая необходимые соотношения в конструкции, можно изготовить СВЧ рупорную головку и на другие частоты учитывая известные данные:
Частота излучения НЛО составляет 1000—3000 МГц
Ширина импульса 2 мкс, это тоже надо учитывать при выборе частоты модуляционного генератора
Частота повторения импульсов 2— 600 Гц
Мощность излучения 1,5 МВт, в режиме ускорения 1,8 МВт, ну такую мощность можно наверное засечь при нахождении объекта в околоземном космическом пространстве.

Смотреть далее: Детектор СВЧ поля с рупорной антенной. Часть 2.

Источник: Радиолюбитель №7 1993
Ю.ИГНАТЕНКО
343820, Донецкая обл., г.Енакиево-4, ул.Калужская, 15

Детектор СВЧ поля с рупорной антенной. Часть 1.

Рассмотрим принцип работы детектора.

Простейшим приемником, как известно, является детекторный. И такие приемники диапазона СВЧ, состоящие из приемной антенны и диода, находят свое применение для измерения СВЧ мощности.

Самым существенным недостатком является низкая чувствительность таких приемников. Для того, чтобы уверенно обнаружить изменение тока диода под действием СВЧ поля, требуется амплитуда СВЧ на диоде в несколько десятков милливольт. Это очень низкая чувствительность, она соответствует обнаружению передатчика 10 мВт на расстоянии всего нескольких метров.

Чтобы резко повысить чувствительность детектора не усложняя СВЧ головки (т.е. без усилителей, преобразователей и т.п.), была разработана схема детекторного СВЧ приемника с модулируемой задней стенкой волновода.

Детектор СВЧ поля с рупорной антенной

СВЧ головка при этом почти не усложнилась, добавился только модуляторный диод VD2, a VD1 остался детекторным.

С некоторым приближением можно считать, что когда диод VD2 закрыт, он не влияет на процессы в волноводе, а когда открыт — полностью закорачивает волновод, т.е. играет роль короткозамкнутой задней стенки.

Рассмотрим процесс детектирования.

СВЧ сигнал принятый рупорной (или диэлектрической) антенной поступает в волновод. Поскольку задняя стенка волновода короткозамкнута, в волноводе устанавливается режим стоячих волн. Причем, если детекторный диод будет находиться на расстоянии полуволны от задней стенки — он будет в узле (т.е. минимуме) поля, а если на расстоянии четверти волны — то в пучности (максимуме). То есть, если мы будем электрически передвигать заднюю стенку волновода на четверть волны (подавая модулирующее напряжение с частотой 3 кГц на VD2), то на VD1, вследствие перемещения его с частотой 3 кГц из узла в пучность СВЧ поля, выделится НЧ сигнал с частотой 3 кГц, который может быть усилен и выделен обычным УНЧ.

Таким образом, если на VD2 подать прямоугольное модулирующее напряжение, то при падении СВЧ поля с VD1 будет снят продетектированный сигнал той же частоты. Этот сигнал будет противофазен модулирующему (что с успехом будет использовано в дальнейшем для выделения полезного сигнала из наводок) и иметь очень малую амплитуду.

То есть вся обработка сигнала будет производиться на НЧ, без дефицитных СВЧ деталей. Из СВЧ техники потребуется изготовить по чертежам головку, которая не требует никакой настройки.

Рассмотрим на примере рабочую конструкцию детектора СВЧ поля “Антирадар”.

Волновод и рупор

Волновод и рупор выполняется из тонкой меди или луженой жести. Можно использовать и фольгированный стеклотекстолит, предварительно отполировав фольгу и покрыв ее спиртоканифольным флюсом (чтобы не окислялась).

Необходимо соблюдать особую осторожность при обращении с СВЧ диодами. Они боятся электростатического электричества и при пробое чувствительность по СВЧ полю падает на порядок и более. При проверке тестером, пробитый электростатикой диод ведет себя точно также, как и исправный. Поэтому при работе с СВЧ диодами надо соблюдать те же меры предосторожности, что и при работе с МОП транзисторами.

Принципиальная схема электронной начинки детектора СВЧ поля.

Схема электронной начинки детектора СВЧ поля

Из чертежа рупорной СВЧ головки видно что длина волновода равна длине волны на которую изготавливается детектор, длина рупора примерно тоже. Модулирующий СВЧ диод находится на расстоянии ?/4 от задней стенки, а вот детекторный диод на расстоянии ?3/4 относительно задней стенки, то есть он был передвинут на ?/4 вперед от задней стенки. При таком положении детекторного диода он находится в пучности (максимум) СВЧ поля в тот момент когда через модулирующий диод ток не проходит и он не влияет, и в узле (минимум) при прохождении тока через модулирующий диод.

Соблюдая необходимые соотношения в конструкции, можно изготовить СВЧ рупорную головку и на другие частоты учитывая известные данные:

Частота излучения НЛО составляет 1000—3000 МГц

Ширина импульса 2 мкс, это тоже надо учитывать при выборе частоты модуляционного генератора

Частота повторения импульсов 2— 600 Гц

Мощность излучения 1,5 МВт, в режиме ускорения 1,8 МВт, ну такую мощность можно наверное засечь при нахождении объекта в околоземном космическом пространстве.

Автор: Радиолюбитель №7 1993, Ю.ИГНАТЕНКО, 343820, Донецкая обл., г.Енакиево-4, ул.Калужская, 15.

HTML код для размещения на сайте или в блоге

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector