Повышающий преобразователь с mppt контролером заряда для солнечных батарей

Что такое MPPT-контроллер для заряда солнечных батарей

MPPT — это один из способов использования ресурсов источника энергии, будь то солнечная батарея или ветрогенератор, но в этой статье мы поговорим именно о солнечной энергии. Его основная особенность — повышение эффективности работы альтернативного источника, путём «вытягивания» максимального количества энергии за счет выбора определенного напряжения и тока.

Выбор этих параметров сводится к анализу вольт-амперной характеристики источника и определения при каком напряжении и потребляемом токе будет потребляться максимальная мощность. Именно так и расшифровывается аббревиатура MPPT – Maximum Power Point Tracking (слежение за точкой максимальной мощности).

Общие сведения о принципе действия MPPT-контроллеров

С первого взгляда на вопрос, можно подумать: «Ну так использовать максимально возможное напряжение, значит будет максимальный ток нагрузки (заряда АКБ)». Это логично, но в действительности это не так. В первую очередь это связано с вольт-амперной характеристикой солнечного элемента.

В рабочем (полезном) режиме солнечный элемент (горизонтальный участок ВАХ) – это источник тока, то есть его выходной ток слабо зависит от напряжения на его зажимах. Выходное напряжение (Uвыхсб) же зависит от сопротивления подключенной нагрузки. Это мы можем видеть на ВАХ.

В правой части, где напряжение максимально, вы видите напряжение холостого хода Uхх, которое ограничено количеством элементов в батарее и их внутренним устройством. Ток при этом стремится к 0. И наоборот, в левой части, где напряжение стремится к 0 – напряжение короткого замыкания Uкз, а ток ограничен мощностью элементов.

Если принять силу тока солнечной батареи на полезном участке за неизменную величину, то напряжение будет определяться сопротивлением нагрузки, если оно равно бесконечности, то мы наблюдаем режим холостого хода (при Rн=∞ ⇒ Uвыхсб=Uр.хх), соответственно при коротком замыкании сопротивление нагрузки будет стремиться к нулю, как и выходное напряжение (при Rн=∞ ⇒ Uвыхсб=Uкз). Максимальная же мощность наступит при определенном соотношении сопротивления нагрузки, напряжения и тока.

Что всё это значит? Переходим от батарей к контроллерам!

Контроллер — это промежуточное звено между солнечной батареей и аккумулятором, он регулирует ток заряда посредством ШИМ, например, или любого другого, который выбрал конструктор. Но просто подать напрямую напряжение с батареи – это не значит обеспечить максимальную передачу мощности от панелей к АКБ.

Для эффективного заряда контроллер следит за током, получаемым от батареи и её выходным напряжением, а также током, отдаваемым АКБ и напряжением на ней. Чтобы убедится в этом выберем 2 произвольных точки на ВАХ (приведем её здесь еще раз) и сравним мощность в них с обозначенной на рисунке точкой максимальной мощности (ТММ), в которой вроде бы ток не является максимальным…

Допустим у нас АКБ с номинальным напряжением в 12В, это значит, в заряженном состоянии на выводах мы получим около 14,2-14,5 В, а в разряженном около 11В, пусть в одном случае у нас 13В, а в другом – 12В. Такие напряжения и выберем с ВАХ, для примерного анализа мощности при прямом подключении «солнечная панель — аккумулятор».

Согласно ВАХ в обоих случаях батарея отдаст ток около 3.6А, мы получим следующую мощность, передаваемую в процессе заряда:

А в отмеченной на ВАХ точке максимальной мощности:

Результат очевиден – мощность в ТММ больше примерно на 25-35% в зависимости от заряженности АКБ. Но как заставить батарею отдавать ток при напряжении в 18.5В, вместо того которое присутствует на клеммах аккумуляторной батареи?

Всё просто и сложно одновременно — поиск точки максимальной мощности

Как было отмечено ранее, контроллер устанавливается между солнечными панелями (батареей) и аккумуляторами, получается, что он служит нагрузкой панелей, а АКБ нагрузкой контроллера, он же — это источник вторичного питания. Любой источник питания, да и любой прибор в электротехнике может быть представлен в виде сопротивления. Это называется «эквивалентным» или «приведенным» сопротивлением (в зависимости от конкретного случая), которое определяется по тому же закону ома, то есть можно сказать, что входное сопротивление контроллера равно:

Rконтр= Uвходное/Iвх. потр.

Напряжение точки максимальной мощности у солнечных панелей зависит от ряда факторов:

Температуры (зависимость ВАХ и положения ТММ от температуры приведена на рисунке ниже);

Возраста элементов и пр.

Поэтому задать его фиксированным и универсальным не получится, плюс оно изменяется в соответствии с сопротивлением нагрузки и потребляемым током (выше приведена идеализированная ВАХ, на практике всё же будет некоторый наклон на рабочем участке).

Есть множество методов нахождения этой «волшебной», в одном из вариантов реализации MPPT-контроллер сканирует ВАХ солнечных элементов определяя оптимальные параметры для текущих рабочих условий, например, изменяя входной ток, соответственно изменяется его входное сопротивление. С помощью датчиков тока и напряжения система управления вычисляет значение мощности и сравнивает его с предыдущим, до тех пор, пока она не достигнет максимального значения. Это называется «методом возмущения и наблюдения».

В зависимости от конкретного метода определения ТММ и внутреннего устройства контроллера, в т.ч. его прошивки, поиск ТММ происходит с определенной периодичностью. Однако на практике большинство методов являются схожими и основаны на принципе «отклониться и наблюдать». В некоторых моделях есть возможность настройки этого периода в диапазоне от 1 раза в несколько минут, до 1 раза в несколько часов. В зависимости от периодичности поиска определяется эффективность работы системы в целом.

Так как в результате изменения входных параметров мы получаем максимально возможную мощность от конкретных элементов, следующей задачей становится отдать её нагрузке, то есть использовать для заряда АКБ. В конечном итоге всё сводится к управлению электронным силовым преобразователем, допустим мы получили ток ТММ в 5А при напряжении в 17.5В, это:

Значит есть возможность отдать аккумулятору с напряжением на клеммах в 12В такой ток:

В большинстве случаев преобразование осуществляется с помощью понижающего (buck) или понижающе-повышающего преобразователя (buck-boost). Типовые структуры преобразователей мы рассматривали в статье ранее.

Тогда как при использовании ON/OFF или ШИМ-контроллеров входной и выходной ток были бы равны. Что приводит к менее эффективному распоряжению доступной мощностью, например, так как входной ток был 5А, то при таком выходном токе мощность, затрачиваемая на заряд аккумуляторов, была бы равна:

Это еще раз иллюстрирует приведенные при обсуждении вольт-амперной характеристики выше расчеты.

Однако, не стоит считать MPPT-технологию панацеей для солнечной энергетике. Разница в эффективности заряда АКБ с помощью MPPT и PWM-контроллера тем меньше, чем больше заряжен аккумулятор. Когда напряжение на его клеммах (Uакб) повышается, а разница между Uтмм понижается, то используется большая мощность солнечной панели.

Аналогично приведенному выше примеру предположим, что напряжение на АКБ не 12, а 13.5В, при условии, что солнечная панель работает с теми же параметрами, это будет выглядеть следующим образом:

Если при 12В использовалось 68% от максимальной мощности, то при 13.5В используется уже 77%. Также учтите и то, что ваши аккумуляторы не будут постоянно заряжаться, и на них не будет поступать ток одной и той же силы постоянно. Поэтому в МРРТ-контроллерах обычно реализуется несколько стадий заряда, например: MPPT (с максимальной мощностью) — выравнивающий — быстрый (форсированный) — поддерживающий. Кроме всего прочего стоит помнить, что ток солнечной батареи не должен превышать номинальный ток контроллера, иначе не реализуется максимальное использование мощности.

Но это всё не говорит нам о том, что MPPT-контроллеры не нужно использовать, а только о том, что не стоит переоценивать их пользу.

Фактом остаётся лишь то, что в нижнем ценовом сегменте устройства с технологией MPPT дороже чем PWM, но не всегда. Например, есть MPPT-контроллер «EPSolar MPPT TRACER-2210A», стоимость которого находится в пределах 180 долларов, и аналогичный по стоимости (180-200 долларов) PWM-контроллер с выходным током 20А «STECA PR2020».

При этом же есть другой PWM-прибор с тем же выходным током — «SRNE SR-HP2420» стоимостью немногим больше 20 долларов, в то время, как MPPT от этого же производителя «SRNE SR-ML2420» с таким же выходным током стоит уже 85 долларов.

Цены на некоторые модели контроллеров мы рассмотрим ниже.

Обзор современного рынка MPPT-контроллеров

В таблице не приводился полный перечень функций и защит, так как он занимает большой объём. Для сведения типовой набор функций выглядит примерно так:

от неправильной полярности подключения СП и АКБ;

от КЗ на входе солнечной панели;

от КЗ в нагрузке;

отключение солнечной панели после достижения окончания заряда АКБ;

отключение нагрузки при слишком низком напряжении на АКБ;

от обрыва в цепи АКБ;

предотвращение разряда АКБ через солнечную панель в ночное время;

контроль потребление тока нагрузкой.

Таблица отражает то, что стоимость MPPT-контроллера зависит не только от его максимальной силы тока (мощности), но и от диапазона выходных напряжений, списка поддерживаемых аккумуляторов, возможности подключения средств отображения, индикации и мониторинга, и ряда других факторов. Выбор контроллера сложен и очень индивидуален, поэтому приводить какие-то сравнения и рейтинги по меньшей мере бессмысленно.

Повышающий преобразователь с MPPT контролером заряда для солнечных батарей

Устройство представляет собой простой повышающий преобразователь и ограничитель напряжения, который заряжает аккумуляторы напряжением 12В от солнечной панели напряжением 6В. Устройство также имеет функцию MPPT (Отслеживание точки максимальной мощности). Когда мы думаем о MPPT, то обычно вспоминаем про микроконтроллеры и сложные вычислительные алгоритмы мощности. Однако такие алгоритмы на самом деле не нужны.

В статье представлены два схематических решения. Первая схема просто иллюстрирует повышающий импульсный преобразователь, в то время как вторая демонстрирует самодельную рабочую схему устройства. Она рекомендуется для более продвинутых экспериментаторов, которые имеют в своем распоряжении осциллограф. Схема может также представлять интерес для студентов и тех, кто просто хочет расширить свои знания в электронике.

Схемы топологии повышающего преобразователя и схема самодельного солнечного преобразователя

Теоретические сведения о повышающем преобразователе

На схеме топологии повышающего преобразователя катушка L1 заряжается, когда транзистор Q1 открыт. Когда транзистор Q1 закрыт, катушка L1 разряжается на батарею через стабилитрон D1. Выполнение данной операции в течение нескольких тысяч раз в секунду в результате приведет к существенному выходному току. Этот процесс также называется индуктивным разрядом. Для его функционирования необходимо, чтобы входное напряжение было ниже выходного. Также при наличии солнечной панели необходимо использовать элемент хранения энергии – конденсатор (C1), который позволит солнечной панели непрерывно выдавать на выход ток между циклами.

Описание принципиальной схемы повышающего преобразователя

Схема состоит из трех основных блоков, включая генератор стробирующих импульсов на базе 555 МОП-интегральной схемы, 555 ШИМ модулятор и операционный усилитель с ограничителем напряжения. 555 серия с каскадным выходом может обеспечить ток около 200мА и позволяет создать отличный маломощный генератор импульсов. 555 ШИМ модулятор является классической генераторной схемой на базе 555 серии. Для регулировки времени разряда конденсатора C3 (время заряда катушки), на вывод 5 подается напряжение величиной 5В.

Ограничение напряжения

Операционный усилитель U1A вычисляет сигнал напряжения батареи, когда разделенное установленное значение напряжения сравнивается с эталонным напряжением величиной 5В. Когда напряжение превышает установленное значение, выход переключается в отрицательном направлении, снижая, таким образом, частоту импульсов ШИМ генератора и ограничивая любой последующий заряд. Это эффективно предотвращает перезаряд.

Читайте также:  Меняем кинескоп в телевизоре samsung ck 5073zr

Питание схемы от солнечной панели

Для предотвращения ненужного разряда батареи, когда солнце не светит, все цепи запитываются через солнечную панель, за исключением делителя напряжения с обратной связью, который потребляет около 280мкА.

MOSFET логического уровня

Поскольку схема должна работать при низких уровнях напряжения (данная схема работает от входного напряжения не ниже 4В), необходимо установить MOSFET логического уровня. Он будет открываться при напряжении 4.5В. Для этой цели я использовал мощный МОП-транзистор MTP3055.

Фиксация напряжения с помощью стабилитрона D2

В этой схеме НЕЛЬЗЯ ОТСОЕДИНЯТЬ батарею, в противном случае MOSFET-транзистор сгорит. Поэтому для его защиты я установил стабилитрон D2 напряжением 24В. Без этого стабилитрона у меня самого сгорело много МОП-транзисторов.

функцияMPPT

Когда напряжение / ток солнечной панели увеличивается, ШИМ генератор повышает частоту импульсов, что в свою очередь приводит к увеличению выходного тока. В то же время, дополнительное напряжение прилагается к катушке, увеличивая, таким образом, ее зарядный ток. В результате повышающий преобразователь действительно «прилагает большие усилия» при повышении напряжения или «ослабевает», когда напряжение снижается. Для максимальной передачи энергии при ярком солнечном свете выполняется регулировка потенциометра R8 так, чтобы зарядный ток батареи был максимальным – это и будет точка максимальной мощности. Если схема работает правильно, то будет наблюдаться очень плоский пик при вращении R2. Диод D3 выполняет автоматическую MPPT регулировку более точно посредством вычитания фиксированного напряжения из разницы напряжения между батареей и средним напряжением через конденсатор C3. В условиях низкого освещения вы обнаружите, что резистор R3 не является оптимальным, однако он не будет полностью исключен из цепочки. Заметьте, что интеллектуальные MPPT контроллеры также могут лучше работать при полном диапазоне, однако это улучшение крайне малоэффективно.

Номиналы компонентов

Схема настроена на напряжение 9В, солнечная панель на мощность 3Вт. Повышающие преобразователи весьма привередливы и не будут работать в широком диапазоне условий – если ваша система использует другие пределы номинальной мощности для солнечной панели, тогда ждите проблемы. Единственные компоненты, которые требуют настройки, катушка L1 и конденсатор C3. Я был удивлен, что частота повторений оказалась очень низкой (около 2кГц). Я начал с катушки индуктивностью 100мкГ, однако схема работает лучше при индуктивности 390мкГ – первоначально я хотел получить около 20кГц. Для наилучшей работы выполняйте заряд катушки от 5 до 10 раз по отношению к току солнечной панели, затем обеспечьте продолжительный период времени (3X), чтобы катушка могла полностью разрядиться. Это обеспечит приемлемую работу, когда напряжение источника питания будет близко к напряжению батареи. Заметьте, что низкоомные катушки обеспечивают наилучшую эффективность. Наибольшая потеря действительно происходит в диоде Шотки, и наименьшая потеря это то, для чего эти диоды предназначены.

Работа при высокой частоте обычно предпочтительна. Это позволит минимизировать размер катушки. Однако для эксперимента, используйте катушку, которая будет работать лучше всего.

Предлагаемые компоненты указаны на схеме. Естественно, зарядное устройство можно приспособить в соответствии со своими требованиями.

Контроллер заряда для солнечных батарей Delta Battery

Система автономного солнечного электроснабжения, построенная из фотоэлектрических солнечных модулей, содержащая в своем составе аккумуляторные батареи, должна содержать в себе средства контроля заряда и разряда аккумуляторов. Таким устройством является контроллер заряда для солнечных батарей торговой марки Delta Battery.

Контроллер заряда предназначен для обеспечения максимально полной передачи энергии солнца от фотоэлектрических модулей и обеспечения наиболее благоприятного режима работы аккумуляторной батареи. Контроллер предотвращает перезаряд и глубокий разряд аккумулятора, препятствует протеканию обратного тока через модули в ночное время, контролирует режим работы нагрузки и многое другое.

Контроллеры солнечных модулей Delta Battery разделены на две серии: PWM и MPPT.

Модели серии PWM

Солнечный контроллер заряда серии PWM (pulse-width modulation) или ШИМ (широтно-импульсная модуляция) тока заряда используются для заряда аккумуляторов от солнечных модулей. Применяются в системах малой мощности, а также в регионах с высокой солнечной активностью. Низкий КПД является основным недостатком таких контроллеров. Однако технология ШИМ имеет низкую стоимость реализации, поэтому цена контроллера нивелирует недостаток КПД. Именно из-за сравнительно низкой стоимости данные контроллеры получили такое широкое распространение.

  • Автоматическое распознавание напряжения в системе 12В/24В.
  • Наличие USB-разъема для заряда мобильных устройств.
  • Контроллер оснащен графическим ЖК экраном.
  • ШИМ последовательное регулирование тока заряда с температурной компенсацией.
  • Значительно меньшую стоимость, в равнении с технологией MPPT.
  • Предусмотрен выбор типа АКБ (GEL, AGM, жидко-кислотные).
  • Температура эксплуатации от -25°C до +55°C.
  • Защита от перезаряда, от глубокого разряда, перегрузки и короткого замыкания цепи.
МодельТок, АНапряжение, ВМакс. мощность солн. модуля
PWM 24101012/24150Вт/12В │ 300Вт/24В
PWM 24202012/24300Вт/12В │ 600Вт/24В
PWM 24303012/24450Вт/12В │ 900Вт/24В
PWM 24404012/24600Вт/12В │ 1200Вт/24В
PWM 24606012/24900Вт/12В │ 1800Вт/24В

Модели серии MPPT

Солнечный контроллер заряда серии MPPT работает по технологии MPPT (Maximum Power Point Tracking) – поиск точки максимальной мощности (ТММ) солнечного модуля. По сравнению с обычными PWM-контроллерами, контроллер MPPT может максимально использовать мощность солнечных модулей и обеспечивать больший ток заряда, тем самым повышая коэффициент использования энергии на 15-20% в сравнении с PWM-контроллером.

  • Автоматическое распознавание напряжения в системе 12В/24В/36В/48В.
  • Предусмотрен выбор типа АКБ (GEL, AGM, жидко-кислотные, литиевые).
  • Наличие кнопки ручного включения/отключения нагрузки.
  • Программируемый таймер с привязками к «точке заката» или просто по реальному времени.
  • Коммуникационный порт RS-232 для соединения с компьютером.
  • Графический LCD монитор, на котором отражается все параметры фотоэлектрической системы.
  • Защита от перезаряда, от глубокого разряда, перегрузки и короткого замыкания цепи, защита от молнии.
  • Высокий КПД.
  • Возможность параллельного подключения для МРРТ 4860.

sibsat

sibsat

Рассмотрим теорию и практику эксплуатации MPPT контроллеров “Максимальная силовая точка отслеживания”, используемую в улучшенных солнечных контроллерах заряда.

MPPT контроллер представляет собой электронное устройство с встроенным конвертором постоянного тока DC/DC, который оптимизирует параметры энергии между солнечными батареями (PV панелями), и аккумуляторными батареями. Проще говоря, они превращают высокое выходное напряжение постоянного тока от солнечных батарей до низкого напряжения, необходимого для зарядки аккумуляторных батарей.
Итак, что значит «оптимизировать параметры энергии»?

Большинство PV панелей производятся и называются условно 12- вольтовыми. Загвоздка в том, что “номинально”, на самом деле, почти все “12-вольтовые” солнечные панели выдают от 16 до 18 вольт при номинальной нагрузке. Проблема в том, что номинальные 12-вольтовые аккумуляторные батареи довольно близки к фактическим 12 вольт – от 10,5 до 12,7 вольт, в зависимости от состояния заряда. Для успешной зарядки большинство аккумуляторных батарей требуют от 13,2 до 14,4 вольт.

Допустим, мы приобрели солнечную панель 130 ватт.

На практике солнечная панель выдает 130 ватт только при определенном напряжении и токе. Экспериментально эта солнечная батарея рассчитана на 7,52 ампер при 17,3 вольт. (7,52Ах17,3В= 130 Вт).
Теперь рассмотрим, почему панель 130 Ватт не выдает 130 Вт зарядки или куда уходят наши Ватты? Так что же происходит, когда вы подключаете панель 130 ватт к аккумулятору через обычный контроллер заряда?

К сожалению, то, что происходит, далеко не дает 130 Вт. Ваша солнечная панель выдает 7,5 ампер. Ваша аккумуляторная батарея просаживает напряжение при зарядке до 12 вольт. Соответственно имеем мощность зарядки аккумулятора : 7,5 Ампер Х 12 вольт = 90 Вт. Вы потеряли более 40 ватт но ведь заплатили за 130Вт! Где же делись 40 ватт? Они просто не производятся из-за слабого преобразования (нет оптимизации параметров) между панелью и аккумулятором. При очень низком заряде батареи, скажем 10,5 вольт ситуация еще хуже – вы можете потерять целых 35% мощности (11 вольт х 7,4 = 81,4 Ватт). Вы потеряли около 48 ватт. Вы можете подумать – почему бы просто не сделать панели так, чтобы они вырабатывали 14 вольт или около того, чтобы соответствовать батарее?

Есть много факторов. Панели мощностью 130 Вт рассчитаны при полном солнечном свете и при определенной температуре. Если температура солнечной панели не стандартна, вы не получите 17,4 вольт. Чем выше эксплуатационная температура панели, тем ниже она выдает напряжение, а следовательно – меньше энергии. Во многих жарких климатических зонах, вы можете получить до 16 вольт. Если вы получаете до 15 вольт с панели, у вас не будет достаточного напряжения для зарядки батареи. Солнечные же батареи должны иметь достаточно свободы действий, чтобы в любых условиях выполнять свое предназначение. В связи с такой не стыковкой и нужен контроллер МРРТ.

Какая выгода от использования контроллеров MPPT?

Она прямо пропорциональна сезонным условиям. MPPT контроллеры как правило основаны на цифровой технологии управления. Такой контроллер заряда постоянно прощупывает на выходе из панелей напряжение, и сравнивает его с напряжением батареи. Затем контроллер вычисляет оптимальное значение тока и напряжения в конкретный момент времени. Выполняет необходимую оптимизацию (преобразования) чтобы получить максимальную мощность зарядки.

Большинство современных MPPT контроллеров имеют КПД 93-97% эффективности в преобразовании. Вы обычно получаете от 20% до 45% увеличения мощности зимой и 10%-15% летом. Фактический коэффициент усиления может широко варьировать в зависимости от погоды, температуры, уровня заряда аккумулятора, и других факторов.

Как работает MPPT технология?

Предположим, аккумулятор разряжен до 12 вольт. MPPT видит, что на солнечной батарее 17,3 вольта и 7,52 Ампера и преобразует его вниз, так что то, что батарея получает теперь 10,8 ампер на 12 вольт.
Теперь у вас реально получено почти 130 ватт. Это упрощенное объяснение – на самом контроллер заряда MPPT отслеживает точку максимальной мощности, которая будет отличаться почти во всех ситуациях. При очень низких температурах 120 ватт панель на самом деле способны выработать более 130 Вт. С другой стороны, в очень жарких условиях, мощность падает – вы теряете мощность, когда температура повышается. Именно поэтому вы получите меньший прирост мощности в летнее время.

MPPT контроллеры являются наиболее эффективным при следующих условиях:

Зима, и/или облачные или туманные дни – когда дополнительная мощность необходима больше всего. МPPT может меняться постоянно для получения максимальной мощности заряда батареи.
Холодная погода – солнечные батареи работают лучше при низких температурах, но без MPPT вы теряете большую часть этого преимущества, когда солнечные часы минимальны.
Низкий заряд батареи – чем ниже состояние заряда батареи, тем больше контроллер MPPT вкладывает в них.
Длинные провода. При зарядке аккумулятора 12 вольт и расстоянии в 30 метров до панели падение напряжения и потери мощности могут быть значительными, если вы используете очень большой провод. Это может быть очень дорого. Но если у вас есть четыре 12 вольт панелей, соединенны последовательно на 48 вольт, потери мощности значительно меньше, и контроллер будет конвертировать высокое напряжение до 12 вольт на батарею. Это также означает, что если у вас высокое напряжение на панелях достигнуто последовательным подключением, Вы можете использовать гораздо меньше проводов.

Итак, теперь вернемся к исходному вопросу – Что такое MPPT?

В основе цифрового контроллера MPPT лежит DC/DC преобразователь. Он принимает входное напряжение постоянного тока от солнечных панелей, изменят его на высокочастотное переменное, и преобразовывает его обратно в другое постоянное напряжение и ток в точности совпадающими с панелями батарей. MPPT контроллеры работают на очень высоких частотах, как правило, в 20-80 кГц. Преимущество высокочастотных цепей в том, что они могут быть разработаны с очень высокой эффективностью трансформации (преобразования) на мелких деталях.
Есть несколько не цифровых (то есть линейных аналоговых) контроллеров заряда MPPT . Это гораздо проще и дешевле, чем цифровые. Они эффективнее (максимум на 10%), но их эффективность кратковременно может падать. К примеру, если пройдет облако над панелью.

Читайте также:  Timer/counter for avr для начинающих

Вывод: Использование МРРТ контроллеров даёт возможность более полно использовать потенциал солнечных батарей и как следствие снимать на 15-45 % больше электроэнергии по сравнению с другими контроллерами.

Настоящий МРРТ контроллер стоит довольно дорого и начинается от 3500 грн и более, в зависимости от пропускаемого тока и технических характеристик.

Бюджетные, относительно недорогие МРРТ контроллеры ничего общего с МРРТ не имеют. В лучшем случае – продвинутые PWM контроллеры.

Что такое МРРТ все узнали. А вот как он начинает работать, особенно в условиях каравана я сейчас расскажу. Данный материал составлялся из наблюдений и тестов нескольких контроллеров МРРТ. Что такое максимальная точка, для тех кто видит графики, не понимая о чем они, я скажу так — это когда напряжение и ток, выбранные для заряда АКБ, оптимальны на данный момент времени. Если напряжение АКБ изменяется в большую или меньшую степень, контроллер должен пересчитать ее для новых условий. Соответственно мощность при таких условиях будет сниматься максимальная.
Но не всё так просто. Сравниваю контроллеры МРРТ и PWM.
Берём две панели по 100Вт и ставим их на крышу каравана. Подключаем параллельно. Рабочее напряжение панелей 17,6Вольт. Рабочий ток 5,73А. Максимальный ток от двух панелей 11,46А. Напряжение АКБ 12Вольт
Подключаем МРРТ. Утром и вечером, при пасмурной погоде контроллер не видит, что солнечные панели выдают ток, так как напряжение на солнечных панелях в холостом режиме всего чуть менее 18Вольт. То есть ноль, контроллер не работает! Вопрос – почему? Потому что обычно у МРРТ контроллера идет постоянный замер напряжения ХХ и тока и именно в прошивке зашивается активация AC/DC преобразователя на определенное напряжение, как правило 18-18,3Вольт. В то время, когда у PWM такой привязки нет и он начинает работать при напряжении на солнечной панели выше напряжения аккумулятора, хоть от 10Вольт. В такой ситуации МРРТ просто проигрывает обычным контроллерам PWM.
Но вот появилось солнце, но оно в тучах, не больших и рассеянных, вроде бы должен работать МРРТ нормально, но тут наступает вторая проблема. Из-за изменения света, МРРТ контроллер начинает искать точку максимальной мощности. Он постоянно обнуляется, просматривает все данные 1-2 сек и заново ищет максимальную точку мощности. Заряд АКБ идет импульсно, с периодом в 1-2 сек, чего очень не любят АКБ GEL. В случае изменений, через определенное время он опять отключает солнечные панели, перепроверяет данные и перегружается. Контроллер PWM в таких случаях даёт заряд на АКБ без проблем, тем током, который получает от СБ.
Выводы:
– для караванов и маломощных солнечных систем применение МРРТ контроллера не приемлемо.
– как вариант, необходимо соединять СБ последовательно, для увеличения напряжения системы. Но даже в этом случае выигрыш применения МРРТ контроллера очень мал, проще добавить немного мощности СБ.

Солнечный контроллер “Энергия” MPPT Pro 200В 60А

Документация

Солнечный контроллер КЭС PRO MPPT 200/60

Компанией МикроАРТ выпущена новая модификация (КЭС PRO) первого, разработанного в России, солнечного контроллера ECO MPPT PRO.
Применение датчиков тока ДТ 325 А (опционально) позволяет контроллеру учитывать дополнительные внешние зарядные/разрядные токи от инвертора и/или ветрогенератора. Это позволяет автоматически уменьшить ток заряда, если он будет идти одновременно от ветрогенератора и от солнечных панелей и будет превышать максимально допустимый ток для АКБ. Так же, применение этого датчика для контроля зарядно/разрядных токов от инвертора, позволяет мгновенно, при необходимости, добавить необходимый ток от солнечных панелей, который требуется инвертору (для нагрузки), даже если АКБ заряжены и контроллер вышел на маленький зарядный ток (большой ток заряда в конце заряда недопустим).

Так же этого можно достичь, связав меду собой, по шине I2C с помощью специального шнура, контроллер КЭС и инвертор МАП (в этом случае датчик тока может быть использован только для контроля токов от ветрогенератора).

Ключевые преимущества:

  • КПД до 98% позволяет не только собирать всю солнечную энергию почти без потерь, но и даёт возможность обойтись без вентиляторов охлаждения, что в разы увеличивает надёжность прибора.
  • Высокое быстродействие, а следовательно эффективность выше до 10%(по сравнению с другими МРРТ контроллерами) и до 40% по сравнению с ШИМ (PWM) контроллерами.
  • Допустимое напряжение на входе контроллера до 200 В (или до 250 В – зависит от модификации), – а значит, массив солнечных панелей, можно соединять из последовательных цепочек до 3-х (или до 4-х) солнечных панелей с номиналом 24 В (напряжение открытой цепи каждой из них (без нагрузки) может достигать 45 В при температуре +25С, что в сумме 3*45 = 135 В, или 4*45 = 180 В. Но зимой или в холодные дни, это напряжение может достигать 55В(!) поэтому ставить большее количество панелей последовательно опасно). Очень важно чтобы солнечные панели работали и в пасмурную погоду, для чего необходимо обеспечить особые условия. Для этого нужно соединить их так чтобы их общее напряжение было высоким. Тогда и при затенении облаками, всё равно напряжение от них будет достаточно высокое для заряда аккумуляторов (АКБ). Дальнейшее наращивание напряжения массива солнечных панелей (300 В и более) обычно нецелесообразно, т.к. ведёт к существенному уменьшению КПД контроллера и монтаж панелей становится всё более опасным для жизни (постоянное напряжение особо опасно уже начиная от 100 В).
  • Два датчика тока на основе датчика Холла (что намного лучше измерительного шунта) для контроля заряда/разряда от другого устройства (например, от ветрогенератора, и/или от инвертора) – опционально.
  • Благодаря датчикам токов, имеется возможность работать в паре с гибридным инвертором на промышленную сеть 220 В (мгновенное добавление по необходимости тока, в том числе больше чем разрешено для заряда АКБ, минуя АКБ – хотя минимальные аккумуляторы поставить всё же необходимо). Это касается и любых обычных инверторов – добавление мощности от СП в нагрузку без расходования АКБ. Последнее очень важно – энергия может идти транзитом, АКБ не расходуются, а значит, служат десятилетиями.
  • Наличие собственного трансформаторного источника питания от солнечных панелей, что позволяет питать контроллер вне зависимости от состояния АКБ. (Работа возможна даже при полностью разряженной АКБ).
  • Счетчик входящих А*ч/Вт*ч
  • Возможность обновления встроенного программного обеспечения
  • Контроллер, кроме напряжений АКБ 12/24/48/96 В позволяет вручную установить любые нестандартные напряжения для работы с АКБ. Полезно для работы с нестандартными щелочными АКБ, или с нестандартным количеством банок АКБ.
  • Рекордный ток (до 100 А или до 60 А в зависимости от модификации) и возможность работы с системами на 96 В, позволяют получить рекордную мощность от одного контроллера: до 11 кВт (ток 100 А умножается на буферное напряжение АКБ – 110 В).
  • Возможность подключения литий-железо-фосфатных (LiFePO4) аккумуляторных батарей с BMS. Контроллер сам управляет BMS или, при необходимости, автоматически передаёт управление ими инвертору МАП (контроллер соединяется дополнительным кабелем с МАП, а в последнем, тоже обеспечена возможность управления BMS).
  • Три программируемых мощных реле управления внешними устройствами (например, в условиях полной автономии от электросетей, для экономии энергии, можно холодильник на ночь автоматически отключать, держа в морозилке побольше льда). В отличие от конкурентов, в КЭС DOMINATOR и PRO установлены мощные реле на 3,5 кВт – 240 В 16 А (т.е. можно подключать, к примеру, холодильник, сразу через контроллер, без всяких добавочных реле). Чаще всего эти реле используют для генерации сигнала тревоги и/или запуска генератора, но последние тенденции (особенно для автономии) – увеличение массива солнечных панелей, а не аккумуляторов, и коммутация различных устройств использующих 220 В (холодильники, бойлеры, кондиционеры, обогреватели и др.) для автоматического перевода их на питания на светлое время суток. Ведь солнечные панели испортить почти невозможно, и служат они на порядок дольше, чем аккумуляторы.
  • Температурная компенсация и коррекция режимов заряда для продления срока службы аккумулятора
  • Трёхстадийный заряд с буферным режимом
  • Тропическое исполнение: плата контроллера защищена влагонепроницаемым покрытием (лаком), что минимизирует вредное влияние повышенной влажности и насекомых.
Технические характеристики контроллера заряда КЭС PRO MPPT 200/60
Макс ток, А60
Напряжение АКБ, В12/24/36/48/96 автоматический выбор
Тип используемых АКБGEL, AGM, закрытые, открытые, щелочные, LiFePO4
Температурный сенсорВнешний
Макс рабочее напряжение от солнечных панелей, В185
Макс напряжение от солнечных панелей, В200
КПД98%
Программируемые реле3 шт. DPST AC: 240В / 16A
Собственное потребление на ХХ, Вт1,9
Возможность в паре с гибридным инвертором работать на сеть (добавление по необходимости тока, в том числе больше чем разрешено для АКБ)Да
Вход USB и вход RS232Есть
Шина I2C (для связи с инверторами МАП, другими солнечными контроллерами КЭС, ПАК Малина)Есть
Возможность контроля токов от сторонних устройств (инвертор, ветрогенератор)Да
Размер терминалов35mm2 / AWG2
УстановкаВертикальное настенное крепление
ОхлаждениеЕстественное
Класс защитыIP40
Рабочий температурный диапазон, °C-40. +60
Габариты [ВxГxШ], см22x12x19
Масса, кг3.70

Солнечный контроллер “Энергия” MPPT Pro 200В 60А

Солнечный контроллер КЭС PRO MPPT 200/60

Компанией МикроАРТ выпущена новая модификация (КЭС PRO) первого, разработанного в России, солнечного контроллера ECO MPPT PRO.
Применение датчиков тока ДТ 325 А (опционально) позволяет контроллеру учитывать дополнительные внешние зарядные/разрядные токи от инвертора и/или ветрогенератора. Это позволяет автоматически уменьшить ток заряда, если он будет идти одновременно от ветрогенератора и от солнечных панелей и будет превышать максимально допустимый ток для АКБ. Так же, применение этого датчика для контроля зарядно/разрядных токов от инвертора, позволяет мгновенно, при необходимости, добавить необходимый ток от солнечных панелей, который требуется инвертору (для нагрузки), даже если АКБ заряжены и контроллер вышел на маленький зарядный ток (большой ток заряда в конце заряда недопустим).

Так же этого можно достичь, связав меду собой, по шине I2C с помощью специального шнура, контроллер КЭС и инвертор МАП (в этом случае датчик тока может быть использован только для контроля токов от ветрогенератора).

Ключевые преимущества:

  • КПД до 98% позволяет не только собирать всю солнечную энергию почти без потерь, но и даёт возможность обойтись без вентиляторов охлаждения, что в разы увеличивает надёжность прибора.
  • Высокое быстродействие, а следовательно эффективность выше до 10%(по сравнению с другими МРРТ контроллерами) и до 40% по сравнению с ШИМ (PWM) контроллерами.
  • Допустимое напряжение на входе контроллера до 200 В (или до 250 В – зависит от модификации), – а значит, массив солнечных панелей, можно соединять из последовательных цепочек до 3-х (или до 4-х) солнечных панелей с номиналом 24 В (напряжение открытой цепи каждой из них (без нагрузки) может достигать 45 В при температуре +25С, что в сумме 3*45 = 135 В, или 4*45 = 180 В. Но зимой или в холодные дни, это напряжение может достигать 55В(!) поэтому ставить большее количество панелей последовательно опасно). Очень важно чтобы солнечные панели работали и в пасмурную погоду, для чего необходимо обеспечить особые условия. Для этого нужно соединить их так чтобы их общее напряжение было высоким. Тогда и при затенении облаками, всё равно напряжение от них будет достаточно высокое для заряда аккумуляторов (АКБ). Дальнейшее наращивание напряжения массива солнечных панелей (300 В и более) обычно нецелесообразно, т.к. ведёт к существенному уменьшению КПД контроллера и монтаж панелей становится всё более опасным для жизни (постоянное напряжение особо опасно уже начиная от 100 В).
  • Два датчика тока на основе датчика Холла (что намного лучше измерительного шунта) для контроля заряда/разряда от другого устройства (например, от ветрогенератора, и/или от инвертора) – опционально.
  • Благодаря датчикам токов, имеется возможность работать в паре с гибридным инвертором на промышленную сеть 220 В (мгновенное добавление по необходимости тока, в том числе больше чем разрешено для заряда АКБ, минуя АКБ – хотя минимальные аккумуляторы поставить всё же необходимо). Это касается и любых обычных инверторов – добавление мощности от СП в нагрузку без расходования АКБ. Последнее очень важно – энергия может идти транзитом, АКБ не расходуются, а значит, служат десятилетиями.
  • Наличие собственного трансформаторного источника питания от солнечных панелей, что позволяет питать контроллер вне зависимости от состояния АКБ. (Работа возможна даже при полностью разряженной АКБ).
  • Счетчик входящих А*ч/Вт*ч
  • Возможность обновления встроенного программного обеспечения
  • Контроллер, кроме напряжений АКБ 12/24/48/96 В позволяет вручную установить любые нестандартные напряжения для работы с АКБ. Полезно для работы с нестандартными щелочными АКБ, или с нестандартным количеством банок АКБ.
  • Рекордный ток (до 100 А или до 60 А в зависимости от модификации) и возможность работы с системами на 96 В, позволяют получить рекордную мощность от одного контроллера: до 11 кВт (ток 100 А умножается на буферное напряжение АКБ – 110 В).
  • Возможность подключения литий-железо-фосфатных (LiFePO4) аккумуляторных батарей с BMS. Контроллер сам управляет BMS или, при необходимости, автоматически передаёт управление ими инвертору МАП (контроллер соединяется дополнительным кабелем с МАП, а в последнем, тоже обеспечена возможность управления BMS).
  • Три программируемых мощных реле управления внешними устройствами (например, в условиях полной автономии от электросетей, для экономии энергии, можно холодильник на ночь автоматически отключать, держа в морозилке побольше льда). В отличие от конкурентов, в КЭС DOMINATOR и PRO установлены мощные реле на 3,5 кВт – 240 В 16 А (т.е. можно подключать, к примеру, холодильник, сразу через контроллер, без всяких добавочных реле). Чаще всего эти реле используют для генерации сигнала тревоги и/или запуска генератора, но последние тенденции (особенно для автономии) – увеличение массива солнечных панелей, а не аккумуляторов, и коммутация различных устройств использующих 220 В (холодильники, бойлеры, кондиционеры, обогреватели и др.) для автоматического перевода их на питания на светлое время суток. Ведь солнечные панели испортить почти невозможно, и служат они на порядок дольше, чем аккумуляторы.
  • Температурная компенсация и коррекция режимов заряда для продления срока службы аккумулятора
  • Трёхстадийный заряд с буферным режимом
  • Тропическое исполнение: плата контроллера защищена влагонепроницаемым покрытием (лаком), что минимизирует вредное влияние повышенной влажности и насекомых.
Читайте также:  Изготовление печатных плат с помощью фоторезиста

Контроллеры заряда для солнечных батарей

Сегодня альтернативные источники энергии становятся популярнее, так как они экологически чистые, дешевые и практичные. Наиболее распространенным альтернативным энергетическим ресурсом выступает солнечная батарея. Для ее монтажа требуется приложить достаточно много усилий. В устройство солнечной батареи всегда входят контроллеры заряда, аккумуляторы, инверторы и предохранители. Собрать контроллер заряда солнечной батареи можно своими руками, чтобы сэкономить приличное количество денежных средств.

Примерно так выглядит стандартный измеритель уровня заряда для солнечной батареи.

Основное назначение

Контроллер заряда аккумуляторной батареи (АКБ) от солнечной батареи предназначен для поддержания уровня заряда аккумуляторов, который также не допускает их полную разрядку или перезарядку. К таким устройствам обычно подключают свинцовые аккумуляторы из-за своей распространенности, однако, возможно подключение других разновидностей. Контроллер для солнечных батарей выполняет большое количество функций, благодаря которым обеспечивается надежная и эффективная работа. Основными из них являются:

  • выбор наиболее эффективной системы заряда аккумулятора;
  • мониторинг заряженности батареи;
  • автоматическое включение и выключение;
  • грамотное распределение энергии;
  • защита от перенапряжения и разрыва цепи.

Разновидности

На сегодняшний день существует несколько типов контроллеров заряда. Рассмотрим некоторые из них.

MPPT-контроллер

Данная аббревиатура расшифровывается как Maximum Power Point Tracking, то есть мониторинг или отслеживание точки, где мощность максимальна. Такие устройства способны понижать напряжение солнечной батареи до напряжения аккумулятора. При таком раскладе сила тока на солнечной батарее уменьшается, в результате чего можно уменьшить сечение проводов и удешевить конструкцию. Также использование данного контроллера позволяет заряжать аккумулятор, когда солнечного света недостаточно, например, в условиях непогоды или ранним утром и вечером. Является наиболее распространенным из-за своей универсальности. Применяется при порядковом подключении. MPPT-контроллер имеет достаточно большой спектр настройки, благодаря чему обеспечивается наиболее эффективная зарядка.

  • Стоимость таких устройств высокая, однако она окупается при использовании солнечных батарей свыше 1000 Вт.
  • Входное суммарное напряжение в контроллер может достигать 200 В, это значит, что к контроллеру могут быть последовательно подключены несколько солнечных панелей, в среднем до 5. В пасмурную погоду общее напряжение последовательно соединенных панелей остается высоким, благодаря чему обеспечивается бесперебойная подача электроэнергии.
  • Данный контроллер может работать с нестандартным напряжением, например, 28 В.
  • Коэффициент полезного действия MPPT-контроллер ов достигает 98%, это означает, что практически вся солнечная энергия преобразуется в электрическую.
  • Возможность подключения аккумуляторов различного типа, таких как свинцовые, литий-железо-фосфатные и другие.
  • Максимальный ток заряда равен 100 А, при данной величине тока максимальная мощность, выдаваемая контроллером может достигать 11 кВт.
  • В основном все модели MPPT-контроллер ов способны функционировать при температурах от -40 до 60 градусов.
  • Для начала заряда АКБ необходимо минимальное напряжение в 5 В.
  • Некоторые модели имеют возможность одновременно работать с гибридным инвертором.

Контроллеры данного типа могут применяться как на коммерческих предприятиях, так и на загородных домах, так как имеются различные модели с отличающимися показателями. Для загородного дома подойдет MPPT-контроллер с максимальной мощностью 3,2 кВт, с наибольшим входным напряжением в 100 В. В больших объемах применяются гораздо более мощные контроллеры.

PWM-контроллер

Технология данного устройства проще, чем у MPPT. Принцип работы такого устройства заключается в том, что, пока аккумуляторное напряжение находится ниже придела в 14,4 В, солнечная батарея подключена к аккумулятору практически напрямую, и заряд происходит достаточно быстро, после того, как значение будет достигнуто, контроллер понизит напряжение аккумулятора до 13,7 В, в результате чего аккумулятор зарядится полностью.

  • Напряжение на входе не более 140 В.
  • Работают с солнечными батареями на 12 и 24 В.
  • КПД практически равен 100%.
  • Возможность работы с множеством аккумуляторов различного типа.
  • Максимальное значение тока на входе достигает 60 А.
  • Температура функционирования от –25 до 55 ºC.
  • Возможность зарядить АКБ с нуля.

Таким образом, PWM-контроллеры применяются чаще всего, когда нагрузка не очень велика и солнечной энергии достаточно. Такие устройства больше подходят собственникам небольших загородных домов, где установлены солнечные панели небольшой мощности.

MPPT-контроллер, как уже было сказано выше, на сегодняшний день наиболее популярен, потому что имеет высокий КПД, способен работать даже в условиях недостатка солнечного света. MPPT-контроллер также способен работать на повышенных мощностях, идеально подойдет для большого загородного дома. Однако, при выборе определенного типа нужно учитывать объем входного и выходного тока, а также степень мощности и показатели напряжения.

Если выбрать контроллер, который не будет соответствовать требованиям, то в лучшем случае он просто выйдет из строя, а в худшем может испортиться проводка в доме.

Установка MPPT-контроллера на маленьких участках нецелесообразна, так как он не окупится. Если суммарное напряжение солнечной батареи больше 140 В, то следует применять MPPT-контроллер. PWM-контроллеры наиболее доступны, так как их цена начинается от 800 рублей. Есть модели за 10 тысяч, когда стоимость MPPT-контроллера примерно равна 25 тысячам.

Где устанавливается

Подключается контроллер между аккумулятором и панелью солнечных батарей. Однако, в схему подключения обязательно должен входить инвертор для солнечной батареи. Инвертор используется для преобразования постоянного 12 В тока, который идет от солнечной батареи, в переменный 220 В, текущий в любой розетке в доме, монтируется после аккумуляторной батареи.

Также важно наличие предохранителя, который выполняет защитную функцию от различных перегрузок и замыканий. Поэтому, для того чтобы обезопасить свой дом, необходимо произвести монтаж предохранителя. При наличии большого количества солнечных панелей желательна установка предохранителей между каждым элементом схемы.

На рисунке ниже показано, как выглядит инвертор (черная коробка):

Стандартная схема подключения выглядит примерно так, как представлена на рисунке ниже.

Схема показывает, что солнечные панели соединены с контроллером, электрическая энергия поступает в контроллер, а затем накапливается в аккумуляторе. Из аккумулятора она снова идет в контроллер, а после поступает в инвертор. А уже после инвертора идет распределение на потребление.

Как осуществить подключение самостоятельно

Подключить контроллер заряда MPPT для солнечных батарей достаточно просто. Для этого следует понимать принципиальную схему подключения, уметь в ней разбираться и ориентироваться, а также соединить все провода и элементы с полным соблюдением полярности, то есть «плюс» соединить с «плюсом», а «минус» с «минусом».

На рисунке ниже можно увидеть специальные отверстия с «плюсом» и минусом», собственно следует правильно засунуть в них нужные провода.

Более подробная схема представлена ниже.

Схема подключения довольно-таки проста, важно соединить все элементы, соблюдая полярность, а также необходимо учесть, чтобы они безопасно располагались в доме и не угрожали жизни. Справиться с такой задачей сможет каждый.

Возможно подключение нескольких аккумуляторов, однако здесь присоединять необходимо смешанным способом, а именно: группа аккумуляторных батарей подключается между собой параллельно, а к контроллеру последовательно. Подобную схему можно увидеть на рисунке ниже.

Как видно из схемы, количество аккумуляторов не ограничено. Однако, следует понимать, что при таком числе необходимо приобрести соответствующий инвертор, который будет способен справиться с такой большой нагрузкой.

Что будет, если не производить установку

Если не установить контроллеры MPPT или PWM для солнечных батарей, то потребуется самостоятельный контроль за уровнем напряжения на батареях. Осуществить это можно с помощью вольтметра, как показано на рисунке ниже.

Однако, при таком подключении уровень заряда аккумулятора не будет фиксироваться, в результате чего он может перегореть и выйти из строя. Данный способ подключения возможен при подключении небольших солнечных панелей для питания устройств мощностью не более 0,1 кВт. Для панелей, которые будут питать целый дом, монтаж без контроллера не рекомендуется, так как оборудование выйдет из строя намного раньше. Также из-за перезарядки аккумулятора могут выйти из строя: инвертор, так как он не будет справляться с таким напряжением, может от этого сгореть проводка и так далее. Поэтому следует проводить правильный монтаж, учитывать все факторы.

Контроллер заряда своими руками

При наличии опыта в работе с электротехническим оборудованием создать контроллер для заряда солнечной батареи можно самостоятельно. На картинке ниже представлена самая простая схема такого устройства.

Рассмотрим принцип работы такой схемы. Фотоэлемент LDR или фоторезистор — прибор, который меняет свое сопротивление при попадании на него света, то есть это солнечная панель. Управляется с помощью транзисторов. Во время облучения солнцем транзисторы закрыты. Ток передается от панели к аккумулятору через диод D2, нужен он здесь для того, чтобы ток не потек в другую сторону. При полной зарядке стабилизатор ZD отсылает сигнал лампе LED red, которая зажигается красным светом, и зарядка прекращается. Когда напряжение на аккумуляторе уменьшается, стабилизатор выключается, и происходит зарядка. Резисторы необходимы для того, чтобы уменьшить силу тока, чтобы элементы не вышли из строя. На схеме также указан трансформатор, от которого тоже может происходить зарядка, принцип тот же. По данной ветке начинает течь ток в темное время суток или в пасмурную погоду.

Заключение

В итоге можно сказать, что самостоятельная установка контроллера заряда солнечной батареи несложна. Также при наличии должного опыта в монтаже электронных приборов можно осуществить самостоятельное создание контроллера для заряда солнечной батареи.

Видео по теме

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector