Расчет триггера шмитта на оу

Ghostgkd777 › Блог › Немного аналога [Расчет триггера шмитта на ОУ]

Приветствую гостей и постояльцев моего блога, добавим немного аналога в цифровые будни, в этот раз поведаю о такой занятной вещи, как триггер шмитта.

Для тех, кто не знает, что такое операционный усилитель, транзистор и электрон — этот пост будет абсолютно бесполезен, но таких, к счастью, меньшинство))

Появилось у меня свободное время в коем-то веке, решил порадовать самое дорогое и горячё любимое, что у меня есть — это задница пятая точка))) А конкретно — собрать устройство, которое автоматически включало-бы и поддерживала заданную температуру обогрева сидений. Разработано 2 варианта: цифровой на Attiny13, который видится в качестве коммерческого проекта и аналоговый на операционнике, который будет доступен к повторению, но вот функционал чуть-чуть похуже. Устройства будут полностью автономные, не требующие включения, отключения и регулировки и подходящие на любую модель подогревов. Пока машину не поставил на колеса, нет возможности испытать платы в действии, но об этом в следующих выпусках блога.

Ну и при создании аналоговой версии понадобилась мне такая штука, как триггер шмитта на операционнике.
Для тех, кто слабо понимает что это, немного поясню. Это устройство, сравнивающие два сигнала и выдающее на выход ступенчато или ноль или напряжение питания, в зависимости от соотношений входных сигналов и имеющее петлю гистерезиса или по простому зону нечувствительности. Это значит, что включившись при 2-х вольтах напряжения, он отключится при 1,5, для примера и не включится, пока напряжение снова не возрастет до 2-х. Это и есть гистерезис, обзовем его ΔU.

Мне для устройства понадобилась схема инвертирующего триггера шмитта т.е. такого, который при увеличении напряжения выше порога срабатывания Uпор верхн выдаст на выход ноль и при снижении напряжения на входе ниже порога Uпор нижн выдаст на выход напряжение питания (единицу). Вот на его примере и разберем, как нам сделать такую штуку и посчитать. Рассчеты в интернете есть, но они зачастую мудреные. Я Вам предлагаю рассчеты для своей схемы в формате Microsoft Exell таблиц, вбиваете свои числа и он выдает требуемые цифры.

Но обо всем по порядку.

Вот такая схема включения ОУ в качестве инвертирующего триггера шмитта.
Правее схемы диаграмма зависимости выходного напряжения (синее) от входного (красное). Есть некое опорное напряжение Uопорн, являющееся серединой между порогами переключения триггера. Входной сигнал, достигнув верхнего порога Uопорн верхн перебрасывает триггер в ноль и тот там удерживается вплоть до достижения входом порога Uопорн нижн. Тогда триггер перебрасывается в единицу и остается в этом состоянии до достижения входным напряжением верхнего порога. Таким образом, мы получаем фильтрацию колебаний напряжения в определенных пределах ΔU=Uопорн верхн — Uопорн нижн.

Зачем всё это? — спросите Вы. В моей схеме это используется для включения подогревов только после достижения напряжения бортсети значения 13,3В, что выше напряжения заряженного АКБ (12,72В) — это обеспечит включение подогревов только с работающим генератором. И отключение подогревов при снижении напряжения в бортсети до 12,7В, что говорит о том, что генератор не работает и не даст разрядиться АКБ от подогревов. В сочетании с автоматическим пуском при снижении температуры ниже определенного уровня полностью отпадает необходимость их ручного включения и отключения.

Что видим по схеме? Как и все триггеры шмитта, наш охвачен положительной обратной связью (ПОС) — резистор R6, которая и дает нам петлю гистерезиса. Для стабильных параметров схемы делитель напряжения R3R4 должен питаться со стабилизированного источника напряжения 5В, от которого запитываем и наш ОУ. Через делитель напряжения R1R2 мы на вход триггера подаем масштабированное напряжение бортсети авто.

Тонкость всего этого в том, что нужен более-менее точный расчет параметров резисторов и напряжений для обеспечения нужных вам порогов срабатывания. Дабы не считать на калькуляторе долго и упорно, подбирая номиналы резисторов, создал я в экселе таблицы для расчетов. Давно им пользуюсь, очень удобный инструмент, если требуется множество однообразных вычислений.

СРАЗУ ОГОВОРЮСЬ: расчеты, представленные в таблицах, верны ТОЛЬКО для однополярного напряжения питания ОУ 5В и опорного напряжения 5В. При двуполярном напряжении питания или напряжениях, отличающихся от 5В РАСЧЕТЫ БУДУТ НЕВЕРНЫ!

Но так как у нас тематический автомобильный ресурс, то для расчетов берем однополярное 5В, его-же опорным и отслеживаемым 12В бортсети.

6. Триггеры Шмитта на оу

Наряду с простейшей схемой компаратора широко используется схема на ОУ с положительной обратной связью, называемая триггером Шмитта. Охват ОУ петлей положительной обратной связи и его работа в режиме насыщения, когда выходное напряжение может принимать только два значения (+Uвых max и -Uвых max) приводят к появлению на передаточной характеристике триггера Шмитта петли гистерезиса и двух значений напряжения входного сигнала, в которых происходит опрокидывание схемы.

В схеме, приведенной на рис. 5.4,а, входное напряжение подается на инвертирующий вход ОУ. Опорным в этой схеме служит сумма напряжений, подаваемых на неинвертирующий вход с выхода ОУ через делительную цепочку резисторов Rи R(по цепи положительной обратной связи) и от дополнительного источника U.

Рисунок 5.4. Триггер Шмитта при подаче входного напряжения

а – схема триггера, б – его передаточная характеристика

Величина опорного напряжения в схеме рис. 5.4,а может быть определена с использованием принципа суперпозиции. Компонента этого напряжения, поступающая с выхода ОУ, определяется при условии, что напряжение дополнительного источника равно нулю (U = 0). Компонента напряжения, обусловленная источником U, определяется при условии заземления выходной клеммы ОУ. Тогда величина опорного напряжения

u = uвых +U. (5.1)

При напряжении на выходе ОУ, равном +Uвых max, согласно соотношению (5.1) на неинвертирующий вход подается напряжение

U=U+R, (5.2)

которое называется напряжением срабатывания. При выходном напряжении, равном -Uвых max, на неинвертирующем входе ОУ напряжение равно

U=U R (5.3)

которое называется напряжением отпускания. Напряжения срабатывания и отпускания – это значения, при которых происходит опрокидывание триггера Шмитта со схемой на рис. 5.4.а.

Передаточная характеристика триггера Шмитта со схемой рис. 5.4,а представлена на рис. 5.4,б. Ее ход может быть объяснен следующим образом. Пусть напряжение на выходе ОУ равно +Uвых max, что обеспечивается при величине входного напряжения меньше напряжения срабатывания. При повышении входного напряжения положительное напряжение Uвых max на выходе ОУ будет сохраняться до тех пор, пока напряжение uне сравняется с напряжением срабатывания, после чего на выходе ОУ напряжение становится отрицательным и равным -Uвых max. Эта величина выходного напряжения не изменяется при дальнейшем увеличении входного напряжения. При опрокидывании схемы напряжение на неинвертирующем входе также скачком изменится и станет равным напряжению отпускания U.

Читайте также:  Регулятор оборотов для бормашинки с обратной связью на pic

При обратном изменении входного напряжения, т.е. при его уменьшении, напряжение на выходе ОУ будет положительным лишь после того, как uсравняется с напряжением отпускания и произойдет опрокидывание схемы. Выходное напряжение, равное +Uвых max, сохраняется при дальнейшем уменьшении выходного сигнала.

Таким образом, передаточная характеристика триггера Шмитта имеет гистерезис, ширина которого при схеме рис. 5.4,а равна

U U= Uвых max, (5.4)

а напряжение, равноудаленное от напряжения срабатывания и напряжения отпускания, т.е. соответствующее центру петли гистерезиса,

Uцентр = U . (5.5)

В схеме триггера Шмитта, приведенной на рис. 5.5,а, входное напряжение подается на неинвертирующий вход ОУ, а опорное – на инвертирующий. Кроме входного напряжения, на неинвертирующий вход подается напряжение с выхода ОУ через делительную цепочку, составленную из резисторов Rи R. По аналогии с соотношением (5.1) можно получить уравнение, связывающее напряжение на неинвертирующем входе ОУ с входным

uнвх = uвых + uвх . (5.6)

Рисунок 5.5. Триггер Шмитта при подаче входного напряжения

на неинвертирующий вход ОУ (U Стр 5 из 5 5

Триггер Шмитта (Шмидта, Шмита). Схема. Электрический гистерезис. Расчет, рассчитать, формула. Применение.

Схемы и расчет триггера Шмитта. Гистерезис, пороги срабатывания, входное сопротивление. (10+)

Триггер Шмитта. Схема. Электрический гистерезис. Расчет. Применение

Дорогие друзья! Правильно называть данное устройство Триггер Шмитта. Писать Триггер Шмидта, Шмита – считается неграмотным.

Определение триггера Шмитта

Триггер Шмитта (ТШ) обладает двумя устойчивыми состояниями. На его выходе может быть высокое (высокое состояние) или низкое (низкое состояние) напряжение. Переход из одного состояния в другое осуществляется при изменении входного напряжения.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Различают два вида триггеров Шмитта. Первый вид – неинвертирующий, переходит в высокое состояние при повышении напряжения, в низкое – при понижении. Второй вид – инвертирующий, переходит в высокое состояние при понижении напряжения, в низкое – при повышении.

Неинвертирующий триггер Шмитта переходит в высокое состояние, если напряжение на входе становится выше, чем Uon, переходит в низкое состояние, если напряжение на входе становится ниже, чем Uoff. Причем Uon больше, чем Uoff на величину Электрического гистерезиса триггера Шмитта.

Инвертирующий триггер Шмитта переходит в высокое состояние, если напряжение на входе становится ниже, чем Uon, переходит в низкое состояние, если напряжение на входе становится выше, чем Uoff. Причем Uon меньше, чем Uoff на величину Электрического гистерезиса триггера Шмитта.

Если напряжение на входе находится между Uon и Uoff, то триггер Шмитта сохраняет свое состояние.

Электрическая схема, обладающая описанными свойствами, с точки зрения инженера – схемотехника, вне зависимости от внутреннего устройства, является триггером Шмитта.

Применение триггера Шмитта

Триггеры Шмитта применяются там, где нужно исключить ‘дребезг’, в самом широком смысле этого слова. Например, если у Вас есть механический выключатель, то в момент включения или выключения, возникают коротковременные замыкания и размыкания цепи, пока, наконец, переключение не будет выполнено окончательно. Такой дребезг длится микро или даже наносекунды, но некоторые схемы (особенно цифровые) могут быть чувствительны к нему. Триггер Шмитта позволяет бороться с таким дребезгом.

Другим примером может быть включение / выключение какого-либо прибора на основании данных датчика. Пусть нужно включать нагреватель при понижении температуры, и выключать его, когда температура нормализовалась. Применение простого компаратора (устройства, выдающего на выход напряжение в зависимости от соотношения двух входных) приводит к своеобразному дребезгу, если температура находится вблизи точки переключения. Нагревательные и другие приборы не любят, когда их часто включают и выключают. Так что нужен триггер Шмитта.

Компараторы в чистом виде вообще очень редко используются в схемах из-за переходных процессов при напряжении, близком к напряжению переключения. Чтобы исключить эти процессы, вводится небольшая положительная обратная связь, которая превращает компаратор в триггер Шмитта с небольшим гистерезисом.

Схемы ТШ

На рисунке приведены четыре фрагмента схем, содержащих триггер Шмитта и каскад, которым управляет этот триггер. N – нагрузка. Резистор R4 ограничивает ток базы транзистора и защищает операционный усилитель от перегрузки на выходе. VD1, VD2 применяется в связи с тем, что у большинства операционных усилителей даже в условиях насыщения напряжение на выходе отличается от напряжения на шинах питания. Так что выходной транзистор может открываться этой разницей напряжений, которая оказывается приложена между базой и эмиттером. Падение напряжения на двух диодах составит около 1.5 В, что обычно бывает достаточным для защиты транзистора от случайного открывания. Но иногда вместо диодов приходится применять стабилитрон на 3 вольта, что гарантирует надежное запирание любого транзистора в схеме с любым операционным усилителем. Резистор R5 гарантирует надежное запирание транзистора. Обычно ставится резистор 1 – 5 кОм. Схемы (А), (Г) включают нагрузку при понижении входного напряжения, (Б), (В) – при повышении входного напряжения. В схемах (Б), (Г) – нагрузка заземлена, В схемах (А), (В) – нагрузка подключена к положительной шине питания.

Расчет ТШ

[R4, Ом] = ([Напряжение питания, В] – 3 В) * [Минимально возможный коэффициент передачи тока транзистора] / [Максимальный ток нагрузки] / [Коэффициент запаса, например, 1.2]. Полученное значение нужно сравнить с минимальным сопротивлением нагрузки операционного усилителя. Для стабильной и надежной работы схемы R4 лучше выбирать как минимум в 1.5 – 2 раза выше минимального сопротивления нагрузки операционного усилителя. Если расчет дал неподходящий результат, то можно использовать транзисторы с большим коэффициентом передачи тока (сопротивление R4 пропорционально ему) или применить составной транзистор, транзистор Дарлингтона.

Далее в расчете будем исходить из того, что в схеме используется операционный усилитель с высоким входным сопротивлением.

Схемы (А), (Б)

В этих схемах выбор значений сопротивления резисторов R1, R2, R3 предполагает определенную свободу. Один из них можно выбрать произвольно, тогда значения остальных могут быть рассчитаны. Следует руководствоваться такими соображениями. Чем выше сопротивление резисторов, тем меньше потери энергии источника питания в делителе напряжения на R1, R2. Но с другой стороны, применение резисторов более 500 кОм обычно нежелательно из-за возможного снижения помехозащищенности устройства.

Так что выбираем [R3] = 500кОм. Проведем расчеты. Если полученные номиналы двух других резисторов получатся слишком большими, то сделаем R3 поменьше и пересчитаем.

Пусть U2 – большее из напряжений Uon и Uoff, а U1 – меньшее, U – напряжение питания. Тогда:

Входной ток этих двух схем практически равен нулю. Такой триггер Шмитта не нагружает источник сигнала.

Схемы (В), (Г)

В этих схемах выбор значений сопротивления резисторов R1, R2, R3, R5 также предполагает определенную свободу, даже большую, чем в предыдущем случае. Мы можем произвольно выбрать R3 и, например, R2. Исходя из тех же соображений, положим этим резисторам сопротивление 500 кОм. Если нас не устроят полученные номиналы резисторов, то выберем другие значения. Сопротивление R3 влияет на R5, но не влияет на R1, сопротивление R2 влияет на R1, но не влияет на остальные расчеты. Так что пересчет можно выполнять только в нужной части расчетов.

[Напряжение на инвертирующем входе операционного усилителя, В] = [R3, Ом] * [U2, В] / ([R3, Ом] + [R5, Ом])

Читайте также:  Компания toshiba представила 2.0a ис usb зарядного устройства литий-ионных аккумуляторов

[R1, Ом] = [R2, Ом] * ([U, В] – [Напряжение на инвертирующем входе операционного усилителя, В]) / [Напряжение на инвертирующем входе операционного усилителя, В]

Абсолютное значение входного тока (А) этих схем может достигать [U, В] / ([R3, Ом] + [R5, Ом]). Источник сигнала должен выдерживать такой ток без существенного изменения напряжения, иначе триггер Шмитта будет работать неправильно. Если мы точно знаем выходное сопротивление источника сигнала, то сопротивление R5 нужно уменьшить на эту величину, так как выходное сопротивление включено последовательно с R5. Если выходное сопротивление мало, то корректировку можно не проводить.

Приведенные схемы могут быть собраны на операционном усилителе 544УД1

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

В схеме А (и в других тоже) наличие 2 диодов (или стабилитрона на 3 В) на базе транзистора действительно не дает ему открываться при 0 на выходе ОУ, но в то же время база как бы ‘повисает в воздухе’, а включение транзистора с ‘оборванной’ базой запрещено. Целесообразно ввести резистор порядка 1 кОм между базой и эмиттером. Читать ответ.

‘VD1, VD2 применяется в связи с тем, что у большинства операционных усилителей даже в условиях насыщения напряжение на выходе выше напряжения питания.’ насыщения напряжение на выходе >> выше

Компаратор. Триггер Шмитта

При построении импульсных устройств электронной техники широкое применение нашли операционные усилители (ОУ). В таких устройствах, в отличие от аналоговых устройств, ОУ в основном работает в режиме насыщения, и выходное напряжение может принимать одно из двух значений: либо +Uвыхmax либо Uвыхmax. В связи с высоким значением коэффициента усиления в линейном режиме переход ОУ из режима насыщения с выходным напряжением +Uвыхmax в режим с напряжением Uвыхmax и наоборот, при изменении входного напряжения происходит практически «скачком».

Такой ход передаточной характеристики ОУ, а также наличие у него двух входов, позволяет использовать этот элемент в качестве устройства сравнения измеряемого напряжения с опорным напряжением, которое называется компаратором. Критерием сравнения двух уровней напряжения является полярность напряжения на выходе ОУ.

Рис.3.19. Компаратор при подаче опорного напряжения

положительной полярности на неинвертирующий вход ОУ:

а – схема компаратора, б – его передаточная характеристика

Простейшая схема компаратора на ОУ приведена на рис.3.19,а. Опорное напряжение, величина которого постоянна (положительной или отрицательной полярности), подается на один из входов ОУ, а измеряемое – на другой. Если измеряемое напряжение изменяется во времени, то при достижении им уровня опорного произойдет изменение полярности выходного напряжения. Например, опорное напряжение U положительной полярности подается на неинвертирующий вход ОУ, а измеряемое u – на инвертирующий вход, как показано на рис.3.19,а. Тогда при u U – отрицательным (см. рис.2.1,б). Видно, что изменение полярности выходного напряжения происходит тогда, когда входное напряжение проходит значение U .

Компаратор на ОУ может использоваться в системах автоматического регулирования и защиты в качестве элемента измерительного органа, вырабатывающего выходной сигнал при достижении контролируемым напряжением определенного значения. По выходному сигналу затем происходит срабатывание исполнительного органа системы автоматического управления или защиты, осуществляющей изменение режима работы соответствующей аппаратуры или ее отключение.

Наряду с простейшей схемой компаратора широко используется схема на ОУ с положительной обратной связью, называемая триггером Шмитта. В схеме, приведенной на рис.3.20,а, входное напряжение подается на инвертирующий вход ОУ. Опорным в этой схеме служит сумма напряжений, подаваемых на неинвертирующий вход с выхода ОУ через делительную цепочку резисторов R и R (по цепи положительной обратной связи) и от дополнительного источника U .

Рис.3.20. Триггер Шмитта при подаче входного напряжения

на инвертирующий вход ОУ (U > 0):

а – схема триггера, б – его передаточная характеристика

Величина опорного напряжения в схеме рис.3.20,а может быть определена с использованием принципа суперпозиции. Компонента этого напряжения, поступающая с выхода ОУ, определяется при условии, что напряжение дополнительного источника равно нулю (U = 0). Компонента напряжения, обусловленная источником U , определяется при условии равенства нулю напряжения на выходе ОУ. Тогда величина опорного напряжения

U = uвых + U , (3.26)

где величина напряжения uвых может принимать только два значения: или +Uвыхmax или Uвыхmax. При положительном напряжении на выходе ОУ согласно соотношению (3.26) на неинвертирующий вход подается напряжение

U = U + R , (3.27)

которое называется напряжением срабатывания. При отрицательной полярности выходного напряжения на неинвертирующем входе ОУ напряжение равно

U = U R (3.28)

которое называется напряжением отпускания.

Передаточная характеристика триггера Шмитта со схемой рис.3.20,а представлена на рис.3.20,б. Ее ход может быть объяснен следующим образом. Пусть напряжение на выходе ОУ равно +Uвыхmax. В этом случае на неинвертирующем входе действует напряжение срабатывания и передаточная характеристика проходит через точку на оси абсцисс, соответствующую U . Данные значения напряжений устанавливаются, когда на инвертирующем входе ОУ напряжение u R , то длительность импульса положительной полярности будет больше длительности импульса отрицательной полярности, как показано на рис.3.25.

Рис.3.24. Схема несимметричного Рис.3.25. Импульсы напряжения

мультивибратора на ОУ на выходе несимметричного

Длительности импульсов несимметричного мультивибратора со схемой рис.3.24 рассчитываются с использованием соотношения (3.29) при подстановке соответствующего сопротивления резистора (R или R ). Период релаксации несимметричного мультивибратора равен

Т = τ + τ . (3.31)

Компораторы и триггер Шмитта

Теоретические основы электроники
(Обратная связь и операционные усилители)

4.4. Компораторы и триггер Шмитта

Очень часто бывает нужно установить, какой из двух сигналов больше, или определить, когда сигнал достигнет заданного значения. Например, при генерации треугольных колебаний через конденсатор пропускают положительный или отрицательный ток, полярность тока изменяют в тот момент,. когда амплитуда достигает заданного пикового значения. Другим примером служит цифровой вольтметр. Для того чтобы преобразовать напряжение в код, на один из входов компаратора подают неизвестное напряжение, а на другой – линейно-нарастающее напряжение (конденсатор + источник тока). Цифровой счетчик подсчитывает периоды генератора, пока линейно-нарастающее напряжение меньше, чем неизвестное; в момент равенства амплитуд производится считывание результата, полученного на счетчике. Результат пропорционален входному напряжению. Такое преобразование называют интегрированием с одним углом наклона; в более сложных приборах используют интегрирование с двумя углами наклона.

Простейшим компаратором является дифференциальный усилитель с большим коэффициентом усиления, построенный на основе транзисторов или операционных усилителей (рис. ниже). В зависимости от знака разности входных напряжений операционный усилитель оказывается в положительном или отрицательном насыщении. Коэффициент усиления по напряжению обычно превышает 100 000, поэтому, для того чтобы выход усилителя не насыщался, напряжение на входах должно быть равно долям милливольта. Хотя в качестве компаратора можно использовать (а часто и используют) обычный операционный усилитель, промышленность выпускает специальные интегральные схемы, предназначенные для использования в качестве компараторов. К ним относятся, например, интегральные схемы типа LM306, LM311, LM393, NE527 и TLC372. Эти кристаллы обладают очень высоким быстродействием и даже не принадлежат к семейству операционных усилителей. Например, для схемы типа NE521 скорость нарастания составляет несколько тысяч вольт в 1 мкс. Для компараторов обычно не используют термин «скорость нарастания», вместо этого говорят о задержке распространения относительно сигнала, заданного на вход.

Выходные каскады компараторов обычно обладают большей гибкостью в применениях, чем выходные каскады операционных усилителей. В обычном ОУ используют двухтактный выходной каскад, который обеспечивает размах напряжения в пределах между значениями напряжения питания (например, ± 13 В для ОУ типа 741, работающего от источников ± 15 В); в выходном каскаде компаратора эмиттер, как правило, бывает заземлен и выход снимается с «открытого коллектора». С помощью внешнего резистора «притяжения» (это название просто заимствовано из другой области), подключенного к источнику напряжения, можно сделать так, чтобы сигнал на выходе изменялся в пределах, скажем, от + 15 В до потенциала земли. В дальнейшем вы увидите, что для логических схем точно определяются значения напряжений сигналов, с которыми они должны работать; описанная схема подошла бы для управления логическими схемами типа ТТЛ, получившими широкое распространение в цифровой электронике. Такая схема изображена на рис. ниже. Напряжение на выходе переключается с уровня + 5 В на уровень потенциала земли, когда напряжение на входе становится отрицательным. Эта схема представляет собой пример использования компаратора для аналого-цифрового преобразования.

Читайте также:  Понятие электрического отгорания нуля

Некоторые пояснения по компараторам. Запомните: а) в связи с тем что в схеме нет отрицательной обратной связи, она не подчиняется правилу I; напряжения на входах неодинаковы; б) отсутствие отрицательной обратной связи приводит к тому, что входной импеданс (импеданс для дифференциального сигнала) не стремится принять высокое значение, характерное для операционного усилителя. В результате при срабатывании переключателя наблюдается изменение нагрузки и изменение (небольшое) входного тока; если импеданс управляющей схемы очень велик, то могут возникнуть весьма странные явления; в) в некоторых компараторах размах дифференциального входного сигнала ограничен и составляет иногда всего ± 5 В.

Простейшая схема компаратора, представленная на рис. выше, имеет два недостатка. При медленно изменяющемся входном сигнале напряжение на выходе также может изменяться достаточно медленно. Более того, если во входном сигнале присутствует шум, то на выходе может происходить дребезг в те моменты, когда напряжение на входе проходит через точку переключения.

Оба недостатка позволяет устранить положительная обратная связь (рис. ниже). Резистор R3 создает в схеме два порога срабатывания в зависимости от состояния выхода. Для приведенного примера нижний порог срабатывания определяется уровнем 4,76 В при условии, что напряжение на выходе равно потенциалу земли (высокий уровень на входе); когда напряжение на выходе равно + 5 В, то порог определяется уровнем 5,0 В.

Вероятность того, что шумовой сигнал на входе вызовет многократные переключения выхода, в данном случае меньше. Кроме того, положительная обратная связь обеспечивает быстрое переключение выхода независимо от скорости изменения входного колебания. (Для того чтобы еще больше увеличить скорость переключения, к резистору R3 часто подключают небольшой ускоряющий конденсатор емкостью 10-100 пФ.) Эта схема и называется триггером Шмитта . (При использовании операционного усилителя «притягивающий» резистор был бы не нужен.)

Состояние выхода зависит как от входного напряжения, так и от недавней предыстории-это так называемый эффект гистерезиса. Его иллюстрирует представленный на рис. график зависимости выходного напряжения от входного.

Для триггеров Шмитта с небольшим гистерезисом процедура разработки проста. Воспользуемся схемой, приведенной на рис. ниже.

Сначала выберем резистивный делитель (R1R2), чтобы приблизительно установить правильное пороговое напряжение; если вы хотите, чтобы пороговое напряжение было близко к потенциалу земли, нужно воспользоваться одним резистором, который включен между неинвертирующим входом и землей. Далее, выберем резистор (положительной) обратной связи R3, который обеспечит требуемый гистерезис. Напомним, что гистерезис равен выходному размаху, ослабленному резистивным делителем, образованным резисторами R3 и R1||R2. И наконец, выберем выходной «притягивающий» резистор R4, достаточно небольшой величины для обеспечения полного размаха в пределах питающего напряжения, принимая во внимание нагружающий эффект резистора R3. Если вы хотите, чтобы пороговые напряжения были симметричны относительно потенциала земли, включите между неинвертирующим входом и источником отрицательного напряжения питания резистор смещения соответствующей величины. Резисторы можно подобрать так, чтобы выходной ток и импеданс находились в пределах требуемого диапазона.

Расчет триггера шмитта на оу

Триггер Шмитта представляет собой RS-триггер, управляемый одним входным аналоговым сигналом, с двумя разными напряжениями переключения в “1” и в “0”, причём, напряжение переключения в “1” выше напряжения переключения в “0”.

Простые реализации (быстродействующие, без обратной связи) состоят из RS-триггера и троичного компаратора на входе RS-триггера, в котором два напряжения сравнения, для переключения в “0” и для переключения в “1”, устанавливаются раздельно [1] [2] [3] [4] .

В более сложных реализациях (с обратной связью, которая снижает быстродействие) цифровой выходной сигнал используется для переключения напряжения сравнения в обычном двоичном компараторе, превращая его и в троичный компаратор и в триггер на одних и тех же элементах. При “1” на выходе обратная связь уменьшает напряжение переключения, при “0” на выходе обратная связь увеличивает напряжение переключения. В таких реализациях затруднена раздельная установка напряжений переключения в “1” и в “0” [5] .

Реализации

Простой (без обратной связи)

Аппаратный

Прецизионный триггер Шмитта с RS-триггером состоит из троичного компаратора на двух двоичных компараторах, среднее состояние которого не используется, и асинхронного RS-триггера [1] [2] [3] . Применён в интегральном таймере NE555 (КР1006ВИ1) [6] , выпущенном в 1971 г.

Программный

В “программном прецизионном триггере Шмитта с RS-триггером” двумя компараторами троичного компаратора являются два оператора IF-THEN, а RS-триггером является нулевой разряд (бит) целой переменной RStrigger%, с двумя значениями (“0” и “1”) [7] .

При логических элементах с одинаковым временем задержки аппаратный триггер Шмитта имеет значительно большее быстродействие (tзадержки = 3dt, где dt – время задержки в одном логическом элементе), чем программный.

Более сложный (с обратной связью)

На аналоговых элементах

В аналоговой схемотехнике триггер Шмитта обычно реализуется на базе компаратора (операционного усилителя, охваченного резистивной положительной обратной связью) цифровой выходной сигнал которого, по этой же обратной связи, через время задержки, определяемое сопротивлением резистора обратной связи и распределённой ёмкостью, изменяет напряжение сравнения компаратора. В результате, компаратор становится троичным с двумя разными напряжениями переключения в “1” и в “0”. Из-за этого в статической характеристике устройства появляется гистерезис, т.е. устройство приобретает свойства триггера.
Из-за дополнительной задержки в цепи обратной связи, может оказаться, что триггер Шмитта с обратной связью работает медленнее, чем триггер Шмитта без обратной связи. Кроме этого, в триггере Шмитта с обратной связью, после переключения триггера, существует интервал на котором действует предыдущее значение напряжения сравнения до прихода сигнала переключения напряжения сравнения по цепи обратной связи. Если на этом интервале произойдёт резкое изменение входного сигнала в другую сторону, то триггер переключится по предыдущему напряжению сравнения, т.е. преждевременно.
Использование аналоговых элементов, как цифрового триггера, создаёт триггер, но низкого качества, и ухудшает компараторные свойства устройства.

На цифровых логических элементах

Простейшая реализация триггера Шмитта на цифровых логических элементах — это два последовательно включенных инвертора, охваченные резистивной обратной связью, цифровой выходной сигнал которых через обратную связь изменяет напряжение переключения на входе. Скорость нарастания выходного сигнала не зависит от скорости нарастания входного сигнала, для данной технической реализации является величиной постоянной (зависит от быстродействия логических вентилей).
Использование цифрового логического элемента, как аналогового компаратора, ухудшает компараторные свойства устройства, а резистивная обратная связь ухудшает триггерные свойства устройства.

См. также

Примечания

Триггер Шмитта изобрёл американский биофизик и инженер Отто Герберт Шмитт.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector