Блок питания с автоматическим зарядным устройством на компараторе

Устройство автоматической зарядки аккумуляторных элементов

В настоящее время широко применяются устройства для автоматической зарядки аккумуляторов напряжением 6 и 12 В. В [1] было опубликовано простое устройство для заряда двух аккумуляторных элементов с общим напряжением 2,5 В. Опыт эксплуатации аккумуляторов показывает целесообразность раздельной и независимой зарядки аккумуляторных элементов (напряжением 1,25 В каждый). Действительно, в природе нет абсолютно одинаковых по параметрам аккумуляторов. Даже аккумуляторы одной серии и партии отличаются друг от друга, особенно через некоторое время эксплуатации. Индивидуальная зарядка позволяет наиболее полно восстанавливать емкость каждого аккумулятора [2]. Только за счет индивидуальной зарядки аккумуляторных элементов срок их эксплуатации возрастает на 50-100%.

Однако описанное в [2] устройство имеет недостатки. Так, после прекращения зарядного цикла не происходит полного отключения аккумуляторных элементов от зарядного устройства – через аккумуляторы продолжает протекать ток. Экспериментально установлено, что остаточный ток значительно превышает необходимый ток дозаряда аккумуляторов. Этот недостаток устранен в предлагаемой схеме, показанной на рисунке.

Другое существенное отличие схемы от прототипа – использование двух компараторов вместо четырех. Казалось бы, для этого достаточно включить светодиоды индикации режима ожидания непосредственно с выходов компараторов на корпус. Однако сразу же возникают проблемы: напряжение на выходе компараторов при работе изменяется от нулевого во время зарядки аккумуляторов до половины напряжения источника питания микросхем в режиме ожидания заряда. При этом, естественно, ток заряда аккумуляторов полностью не прекращается, а только незначительно уменьшается. Замена микросхемы аналогичной или подбор ее типа не приводят к устранению этого явления.

Задачу удалось решить, изменив схему включения светодиодов ожидания даже при использовании в схеме слаботочных компараторов. Упростилась и схема зарядного устройства: вместо микросхемы счетверенного компаратора LT339 применена менее дефицитная и более дешевая микросхема сдвоенного компаратора LT393. При желании радиолюбители могут попробовать использовать микросхемы бытовых сдвоенных операционных усилителей, например, серии 1458 или К157УД2.

Сетевое напряжение понижается трансформатором Т1, выпрямляется мостовым выпрямителем VD1-VD4 и сглаживается конденсаторами С1, С2/ Два конденсатора, соединенные параллельно, применены с целью миниатюризации платы по высоте. Для работы схемы достаточно одного конденсатора. Интегральный стабилизатор напряжения DA2 типа TL431 обеспечивает опорное напряжение на инвертирующих входах микросхемы DA1. Дальнейшая часть схемы представляет собой два независимых канала заряда двух аккумуляторов GB1 и GB2. Возможна зарядка одного аккумулятора, при этом другой к устройству не подключают.

Компараторы напряжения DA1.1 и DA1.2 управляют работой зарядных устройств. Напряжение на инвертирующих входах компараторов является эталонным для схемы и выставляется при настройке подстроечным резистором R3. Диоды VD5 и VD10 защищают микросхему DA1 при ошибочном подключении к устройству аккумуляторов в противоположной полярности. Если напряжение подключаемого аккумулятора меньше опорного напряжения инвертирующего входа компаратора, то на выходе компаратора устанавливается низкий потенциал – около 0,18 В. При этом через резистор R9 (R14) и стабилитрон VD6 (VD12) отпирается транзистор VT1 (VT2). Зажигается светодиод VD7 (VD15) зеленого цвета свечения, одновременно стабилизируя напряжение на базе транзистора. Резистор R11 (R17) в цепи эмиттера транзистора обеспечивает работу ключа в режиме стабилизации тока. Подбирая сопротивление этого резистора при настройке схемы, можно задать необходимый для данного типа аккумуляторов ток заряда. Диод VD8 (VD16) в цепи коллектора транзистора VT1 (VT2) препятствует разряду аккумулятора при отключении зарядного устройства от сети или перебоях в энергоснабжении. Как только аккумулятор зарядится, возрастет напряжение на неинвертирующем входе компаратора, и он переключится. реЗеленый светодиод гаснет, а красный светодиод VD11 (VD13) зажигается. Это происходит из.за того, что напряжение на выходе компаратора скачком возрастает почти до напряжения источника питания схемы.

Поскольку микросхемы компараторов маломощные, из.за нагрузки напряжение на их выходе возрастает не до напряжения питания микросхем, а менее этой величины на 1,5…2 В. При отсутствии стабилитронов VD6, VD14 это привело бы к неполному запиранию транзисторов VT1, VT2 и наличию существенного тока дозарядки аккумуляторов. При несвоевременном отключении устройства от сети появилась бы опасность перезаряда аккумуляторов. Резисторы R7, R12 обеспечивают гистерезис переключения компараторов. При увеличении сопротивлений резисторов гистерезис уменьшается. На гистерезис влияет также соотношение сопротивлений резисторов делителей напряжения в цепи неинвертирующих входов компараторов R6-R5 и R8-R13.

В режиме заряда аккумуляторов выходное сопротивление микросхем компараторов DA1 через диоды VD9, VD12 шунтирует светодиоды VD11, VD13, и они не светятся. Как только аккумулятор зарядится и компаратор перейдет в другое устойчивое состояние, напряжение на выходе компаратора скачком возрастает, красный светодиод уже не шунтируется и начинает светитьсяНастройку устройства проще всего осуществить по следующей методике. К зарядному устройству подключают предварительно полностью заряженный аккумулятор. Регулируя сопротивление подстроечного резистора R3, добиваются зажигания красного светодиода. Если теперь подключить разряженный аккумулятор, то красный светодиод погаснет, а зеленый загорится. Подбирая сопротивления резисторов R11 и R17, устанавливают необходимый ток заряда аккумуляторов, который, как правило, выбирают равным по величине 0,1 от емкости аккумулятора. Так, для аккумуляторов емкостью 0,6 Ач был установлен ток около 60 мАВ качестве R3 целесообразно использовать многооборотный подстроечный резистор типа СП5.2. Его сопротивление не критично. Можно применить, например, резистор на 6,8 кОм или более. Транзисторы VT1, VT2 в авторском варианте установлены на небольшие радиаторы. Практически все элементы схемы допускают разброс параметров до 30%. Подбор элементов при этом не проводился.

В заключение хотелось бы обратить внимание читателей на универсальность схемы. Добавив в нее незначительное количество переключателей или переменных резисторов, увеличив размеры радиаторов транзисторов можно заряжать и более мощные аккумуляторы с любым напряжением, например 2,5, 6, 12 В.

  1. Яковлев Е.Л. Низковольтное автоматическое зарядное устройство.- Радіоаматор. – 2005. – №7. – С.21
  2. Vit Krnavek, Nabijec alkalickych akumulatoru.- Prakticka electronika. – 2001. – №10.

DjMaN93 › Блог › Правильное зарядное устройство для аккумуляторов с десульфатацией (DIY)

Категорически приветствую всех читателей!

Написать данную статью меня побудили несколько факторов: борьба с потенциальным алкоголизмом, желание несколько упорядочить «кашу» из накопившейся информации и, конечно, большое желание помочь единомышленникам.

В конечном итоге мы получим зарядное устройство с линейной характеристикой выходного тока. Это означает, что зарядка будет происходить в два этапа — постоянным заданным вручную током до набора заданного напряжения, затем постоянным заданным напряжением. При этом выходной ток будет плавно снижаться вплоть до нуля, когда заряд будет полностью окончен. Это самый правильный способ зарядки.

Также мы добавим режим десульфатации аккумуляторной батареи. Такой функцией обладают некоторые заводские зарядные устройства, например, Кедр-Авто 10. Такой зарядник у меня так же имеется, и его режим работы мне не очень нравится: во-первых, он не производит должным образом зарядку постоянным напряжением, а просто падает в дозарядку малым током. Окончания зарядки придется ждать очень долго; во-вторых, в интересующем нас режиме “Цикл” максимальное напряжение целенаправленно увеличено до 15,5 вольт, чтобы устройство не отключалось. Это в конечном итоге приведёт к перезаряду аккумулятора. Использованная у меня реализация лишена этих недостатков.

Ключевые моменты статьи для удобства восприятия и навигации я выделил полужирным шрифтом.

Лирика: данный текст ориентирован на начинающих радиолюбителей, подобных мне самому. Собственно, я сам почти год назад не держал в руках паяльник, пока не набрёл на статью Андрея Голубева про изготовление лабораторного блока питания из компьютерного БП. Не имея четкого представления, зачем он мне впоследствии пригодится, я поставил себе задачу во что бы то не стало разобраться и сделать себе такое устройство. И это мне удалось. Выражаю огромную человеческую благодарность Андрею и Юрию Вячеславовичу за посильную помощь в моих начинаниях. Много крови я у них выпил. Я не повторяю статью Андрея, но постараюсь ключевые моменты переделки раскрыть более подробно, останавливаясь на моментах, которые вызывали у меня много вопросов. Прошу воспринимать данный материал как отчет о проделанной работе. Чтобы понимать, о чем я вообще говорю, вам необходимо изучить вышеупомянутые статьи.

Многие здесь и сейчас присутствующие знают, что я человек расчетливый, и не ищущий легких путей. И недавно, промывая подкапотку любимого авто от месячной пыли, обнаружил недобро косящийся на меня красный глаз индикатора плотности в банке аккумуляторной батареи. В связи с никак не радующими глаз ценами на аккумуляторы, да и что угодно в наше время, в принципе, решил, что не стоит оставлять без внимания такой важный элемент автомобиля, как аккумуляторная батарея, пробуждающая 6 цилиндров в сибирские морозы. Готовь сани летом, как говорится. А с другой стороны, не кошерно таскать в гараж лабораторный блок питания, в который вложил душу.

Читайте также:  Пирометр. что это такое?

А что нам стоит дом построить?

За период создания вышеупомянутого лабораторника у меня скопилось достаточной количество барахла, которое можно превратить в объект обсуждения – аккумуляторное зарядное устройство.
По сути, это тот же лабораторный блок питания, но с некоторыми ограничениями – минимальное напряжение на выходе равно 14,4В, максимальное 16В, блок питания не стартует без подключенного к выходным клеммам аккумулятора и имеет защиту от переполюсовки. В штатном режиме регулятор напряжения всегда в крайнем левом положении, и напряжение на выходе равно 14,4В. Повышенное напряжение используется для “пинка” запущенным аккумуляторам.

Суть зарядного устройства: обеспечить стабилизированное напряжение 14,4 вольта и заданный ограниченный ток. Проще говоря, в начале процесса зарядки ток будет максимальным, заданным реостатом. По мере заряда батареи, собственное напряжение аккумулятора будет расти. В конце концов, когда напряжение аккумулятора станет 14,4 вольта, блок питания перейдет в режим стабилизации напряжения и станет постепенно снижать ток до нуля. В таком состоянии аккумулятор может находиться сколь угодно долго, и ничего плохого с ним не произойдет.

Мне по вышеупомянутой причине сия поделка обошлась в 0 рублей и 0 копеек, если же все комплектующие покупать поштучно, бюджет может подрасти до 1000 рублей, где большую часть занимают вольтамперметры. От момента задумки до реализации прошла неделя. Делал в основном вечерами, но пару дней посвятил процессу полностью.

На этом описательно-вступительную часть предлагаю считать оконченной и перейти к самому интересному.
Достался в виде трупа блок питания ATX:

Видно следы отвратительного ремонта: силовые ключи и диодные сборки вообще не прикручены к радиаторам. Схема очень схожа с этой:

Зарядное устройство из блока питания компьютера

Дата: 29.09.2015 // 0 Комментариев

Наверняка каждому автолюбителю приходилось собирать зарядное устройство для автомобиля своими руками. Существует масса разнообразных подходов, начиная от простых трансформаторных схем, заканчивая импульсными схемами с автоматической регулировкой. Зарядное устройство из блока питания компьютера, как раз занимает золотую середину. Оно получается за копеечную цену, а его параметры отлично справляются с зарядкой автомобильных АКБ. Сегодня мы вам расскажем, как за полчаса можно собрать зарядное устройство из компьютерного блока питания ATX. Поехали!

Зарядное устройство из блока питания компьютера

Для начала необходим рабочий блок питания. Можно брать совсем старый на 200 – 250 Вт, этой мощности хватит с запасом. Учитывая что зарядка должна происходить при напряжении в 13,9 – 14,4 В, то самой главной доделкой в блоке станет поднятие напряжение на линии 12 В до 14,4 В. Подобный метод применялся в статьи: Зарядное устройство из блока питания светодиодных лент.

Внимание! В работающем блоке питания элементы находятся под опасным для жизни напряжением. Не стоит хапаться руками за все подряд.

Первым делом отпаиваем все провода, которые выходили с блока питания. Оставляем только зеленый провод, его необходимо запаять к минусовым контактам. (Площадки, от которых выходили черные провода — это минус.) Это делается для автоматического старта блока при включении в сеть. Также сразу рекомендую припаять провода с клеммами к минусу и шине + 12 В (бывшие желтые провода), для удобства и дальнейшей настройки зарядного.

Следующие манипуляции будут производиться с режимом работы ШИМ — у нас это микросхема TL494 (есть еще куча блоков питания с ее абсолютными аналогами). Ищем первую ножку микросхемы (самая нижняя левая ножка), дальше просматриваем дорожку с обратной стороны платы.

С первым выводом микросхемы соединены три резистора, нам нужен тот, который соединяется с выводами блока +12 В. На фото этот резистор отмечен красным лаком.

Этот резистор необходимо отпаять с платы и измерить его сопротивление. В нашем случае это 38,5 кОм.

Вместо него необходимо впаять переменный резистор, который предварительно настраиваем на такое же сопротивление 38,5 кОм.

Плавно увеличивая сопротивление переменного резистора, добиваемся значения напряжения на выходе в 14,4 В.

Внимание! Для каждого блока питания номинал этого резистора будет разный, т.к. схемы и детали в блоках разные, но алгоритм изменения напряжение один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придется перезагружать, предварительно уменьшив сопротивление переменного резистора.

В нашем блоке сразу поднять напряжение до 14 В не получилось, не хватило сопротивление переменного резистора, пришлось последовательно с ним добавить еще один постоянный.

Когда напряжение 14,4 В достигнуто, можно смело выпаять переменный резистор и измерить его сопротивление (оно составило 120,8 кОм).

Поле замера резистора необходимо подобрать постоянный резистор с как можно близким сопротивлением.

Мы его составили из двух 100 кОм и 22 кОм.

На этом этапе можно смело закрывать крышку и пользоваться зарядным устройством. Но если есть желание, можно подключить к этому блоку цифровой вольтамперметр, это даст нам возможность контролировать ход зарядки.

Также можно прикрутить ручку для удобной переноски и вырезать отверстие в крышке под цифровой приборчик.

Финальный тест, убеждаемся, что все правильно собрано и хорошо работает.

Внимание! Данное зарядное устройство сохраняет функцию защиты от короткого замыкания и перегрузки. Но не защищает от переплюсовки! Ни в коем случае не допускается подключать к зарядному устройству аккумулятор неправильной полярностью, зарядное мгновенно выйдет из строя.

При переделке блока питания в зарядное устройство желательно иметь под рукой схему. Что бы упростить жизнь нашим читателями мы сделали небольшую подборку, где размещены схемы компьютерных блоков питания ATX.

Для защиты от переполюсовки существует масса интересных схем. С одной из них можно знакомиться в этой статье.

Схема импульсного зарядного устройства для автомобильного аккумулятора своими руками

Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.

Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.

Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).

Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.

Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.

Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.

Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.

Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.

Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.

После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.

На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.

На первом выводе расположено много резисторов, но найти нужный — не составит труда, если прозвонить все мультиметром.

После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.

Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:

Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.

Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.

Читайте также:  Датчик температуры и влажности с использованием модуля wi-fi esp8266

Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.

При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.

Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.

Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.

Печатная плата была разведена на скорую руку , но получилось довольно неплохо.

Теперь остается соединить все по картинке и приступить к монтажу.

Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.

Амперметр можно взять советский аналоговый или цифровой.

Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.

Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.

ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ

Обычные зарядные устройства к автоаккумуляторам, продающиеся по цене от 2000 рублей, представляют из себя простейший блок питания с диодным мостом и амперметром для контроля тока. Можно ли долго пользоваться таким ЗУ, если цена нового свинцового аккумулятора Bosch достигает 5000 руб? Каждый сам решает для себя. Вот автор и решил немного потратиться и создать зарядку, имеющую все необходимые режимы по быстрому и безопасному восстановлению ёмкости АКБ.

Описание зарядного устройства

  1. Измерение напряжения аккумулятора.
  2. Измерение тока заряда и разряда. Ток измеряется датчиком тока на ОУ.
  3. Стабилизация зарядного тока на выбранном уровне. Алгоритм регулятора – пошаговый, управление током – ШИМ (Установка тока ведется из основного окна прибора.). 3.1 Выбор режима заряда – постоянным током или пульсирующем (десульфатация).
  4. Отключение заряда если напряжение достигло заданного уровня выбранном в меню.
  5. Стабилизация тока разряда на выбранном уровне в режиме разряда. Алгоритм регулятора – пошаговый, управление током – ШИМ.
  6. Подсчет Ампер*часов при разряде АБ. Разряд производится только после полной зарядки АБ. (При выборе режима разряд, если АБ не дозаряжен, автоматически производится дозаряд, а затем уже разряд с подсчетом Ампер*часов.)
  7. Включение подсветки дисплея (LIGHT). Выбор в меню. Параметр Подсветка вкл – подсветка включена всегда. В режиме авто выкл – подсветка включается при подаче питания на 30 сек и при нажатии на кнопки. Через 30 сек от последнего нажатия на кнопки подсветка отключается.
  8. При любой остановке программы подается прерывистый сигнал (0,5 Гц) на вывод 4 МК. Отключается сигнал нажатием кнопки старт.
  9. Программа отслеживает правильность установки напряжений. Минимальное напряжение (Umin) не может быть установлено выше либо равным максимальному (Umax). И наоборот.
  10. В режиме старт нажатие на кнопку PLUS или MINUS выводит на индикатор текущую информацию о состоянии процесса. В верхней строке ток и напряжение. В нижней строке оставшееся время (подробно) и выходная мощность в процентах.

Схема и печатные платы ЗУ

Схема управляющего блока

Схема источника питания

Работа зарядного устройства

1. Программа запускается/останавливается нажатием на кнопку старт из любого окна программы. Если кнопка нажата, когда программа запущена, устройство переходит в режим финиш (окончание работы программы). Следующее нажатие переводит устройство в первоначальное состояние (основное окно индикатора).

2. Если напряжение на аккумуляторе ниже, чем Umax/4, считается, что аккумулятор не подключен или неисправен. На дисплей выводится надпись No Bat. В режиме START название выбранного режима мигает.

Режим Зарядка

Программа контролирует напряжение и ток на АБ. Если напряжение ниже заданного в настройках Umax – работает стабилизатор зарядного тока с заданием Is. Если напряжение достигло Umax – остановка программы. Индикация заряд выкл.

Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке напряжение, при котором произошло отключение.

Если ток заряда I превысил ток Is на 0.2 на время более 5 сек – остановка программы, индикация ERROR.

Если истекло время заряда (параметр H, часы) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.

Режим Разряд

Если при старте программы напряжение на АБ ниже Umax, включается дозаряд АБ с током Is. После достижения напряжения Umax начинается разряд АБ с током Ii. Ведется подсчет емкости АБ.

Когда напряжение на АБ достигнет Umin разряд прекращается, на индикатор выводится индикация разряд выкл и емкость на АБ-. AH Vm 11.0 – минимальное напряжение на АБ.

Если истекло время дозаряда или разряда (для дозаряда и заряда устанавливается время H) – остановка программы, индикация ERROR.

Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке ток, при котором произошло отключение.

Режим КТЦ АКБ

При старте программы включается заряд АБ с током Is. Через 1 сек АБ переключается на разряд с током Ii. Еще через 1 сек АБ снова переключается на заряд. Так продолжается до тех пор, пока напряжение не достигнет Umax – программа останавливается. Индикация КТЦ выкл. Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR. Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR.

Если истекло время заряда (параметр H) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.

Выбранный режим после отключения от сети не запоминается. При включении всегда режим зарядка.

Обозначение символов на дисплее

  • V -измеренное напряжение на АБ
  • Vs(max) -напряжение до какого будет произведен заряд
  • Vmin(m) -минимальное напряжение на АБ при котором разряд будет отключен
  • I -измеренный ток заряда
  • Is -установленный ток заряда
  • Id – измеренный ток разряда
  • Ii -установленный в меню ток разряда(стабилизация тока разряда)
  • Imin -минимальный ток при котором заряд будет окончен
  • H -время таймера. Для вех режимов.
  • Hi -оставшееся время до отключения по таймеру
  • P -емкость АБ-Аh
  • LED -подсветка

1.При подключении к сети устройства вывести на дисплей информацию-если АБ подключена

1.1.Напряжение до какого будет произведен заряд. По умолчанию Vs=14.2 (Диапазон выбора в меню 1-30 вольт.)

1.2.Установленный ток заряда. По умолчанию Is=0.5А.( диапазон выбора в меню 0.5 -10А.дискретность 0.5А.)

1.3.Реальное напряжение на АБ. Например-V=13.7

1.4.Режим по умолчанию – зарядка (режим можно изменить в меню. Названия режимов. заряд . разряд. ктц акб.)

РЕЖИМ 1.заряд

Если АБ не подключена-вместо напряжения на АБ вывести надпись – no bat.Все остальное как и при подключённой АБ.

Пример 1.0. батарея не подключена

Vs=14.2 Is=0.5A
? АКБ Заряд

При нажатии кнопки start – запустить установленный режим. При повторном нажатии – остановить. при запущенном режиме – название выбранного режима мигает. при остановленном – горит постоянно.

Пример 1.1. батарея подключена.

Vs=14.2 Is=0.5A
V=13.7 Заряд

При запущенном режиме вместо установленного напряжения до которого будет произведен заряд отображать реальный ток заряда. Пример I = 3.6 A

Пример 1.2. идет заряд.

I=3.6A Is=0.5A
V=13.7 заряд

После окончания заряда (по таймеру или по достижению установленного напряжения на АБ или ток заряда снизится до I=min) отключить заряд и вывести – заряд выкл.

Если ток заряда превышает установленный в меню. А также напряжение на АБ превысило установленное в меню-отключить заряд и вывести надпись – ERROR.

РЕЖИМ 2. разряд

2.При выборе режима- разряд (при запуске этого режима автоматически зарядить АБ до установленного напряжения и затем начать разряд.

Пример 2.0. Индикация в основном окне режима. Если режим не запущен-название режима (разряд) не мигает. При запущенном режиме, название режима используемого в данный момент (заряд или разряд) мигает.

Если режим запущен. АБ не заряжена. Идет автоматический заряд, после которого начнется разряд.

I=0.5A заряд
P=0Ah

2.1 Ток разряда по умолчанию >

2.2. Hi – Время оставшееся до конца разряда после истечения которого разряд будет отключен по умолчанию.

2.3. Измеренная емкость батареи P=. Ah (пример Р = 45.4Ah).

Пример 2.1. окно в процессе разряда

> P=45.4Ah разряд

После окончания разряда подать сигнал с паузой 1 секунду. И так пока не будет включен другой режим. Сигнал подать на вывод 4 МК. Светодиод out. На дисплей вывести надпись верху – P=. Ah. Vm=11.0 внизу – разряд OFF.

Пример 2.2. разряд окончен

Читайте также:  Каталоги описание бытовых электросчетчиков

P=100.3Ah Vm=11.0
Разряд выкл

РЕЖИМ 3. Ктц акб. Десульфатация.

В основном окне режима, если режим запущен, название режима (КТЦ) мигает. Если не запущен – не мигает.

3.1. Ток заряда по умолчанию Is = 5А. Диапазон 0.5-10 А

3.3. Напряжение на АБ. Частота 1 Гц.

Пример 3.0. идет десульфатация.

I=5.0A > V=14.2 КТЦ-АКБ

После окончания заряда(по таймеру или при достижении установленного напряжения, режим отключить) вывести надпись – КТЦ ВЫКЛ. И напряжение на АБ.

Пример 3.1.конец работы.

V=14.7
КТЦ ВЫКЛ

Остальные настройки в меню. Все файлы находятся в архиве. За подробностями обращайтесь на форум. Автор: Александрович.

Обсудить статью ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ

Мобильные жучки – решен вопрос чувствительности микрофона.

TDA7294

Стереофонический усилитель 2 по 100 ватт, на основе микросхемы TDA7294. Процесс изготовления печатной платы и самой схемы УМЗЧ.

Тиристорное импульсное зарядное устройство 10А на КУ202

Здравствуйте ув. читатель блога «Моя лаборатория радиолюбителя».

В сегодняшней статье речь пойдет о давно «заюзаной», но очень полезной схеме тиристорного фазоимпульсного регулятора мощности, которое мы будем использовать как зарядное устройство для свинцовых аккумуляторных батарей.

Начнем с того, что зарядное на КУ202 имеет целый ряд преимуществ:
— Способность выдерживать ток заряда до 10 ампер
— Ток заряда импульсный, что, по мнению многих радиолюбителей, помогает продлить жизнь аккумулятору
— Схема собрана с не дефицитных, недорогих деталей, что делает ее очень доступной в ценовой категории
— И последний плюс- это легкость в повторении, что даст возможность ее повторить, как новичку в радиотехнике, так и просто владельцу автомобиля, вообще не имеющего знания в радиотехнике, которому нужна качественная и простая зарядка.

Со временем попробовал доработанную схему с автоматическим отключением аккумулятора, рекомендую почитать Зарядное для автомобильного аккумулятора
В свое время я собирал эту схему на коленке за 40 минут вместе с травкой платы и подготовкой компонентов схемы. Ну хватит рассказов, давайте рассмотрим схему.

Схема тиристорного зарядного устройства на КУ202

Перечень используемых компонентов в схеме
C1 = 0,47-1 мкФ 63В

R1 = 6,8к — 0,25Вт
R2 = 300 — 0,25Вт
R3 = 3,3к — 0,25Вт
R4 = 110 — 0,25Вт
R5 = 15к — 0,25Вт
R6 = 50 — 0,25Вт
R7 = 150 — 2Вт
FU1 = 10А
VD1 = ток 10А, желательно брать мост с запасом. Ну на 15-25А и обратное напряжение не ниже 50В
VD2 = любой импульсный диод, на обратное напряжение не ниже 50В
VS1 = КУ202, Т-160, Т-250
VT1 = КТ361А, КТ3107, КТ502
VT2 = КТ315А, КТ3102, КТ503

Как было сказано ранее схема является тиристорным фазоимпульсным регулятором мощности с электронным регулятором тока зарядки.
Управление электродом тиристора осуществляется цепью на транзисторах VT1 и VT2. Управляющий ток проходит через VD2, необходимый для защиты схемы от обратных скачков тока тиристора.

Резистором R5 определяется ток зарядки аккумулятора, который должен быть 1/10 от емкости АКБ. К примеру АКБ емкостью 55А надо заряжать током 5.5А. Поэтому на выходе перед клемами зарядного устройства желательно поставить амперметр, для контроля за током зарядки.

По поводу питания, для данной схемы подбираем трансформатор с переменным напряжением 18-22В, желательно по мощности без запаса, ведь используем тиристор в управлении. Если напряжение больше- R7 поднимаем до 200Ом.

Так же не забываем что диодный мост и управляющий тиристор надо ставить на радиаторы через теплопроводящую пасту. Так же если вы используете простые диоды типа как Д242-Д245, КД203, помните что их надо изолировать от корпуса радиатора.

На выход ставим предохранитель на нужные вам токи, если вы не планируете заряжать АКБ током выше 6А, то предохранителя на 6,3А вам хватит с головой.
Так же для защиты вашего аккумулятора и зарядного устройства, рекомендую поставить мою схему защиты от переполюсовки на реле или схему на компараторе, которая помимо защиты от переполюсовки защитит зарядное от подключения дохлых аккумуляторов с напряжением менее 10,5В.
Ну вот в принципе рассмотрели схемку зарядного на КУ202.

Печатная плата тиристорного зарядного устройства на КУ202

В собранном виде от Сергея

Скачать печатную плату
Пароль от архива jhg561bvlkm556

Удачи вам с повторением и жду ваших вопросов в комментариях

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув .Admin-чек

Распродажа на АлиЭкспресс. Успей купить дешевле!

Понижающий Dc-Dc преобразователь XL4016

Вх. напряжение 4-40V

Вых. напряжение 1.25-36V

Макс. мощность 200 Вт КПД: 94%

Размер: 61*41*27 мм

81 комментариев для “Тиристорное импульсное зарядное устройство 10А на КУ202”

Собрал зарядник по Вашей схеме. Для автоматического включения-выключения была добавлена схема контроля заряда HX-M602. Но при токе, больше 4 А, начинает дёргаться стрелка амперметра на +-2 А, что влечёт за собой отключение питания схемой HX-M602 (первичка трансформатора). В чём может быть проблема? Выложил фотоотчёт на сайте (даже дал ссылку на эту страничку, в знак уважения)
https://www.drive2.ru/c/531066866068619702/

Я не знаю. А без этого модуля стабильно работает?

Я за диодным мостом ещо поставил кулер от БП ПК для принудительного охлаждения тиристора! Может он мешает?:)

По идеи он не должен мешать.попробуйте подключить чисто схему зарядного без излишеств
А вот с охлаждением после диодного моста поставьте еще один диод и подключите к нему вентилятор и небольшую емкость, 470мкф

Добавил диод на кулер… Нет эффекта! Добавил конденсатор 470 мкФ на 200 В (какой нашел) эффект стал заметен! Но еще не могу понять почему при 6-7 А горят предохранители на 10 А. Хочу на вход первички трансформатора поставить варистор и конденсатор на 0,5 мкФ 300 В! Спасибо за советы!

Прибор не точно мерит, возможно там больше 10. трансформатор 300Вт это много для тиристора ку202

Доброго времени суток. Собрал. На лампах работает, а на аккумуляторе ток не идет. Поменял диод на У.Э, менял тиристор и различные варианты резисторов R7, R8. В чем может быть причина?

НЕ знаю даже. Может че то не туда припаяли?

Схема рабочая! У меня уже с доработками полгода работает!

Здравствуйте, хотел повторить вашу схему зарядки, но прежде спрошу правильно ли я понял что что если я резистор R7 заменю на переменный, то смогу устанавливать необходимое мне напряжение, ну естественно не выше того что выдает трансформатор. Просто хотклось бы имень как минимум 3 рабочих величин напряжегия 14,4 ; 15,2; 16 вольт для разных типов аккумуляторов. Заранее спасибо за ответ.

Это обычный фазоимпульсный регулятор тока. Хотите что то универсальное, соберите это Зарядное для автомобильного аккумулятора , или это Блок питания, зарядное из бесперебойника

По мере нагрева тиристора, может пробиться, дать максимальный ток. Если охлаждение тиристорра будет слабое, эта схема будет опасна!

Ne racionalnaya schema vremen vseobshego dificita. Razve seytchas problemy c tiristorami? Zatchem ogorod s diodami? Da i tiristory sleduet primenity normalynie, amper na 20…30.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector