Поделки с электронным трансформатором

Содержание

Поделки с электронным трансформатором

Электронные трансформаторы быстро завоевали свое место на рынке. Сейчас они активно применяются не только по прямому назначению. В этой статье будут рассмотрены наиболее интересные способы применения электронных трансформаторов.
Электронный трансформатор можно использовать для реализации самых разных радиолюбительских конструкций. Он может служить мощным источником питания, схему которого мы рассмотрели в этой статье.

Итак, первая конструкция с применением электронного трансформатора – высоковольтный генератор. По сути, мы имитируем строчную развертку телевизора, за исключением задающей части. Строчный трансформатор и умножитель напряжения были взяты от отечественного телевизора.

ВНИМАНИЕ ОПАСНО!
К строчному трансформатору подключен умножитель, на выходе которого опасное напряжение, поэтому нужно соблюдать предельную осторожность, разрядить умножитель во время монтажных работ, использовать резиновые перчатки, не дотрагиваться высоковольтным выводам умножителя. Если не соблюдать все правила безопасности, то последствия могут быть трагическими, поскольку есть опасность поражения высоким напряжением (на выходе УН образуется постоянное напряжение 27-30кВ, мощность преобразователя в разы выше, чем заводская схема генератора в строчной развертке, поэтому напряжение опасно для жизни).

Вторая опасность заключается в том, что высокое напряжение такого номинала заряжает окружающий воздух, следовательно, делайте все опыты вдали от электронных устройств, желательно на пластмассовой поверхности.

В качестве подопытного блока был взят трансформатор Tashibra с мощностью 20 ватт. На плате трансформатора ничего не переделано.

Переделывать сточный трансформатор тоже не нужно, выходная обмотка электронного трансформатора напрямую подключают к строчному трансформатору. Общая схема подключения показана ниже

Второй высоковольтный вывод находится на катушке.
Умножитель напряжения – УН9/27-1 3, ниже приведена внутренняя схема этого умножителя.

Прежде, чем подключить устройство, проверьте еще раз монтаж всей схемы и соблюдения правил безопасности. Расставьте высоковольтные выводы умножителя так, чтобы расстояние пробоя было для начала 0,5см, затем постепенно можно увеличивать этот зазор.

Таким образом мы получаем простейший высоковольтный генератор, который в дальнейшем может пригодится для многих зрелищных опытов.

Вторая конструкция – зарядное устройство для мобильного телефона на основе ЭТ.

За основу взят тот же электронный трансформатор. Заводские зарядные устройства для мобильных телефонов стоят порядка 3-4$, оригинальные до 20. Такой способ позволит быстро переделать ЭТ под зарядное устройство для любого мобильника.

Переделка совсем незначительная, с ней справиться любой.

Для начала нужно выпрямить напряжение с трансформатора. Для этой цели можно использовать любые импульсные диоды FR107/207, HER208, UF4007, КД213 и любые другие с током 1 А и выше. Стабилитрон на 5,6 вольт, стабилизатор напряжения на 5 вольт (7805), сглаживающий конденсатор (220-1000мкФ) и штекер под свой телефон.

Выходной ток такого зарядного устройства 1А, стоит значительно дешевле заводского зарядника, но обладает неплохими характеристиками (по сравнению с китайскими зарядными устройствами, этот имеет массу достоинств – стабильное напряжение на выходе, большой выходной ток)

Поделки электрические Моделирование конструирование Универсальный трансформатор из старого телевизора

Добрый вечер, дорогие друзья! Вот наконец то нашел время, чтобы написать статью. На прошлой неделе прошла олимпиада по технологии и вот сегодня, я хотел представить Вам устройство, которое было изготовлено в качестве творческого проекта. Это устройство “Универсальный трансформатор”. Он имеет в себе 3 основные функции, которые облегчают работу на уроках технологии при проведении уроков по художественному пилению древесины и электротехники. Работу изготовил ученик 8А класса Федоров Данил. Итак, разберемся в нем по-подробнее 🙂

Корпус был взят от старого переключателя гирлянд советского образца. На нем размечаем отверстия для крепления трансформатора, переключателей, выходных гнезд и индикатора питания.

Замеряем размеры горловины автоматического выключателя и переносим их на корпус.

Сверлим все намеченные отверстия на сверлильном станке.

Процесс сверления по-ближе.

Выпиливаем окошечко под горловину автоматического выключателя.

Примеряем трансформатор в корпусе. Все отлично, отверстия совпали, прикручиваем его двумя винтами для убеждения в этом.

Примеряем в крышке автомат, индикатор питания, клеммы и переключатель (тумблер). Все точно подошло. Идем дальше.

Припаиваем обмотки трансформатора по схеме, на клеммы одеваем термоусадочные трубочки.

Проверяем его в работе перед установкой в корпус-все работает как положено.

Подготовим корпус к покраске. Красить решили эмалевой краской, глянцевого типа.

Красим с расстояния 25-30 см, чтобы слой был тонким без потеков.

Оставляем на сушку. Полное высыхание эмали-5 часов.

Начинаем сборку. Сажаем все на свои места.

Припаиваем все радиокомпоненты между собой.

Провода стягиваем стяжками, чтобы внутри не болтались, да и коса из провода не даст любому проводку оторваться со своего места.

Закрываем корпус. Клеим информативные бирочки и под гнездом 220В приклеиваем наклейку “Высокое напряжение”. Ну что,будем испытывать 🙂

1 функция – “Переменный электрический ток”. Необходим для проведении уроков по электротехнике на уроках труда с потребителями на 12В. Например лампочкой на 12В, 60Вт. (выглядет как обычная лампочка на 220В, но напряжение у нее 12В вместо 220В). На данном снимке, у нас лампочка на 12В от автомобильной панельки. Так же эта функция позволяет подключать нихромовую проволоку для резки пластика, пенопласта и даже древесины. Хочу заметить, что древесина легко режется, словно ножом режем масло. На срезе древесины получается бурый оттенок среза, что даже придает древесине отдельную красоту.

2 функция – “Постоянный регулируемый ток 0-18В”. Необходим, когда нужно запитать какую-либо электронную конструкцию в пределах напряжений от 0 до 18В. Регулировочный потенциометр легко и плавно регулирует до необходимого напряжения.

3 функция – “Разделительный трансформатор 220В-220В”. Остановлюсь на нем подробнее. Всем знакомая история, когда мы включаем бытовой прибор в розетку, а он у нас не работает. Мы начинаем дергать шнур, щелкать выключателем, а он как не работал, так и не работает. Но никто из нас не подумал, что этого делать категорически нельзя, когда он включен в розетку. Поражение электрическим током может произойти в любое время. Все дело в том, что одним из проводником является пол (земля), а второй проводник в розетке – это фаза. Так вот, когда мы попадаемся на эту фазу, ток начинает течь через наше тело и уходить в землю. Тут конечно под ноги можно положить резиновый коврик, как это делают электрики, но если наше тело слегка выделяет пот, то это уже проводник для электрического тока. Чтобы не стелить коврики, в нашем устройстве есть функция развязывающего трансформатора, которая обезопасит Вас от поражения электрически током. Работает это так: электрический ток с розетки поступает на первичную катушку трансформатора, а со вторичных обмоток трансформатора, мы снимаем 220В. То есть получается развязка, вместо нас, подключена катушка и ток протекает по ней, а не через нас (это в случае, когда вы случайно коснулись выводов оголенных электросети. Вот ниже привожу картинки того, что описал тут.

Обычная сеть без развязывающего трансформатора представляет опасность!

Обычная сеть с развязывающим трансформатором защитит от поражения электрическим током!
Надеюсь я так более понятнее объяснил Вам 🙂
Ну вот и все, что я Вам сегодня хотел рассказать и показать! Ниже выкладываю видеофрагменты работы этого устройства и пробную резку древесины нихромовой проволокой. Будут вопросы, пишите, обязательно отвечу на них 🙂 До новых встреч, Дорогие друзья!

P.S. Забыл в статейку саму схемку выложить 🙂 Вот теперь точно все 🙂

Электронные трансформаторы. Устройство и работа. Особенности

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым импульсным блоком питания. Это самый дешевый блок питания. Зарядное устройство для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Устройство и принцип действия
Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

От конденсаторов полумоста тоже многое зависит, в частности мощность трансформатора. Они применяются с напряжением 400 В. От габаритных размеров сердечника основного импульсного трансформатора также зависит мощность. У него две независимые обмотки: сетевая и вторичная. Вторичная обмотка с расчетным напряжением 12 вольт. Наматывается она, исходя из требуемой мощности на выходе.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

Читайте также:  Трансформаторы питания типа тпп (дополнение)

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Электронные трансформаторы китайского производителя Taschibra

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.

Принцип действия

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Блок питания на основе электронного трансформатора

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Электронные трансформаторы DM-150T06A

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Достоинства и преимущества

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Недостатки электронных трансформаторов

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка.

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Еще одним недостатком можно назвать то, что на выходе этих устройств переменная частота и ток. Чтобы использовать электронные трансформаторы в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Мощности электронных трансформаторов

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

Опыты с электронным трансформатором

ОПЫТЫ С ЭЛЕКТРОННЫМ ТРАНСФОРМАТОРОМ

Недавно в магазине хоз. товаров я увидел в продаже небольшую (на ладони штуки три поместятся) коробочку под названием “электронный трансформатор”. Я заподозрил (и не ошибся), что в ней скрыт импульсный преобразователь и купил ее примерно за 70 рублей в розницу, затеяв использовать ее для питания своих радиолюбительских конструкций. В настоящее время импульсные источники питания благодаря своим достоинствам (малые размеры и вес, относительная дешевизна) широко применяются в массовой РЭА (телевизоры, мониторы и системные блоки персональных ЭВМ), но в малосерийном оборудовании и радиолюбительских конструкциях применяются редко т. к. для них нужно разрабатывать не только схему, но и специфические детали (импульсные трансформаторы). Я решил попытаться исправить это положение и приспособить электронный трансформатор или его детали для импульсного источника питания, т. к. при массовом производстве электронные трансформаторы стоят отностиельно дешево (см. выше), в несколько раз дешевле 50-герцовых трансформаторов аналогичной мощности (если, конечно, покупать силовые трансформаторы по заводской или розничной цене, а не на барахолке). Поскольку электронные трансформаторы разных фирм могут иметь подобные конструкции, мои изыскания могут оказаться Вам полезными.

Это был электронный трансформатор фирмы Taschibra маркированный 12V 50Wmax. В Интернете я нашел сайт этой фирмы по адресу www. . br. Я открыл коробочку (была собрана из двух частей на двух заклепках) и зарисовал принципиальную схему:

К сожалению маркировка деталей на печатной плате была под деталями, поэтому если на схеме что-то где-то не обозначено, значит я не смог прочитать маркировку.

Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по 3-4 витка, обмотка, подключенная к точке соединения эмиттера Q1 и коллектора Q2 – один виток одножильного монтажного изолированного провода. Другой трансформатор (выходной) – с виду на броневом ферритовом сердечнике.

D6 типа DB3 фирмы SGS-THOMSON в фирменной документации называется “TRIGGER DIODE”, его же в Интернете называли “диак”. Насколько я понял, это двунаправленный динистор (полярность включения значения не имеет) и он используется для запуска преобразователя. В Интернете можно найти документацию на этот прибор (адрес не помню).

Сопротивление R1 – IMHO используется в качестве предохранителя.

Транзисторы Q1 и Q2 типа MJE13003 в корпусах ТО-220 прижаты к корпусу через изоляционную прокладку (с виду из ламинированной бумаги) металлической пластинкой на одном винте. Даже при работе на полную нагрузку транзисторы греются слабо (рука терпит – только не щупайте транзисторы, когда устройство подключено к сети). В Интернете можно найти докуметацию на эти транзисторы производства разных фирм (адреса не помню).

Поскольку после выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации (емкость С1 и С2 для этого явно недостаточна), выходное напряжение электронного трансформатора при работе на нагрузку (я использовал лампочку от автомобильной фары 12v 50W) представляет собой прямоугольные колебания, модулированные пульсациями выпрямленного сетевого напряжения.

Читайте также:  Простой индикатор антенного тока

Преобразователь выдержал кратковременное включение в сеть без нагрузки. При коротком замыкании на выходе транзисторы Q1 b Q2 выходят из строя.

Транзисторы МJE13003, применяемые в рассматриваемом и некоторых других импульсных источниках питания выпускаются в разных корпусах (я видел корпусах ТО-220 и ТО-126) и имеют в них разную цоколевку. Поэтому советую перед установкой в схему проверить цоколевку этих транзисторов омметром.

Для того, чтобы использовать данный электронный трансформатор в импульсном источнике питания РЭА, нужно подключить на выходе выпрямительного моста конденсатор для сглаживания пульсаций выпрямленного напряжения. Я использовал конденсатор К50-27-450В-47мкФ и модуляция выходного напряжения преобразователя судя по осциллограмме была не более нескольких процентов. При включении в сеть выпрямительного моста с конденсатором такой емкости возникает сильный бросок тока и сопротивление R1 выходит из строя. Поэтому вместо R1 нужно в разрыв одного из сетевых проводов включить последовательно соединенные предохранитель с плавкой вставкой на 0.5A и сопротивление МЛТ-2-22 Ом. Это сопротивление ограничит бросок тока при включении устройства в сеть.

На выходе электронного трансформатора можно применить мост на диодах КД213. Я пробовал использовать диоды 1N4004, т. к. они меньше и дешевле, но они очень сильно перегревались. Вообще говоря нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц. Большинство советских выпрямительных диодов (Д226 и т. п.) предназначено для работы на частоте 50Hz или 400Hz и не могут быть применены во вторичной цепи импульсного источника питания. Из советских/российских диодов подходит (сам пробовал) КД213, т. к. может работать при больших токах на частоте преобразователя. Если хочется применить импортные диоды, советую в качестве примера использовать схемы источников питания системных блоков персональных ЭВМ. Насколько я в курсе, сейчас для использования в импульсных источниках питания разработаны быстродействующие мощные диоды Шоттки с малым падением напряжения в прямом направлении. Выпрямленное напряжение при использовании моста (схема Греца) на КД213 с конденсатором 2200мкФ (емкость, видимо, избыточна; по идее ее нужно рассчитать чтобы при заданной нагрузке пульсации с частотой преобразования были не больше допустимых), нагруженным на ту же автомобильную лампочку 12V 50W получалось около 11V.

Если требуется большее напряжение, можно попробовать выпрямитель с удвоением напряжения по схеме Латура. Получается немного более 20V (я нагружал выпрямитель на 24-вольтовую автомобильную лампочку).

IMHO выпрямленное напряжение получается меньше, чем, казалось бы оно должно быть, из-за падения напряжения на диодах.

Преобразователь электронного трансформатора без нагрузки нормально не работает или вообще не запускается. Поэтому IMHO без серьезных переделок электронный трансформатор можно использовать там, где нагрузка относительно постоянна и потребляет ток достаточный для уверенного самовозбуждения преобразователя. При испытании электронного трансформатора с выпрямителями во вторичной цепи советую контролировать температуру транзисторов, т. к. нормальной нагрузкой для него является лампочка (активное сопротивление).

Насколько я понял, сейчас многие пытаются использовать электронные трансформаторы для изготовления импульсных источников питания. Пример тому – блок питания для небольших ламповых усилителей www. cqham. ru/bpnlu. htm (ламповые схемы всегда потребляют некоторую мощность на накал, что IMHO создает необходимую для самовозбуждения преобразователя нагрузку). Очень советую ознакомиться с этой статьей. В ней, например, рассказано как переделать трансформатор преобразователя под требуемое выходное напряжение.

e-mail: *****@***ru http://fedjukov. narod. ru

www. ipfmebius. ru

Блок питания для небольших ламповых усилителей

Внимание: опасно для жизни! Приводимая ниже схема блока питания работает при сетевом напряжении 230 В переменного тока. После выпрямления некоторые компоненты находятся под напряжением, превышающим 322 В. Все работы по модернизации БП следует проводить только после отключения БП от сети и разрядки его конденсаторов. Помните, что конденсаторы БП на первичной и вторичной его стороне заряжены в течение нескольких секунд после отключения БП от сети.

Для ламповых усилителей, независимо от их назначения (для усиления РЧ или ЗЧ они предназначены), всё труднее и труднее становится подыскать подходящий 50-герцовый трансформатор питания с обмотками на требуемые напряжения, да ещё и за приемлемую цену. Применяемые для фильтрации дроссели с большой индуктивностью тоже дороги. 100 евро за детали для обычного блока питания вполне реальная в наше время цена.

Этот проект как раз и возник из-за невозможности (а может быть и нежелания) заплатить столько за “безделицу”. Проект основан на применении небольшого электронного преобразователя для низковольтных галогенных ламп и даёт анодное и накальное напряжения для питания ламповых усилителей. Упомянутые преобразователи можно приобрести в магазинах для самодельщиков (“Сделай Сам”) по цене всего в 15 евро. Для экономии (или при недостатке) места следует выбирать вариант с торроидальным трансформатором (на кольце).

Рис. 1. Электронный преобразова…60 Вт).

Не путайте электронный преобразователь с импульсным источником питания. Так в таковых отсутствуют некоторые существенные отличительные признаки, которые для данной области применения просто не требуются. Здесь нет управляющих петель, используемых для стабилизации выходного напряжения в случае смены нагрузки или падения напряжения в сети. Не имеется также зачастую и защиты от короткого замыкания выхода.

Сравнительные характеристики 50-герцовой и 40-кГц аппаратуры питания.

По сравнению с традиционной 50-Гц аппаратурой питания электронный преобразователь имеет определённые преимущества:

– низкое выходное сопротивление

– минимальное поле рассеяния сетевой частоты 50 Гц

ПУСКОВОЙ ВЫПРЯМИТЕЛЬ НА ТРАНСФОРМАТОРЕ СВЧ

Нескольких лет в закромах валялся трансформатор МОТ от разобранной микроволновой печи, но до сих пор не получалось найти практического применения для него, пока не пришла идея сделать его стартовым выпрямителем (для авто). Идея оказалась хорошей, потому что после недолгих переделок вышло довольно компактное, но мощное пусковое устройство.

С трансформатора удалена вторичная обмотка, а новая была изготовлена из кабеля 16 мм2 (желто-зеленый кабель на фото) 15 витков. Вторичное напряжение стало до 14,8 В переменного тока. Больше физически не получится намотать с этим кабелем, придется брать плоскую шину. Тем не менее полученное напряжение удовлетворило на 100%.

Еще одним элементом являются выпрямительные диоды. Удалось найти приличные выпрямительные диоды на 200 А по разумной цене, но вы можете поискать аналогичные с разборок. Учитывая малое время работы пускача они почти не нагреваются.

Конструкция пускового устройства

Первые испытания выпрямителя прошли успешно, поэтому началась сборка в корпус. В выпрямитель помещен амперметр на 200 А, переключатель сети и трехступенчатый LED индикатор напряжения для порогов 14,2 В, 14,6 В, 15 В. Светодиодный индикатор должен был сообщить, не заряжаются ли батареи после подключения выпрямителя. В будущем планируется заменить его на обычный аналоговый вольтметр.

Корпус сделан из листового металла от старого компьютера, и хоть он не особо красивый – главное что работает, удобный и надежный. Затраты на строительство составляют 600 рублей на выпрямительные диоды, всё остальное уже было. Хотя если бы пришлось покупать все (трансформатор, диоды, кабель трансформатора, зажимы крокодила, выключатель, корпус, амперметр), то было бы лучше купить готовое пуско-зарядное устройство.

Теперь перейдем к полевым испытаниям и измерениям. Испытания проводились на старом тракторе с 10-летними аккумуляторными батареями, которые не могли запустить трактор даже летом. Сначала попытка запустить его самим выпрямителем. Напряжение просело до 5 В, амперметр зашкалил, и вал трактора сделал какое-то движение, но безрезультатно. Поэтому попытка с батареями. После подключения зарядного устройства аккумуляторы начали заряжаться примерно током 50 А, поэтому быстро включил стартер, чтобы они не закипели. Запуск был успешным и быстрым, выпрямитель амперметра показывал 130 А потребляемого тока, а напряжение при запуске не опускалось ниже 10,7 В. Как можете видеть, выпрямитель и для больших машин является подходящим, а с маленьким автомобилем справится с пол пинка.

Вес всего устройства с проводами и зажимами равен 10 кг. В принципе амперметр не нужен, но было любопытно знать, какой ток заряда идёт. Для упрощения конструкции не использовался предохранитель ни на входе, ни на выходе выпрямителя.

При желании из него можно собрать полноценное зарядное устройство чтоб не только запускать, но и зарядить аккумулятор. Нужно лишь поставить ограничителя зарядного тока (например по этой схеме), и уменьшить ток трансформатора на холостом ходу, чтоб подходило для длительной работы.

Пусковое устройство работает в экстремальных случаях максимум 20 секунд, кроме того, выпрямительные диоды имеют большую мощность, поэтому и трансформатор, и диоды не слишком сильно нагреваются, а корпус просторный. Проверка после 5 последовательных циклов запуска показала, что оба диода только слегка нагреваются. Предполагалось поставить тепловой предохранитель на трансформаторе, но в этом не было необходимости.

Также и защита от обратного подключения соединительных кабелей отсутствует. Надо просто думать, что делаете или добавить обратный диод. В общем настоятельно рекомендуем создавать аналогичные конструкции на основе трансформатора MOT, потому что он имеет действительно хорошую мощность.

Эти 50 А зарядного тока аккумулятора способны вскипятить его, вызывая падение активной массы и деформацию пластин. Но данное несовершенство легко исправить – выключатель питания на самом кабеле в виде кнопки, активируемой другой рукой, на время работы стартера. Возможна и более сложная схема – с управлением трансформатором через тиристор и системой вторичных цепей, обнаруживающей падение напряжения на клеммах выпрямителя ниже 10 В – готовые устройства на рынке работают по этому принципу.

С другой стороны, аккумулятор в автомобиле заряжается без ограничения тока (только напряжение), и в некоторых случаях он кратковременно достигает более 100 А.

Советы по сборке пускового устройства

  1. Установите предохранитель на первичной стороне трансформатора, потому что изоляция провода очень быстро протекает под воздействием высокой температуры и может закончиться коротким замыканием между катушками.
  2. Можете установить термореле (регулируемое или фиксированное), которое при достижении, например, 70 градусов, зажжет большую красную лампочку на корпусе и дополнительно включит вентилятор.
  3. Возьмите дополнительный переключатель, чтобы нажать его перед самым запуском стартера, также хорошим решением будет небольшое снижение напряжения.
  4. Ставьте длинный шнур питания 220 В, даже установив 5 м иногда приходится брать удлинитель.
  5. Купите маленький цифровой или стрелочный вольтметр, чтоб сразу видеть состояние аккумуляторов и делать вывод об их заряде.
Читайте также:  Измеритель ёмкости аккумуляторов (с линейным стабилизатором)

Альтернативой MOT является трансформатор от серверного блока питания 12 В, мощность которого начинается от 750 Вт.

Электронная нагрузка для блока питания своими руками

Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.

По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.

На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.

Схема электронной нагрузки для блока питания

Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.

Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.

В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.

Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.

С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.

Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.

Радиодетали для сборки

  • Транзистор Т1 TIP41, MJE13009, КТ819
  • Транзисторы Т2, Т3, Т4, Т5 TIP36C
  • Стабилизатор напряжения L7812CV
  • Конденсатор С1 1000 мкФ 35В
  • Диоды 1N4007
  • Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
  • Радиаторы 4 шт. размер 100х63х33 мм
  • Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
  • Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания

Изготовление печатных плат в домашних условиях. ЛУТ технология.

Блок питания с регулировкой напряжения и тока

Усилитель звука своими руками

Программа sPlan Русская версия с библиотеками радиоэлементов

Электронная нагрузка для блока питания своими руками

Индукционный нагреватель своими руками

70 comments on “ Электронная нагрузка для блока питания своими руками ”

Добрый вечер.Сергей! Шунт с вольт амперметра надо вырезать а на его место подсоединить шунт на 50 А или как?С уважением Иван

Добрый вечер, Иван! Шунт вырезать не надо. Если амперметр рассчитан на 10А то и шунт должен стоять на 10А, при установке шунта на 50А показания прибору будут не правильными.

Спасибо -надо покупать.

Добрый вечер Сергей!Собрал все по вашей схеме но при включении вылетают транзисторы TIP36-не было переменника на 1к поставил на 120 ОМ может из-за него?

Добрый вечер, Иван! Нет, переменник на 1К можно вообще не ставить без него будет работать. Что то не правильно собрано или транзисторы из Китая. У меня такое было прислали партию транзисторов все погорели. Китайцы брак делают. Десять Китайских транзисторов по мощности равны одному оригинальному. Теперь только в Чип и Дипе покупаю там нормальные детали продают.

Уважаемый автор, повторил Вашу конструкцию — за исключением блока питания для кулеров и вольтметра: использовал сетевой адаптер 12V/1A, но не думаю, что это принципиально. Проверял на линейном стабилизаторе L7812 от другого устройства — разницы никакой.

Как нагрузка для БП она работает — тут вопросов нет. Но я не могу разобраться — ток чего именно индицирует амперметр Вашего устройства. Все дело в том, что больше одного ампера с копейками Ваш тестер не показывает — ни при каких тестах: все реальные показатели можно видеть только на индикаторах тестируемого БП. А если придется тестировать, скажем, БП для светодиодной ленты (как у Вас на фото)? У меня, как назло, ничего такого под руками не оказалось.

Словом, осталось непонятным соотношение между показателями ампеража на тестере и на тестируемых БП: как его расценивать. Например, вот этот китайский БП:
aliexpress.ru/item/32913030842.html?spm=a2g0s.9042311.0.0.274233edJzpZ3X
четко демонстрирует свои предельные параметры под нагрузкой Вашим тестером — 24V/6A, но видно их именно индикаторе VA, установленном там же, где и этот китайский БП, то есть в самодельном лабораторном БП (индикатор, кстати, точно такой же, как и на Вашем тестере). А на самом тестере в это время — меньше 1 A. Короче говоря, осталось непонятным: ток чего именно показывает тестер. Единственное, что более-менее соответствует, так это напряжение. Естественно, есть зависимость роста тока от напряжения, однако все в тех же указанных пределах. Проверял и такой же адаптер, которым запитал конструкцию: вольтаж 12V соответствует, но до номинального 1A даже близко не дотягивает: максимум 200mA. Проверял тот БП, где стоит L7812: раскачивается до 400mA, хотя этот линейный стабилизатор имеет максимум 1.5A. Нагрев ключей не измерял, но наощупь он где-то соответствует току.

Проверял Вашим тестером вот этот БП:
aliexpress.ru/item/4000125945816.html?spm=a2g0s.9042311.0.0.274233edhYLScD
Его можно «раскачать» тестером до предельных значений. Но опять же: при 30V/10 A на индикаторе тестера — аж 1,12 A. Наверное, я в чем-то не разобрался — помогите :).

Все дело в Китайских электронных вольтметрах. Если подключить к электронной нагрузке блок питания со встроенным Китайским вольтметром то показания двух приборов на БП и на ЭН будут отличаться в два раза. Выход из этой ситуации только в установке аналоговых стрелочных приборов на Электронную нагрузку или на время теста отключать вольтметр в тестируемом БП.

Заказал стрелочник у китайцев на 10А: посмотрю, что получится. Но есть мысль, что причина в шунте: обычно их рассчитывают в пределах от 1:99 (скажем, для миллиамперметра) до 5-6 раз — как в нашем случае. Кроме того, в китайском цифровике свой шунт на 10А, поэтому львиная доля тока просто течет мимо индикатора — ведь на проверяемых БП точно такие же индикаторы показывают вполне достоверные цифры. Видимо, здесь требуется какой-то другой расчет шунта, учитывающий «растекание» по параллельным цепям. А так нагрузка очень даже удобная. В конце концов, никто ведь не запрещает последовательного включения амперметра в мультиметре: я так и сделал, получив вполне реальные цифры тока. Правда, мультиметры, позволяющие измерять более 20А, мне не попадались.

По ходу конструирования пришла мысль использовать систему охлаждения устройства для китайских резисторов 4Ом/100Вт, обычно используемых для проверки УНЧ. Электрически с основной схемой они не связаны — просто добавлены к радиаторам и кулерам. Поставил 4 шт., что дает возможность комбинировать нагрузку перемычками на клеммах: например, два канала по 8 Ом/50 Вт или 2 Ом/200 Вт — рекомендую облегчить себе жизнь :). Это резисторы такого вида: aliexpress.ru/item/33026780964.html?spm=a2g0s.9042311.0.0.264d33edl5qQU1

Стрелочный прибор намного точнее будет, особенно если класс точности 2,5. Резисторы с радиаторами очень мощные. В Китае стоят не дорого. В наших магазинах цены как на золото.

Здравствуйте. Проводом какого сечения следует перейти от транзисторов к клеммам для проверки БП? То есть какой ток протекает в цепи коллекторов транзисторов Т2-Т5? Если задействовать все 40 ампер, то вопрос становится актуальным. И желательно указать мощность резистора R3. Спасибо.

Добрый вечер! Сечение провода от связки транзисторов до БП должно быть 4 мм/кв. Ток будет протекать по 10А на каждый транзистор. Резистор R3 мощностью 0.25 Вт будет достаточно.

Здравствуй Сергей! Я по поводу переделки Вашей схемы?! Как то попали ко мне транзисторы MJ11032_11033! Комплементпрная пара! Характеристики идеальные для создания электронной нагрузки. Правда они по схеме Дарлингтона! Но в Интернете я встречал схему электронной нагрузки на Дарлингтонах! По моему были собраны на КТ827, или КТ825!? Так вот вопрос тебе как Доку, можно ли применить из в электронной нагрузке. Все же по Datasheet, у него рассеиваемая мощность аж 300 Вт.

Добрый вечер, Лестанбек! В электронной нагрузке работать будут.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector