Стабилизатор напряжения для унч

Содержание

Стабилизатор напряжения для усилителя мощности

Анализ схем питания усилителей мощности позволяет сделать вывод о том, что радиолюбители для питания своих усилителей используют простейшую связку: двухполупериодный выпрямитель Гретца и конденсаторный фильтр. Казалось бы, большего и не надо, однако если учесть, что если мы хотим добиться небольшого уровня пульсаций, требуется использовать конденсаторный фильтр большой емкости. А большие емкости, да еще и на необходимое напряжение, стоят денег. Да и целесообразность использования больших емкостей весьма сомнительная, в особо клинических случаях ток зарядки конденсаторов при включении может убить выпрямительные диоды, приходится городить софт-старты. О пользе же стабилизированного питания говорилось не раз, я лишь подтвержу известное дополнительной иллюстрацией:

На иллюстрации представлена осциллограмма простейшего параметрического стабилизатора (красный сигнал) и конденсаторного фильтра (розовый). Естественно, конденсаторный фильтр присутствовал и там и там, однако, в случае параметрического стабилизатора, емкость была занижена в два раза (2200мк против 4700мк).

    Вследствие меньшей емкости скорость нарастания у параметрического стабилизатора выше x ms = 3.77ms , y ms = 4.98 .

Сохранение номинального напряжения у параметрического стабилизатора длилось дольше x ms = 5ms , y ms = 1.76ms

  • Длительность пульсации у параметрического стабилизатора меньше x ms = 6.98ms , y ms = 8.34ms
  • Видно, что пульсации стабилизированного блока преобладают над пульсациями нестабилизированного блока. Итак, задача стояла следующая, разработать стабилизатор с низкими уровнями пульсаций, что и было сделано. Он задумывался для питания общеизвестной схемы Джона Худа усилителя в классе «А», в интернете более известной как «Ультралинейный усилитель класса А» .

    Характеристики стабилизатора напряжения

    • Номинальное напряжение на выходе стабилизатора: +20В, однополярное
    • Номинальный (максимальный) ток нагрузки: 2А (3А)
    • Расчетная выделяемая мощность при токе 2А: 10Вт
    • Амплитуда пульсаций, при номинальном токе: 1,089В (в фильтре С1) и 0,017В (в фильтре С1С2)
    • КПД: 79,6%
    • Ток покоя: 0,017А

    Принципиальная схема стабилизатора напряжения для усилителя

    С понижающего трансформатора Tr1 переменное напряжение поступает на двухполупериодный выпрямитель Гретца VDS1, постоянное напряжение с которого фильтруется конденсаторным фильтром С1С2. Далее, для работы источника опорного напряжения VD1, включено двойное токовое зеркало (ТЗ) на элементах VT1, VT2, VT3, VT4, R1, обеспечивающее бОльшую нагрузочную способность стабилитрона. Транзисторы VT5, VT6, включенные по схеме Шиклаи, играют роль «следящей базы», сравнивая напряжение с делителя R5, R6, R7 с напряжением на VD1, выдают результат на буфер, выполненный на элементах VT7, VT8, VT9, VT10. Можно заметить, что коэффициент передачи тока буфера будет велик, но это необходимая мера, поскольку базовый ток транзистора VT10 в данном случае оказывает ничтожное влияние на источник опорного напряжения, при необходимости VT8, VT10 можно исключить, соединив коллектор VT9 с базой VT7, а на базу VT9 соединить с коллектором VT4. Также в стабилизатор встроена защита от короткого замыкания на выходе стабилизатора, построенная на R8, VD2, VD3, VT11. Конденсатор С3 необходим, без него стабилизатор не запустится. Если возникнет необходимость в питании усилителя с двухполярным питанием, собирается точно такая же схема для отрицательного плеча, при этом необходимо изменить проводимость транзисторов, полярность подключения диодов, стабилитрона, конденсаторов. Соединение должно выглядеть так:

    Немного осциллограмм:

    Выходное напряжение при номинальном токе, удвоенный конденсаторный фильтр (С1С2, как на схеме).

    Выходное напряжение при номинальном токе, одиночный конденсаторный фильтр С1

    Примечания по схеме:

      VT 7-VT8– на радиаторе, площадью не менее 150см2;

    Если выходное напряжение отличается от расчетного, необходимо изменить сопротивление подстроечного резистора.

    В схеме использованы резисторы с 5% допуском МЛТ-0,125-0,25, R9 – МЛТ-1

  • Электролитические конденсаторы Jamicon TK, SAMWHA
  • В общем использование данного БП для питания усилителей на распространённых микросхемах – УМЗЧ средней мощности, а также транзисторной схемотехники, значительно улучшает качество воспроизведения, особенно в НЧ области звука.

    Мощный стабилизатор двухполярного напряжения для УМЗЧ

    Автор предлагает двухполярныи стабилизатор напряжения питания, пригодный для усилителей мощностью до 50- 100 Вт на канал. Устройство выполнено на мощных полевых транзисторах, способных работать при многократных кратковременных перегрузках по току. Применение таких стабилизаторов в значительной степени оправдано в усилителях с высокой чувствительностью к изменению и пульсациям питающего напряжения, что особенно присуще несложным усилителям без общей обратной связи.

    Как известно, для питания мощного выходного каскада УМЗЧ в ряде конструкций используется отдельный источник питания, а остальная часть усилителя питается от стабилизатора напряжения. Большинство таких источников питания – нестабилизированные и представляют собой два двухполупе-риодных выпрямителя (на напряжения положительной и отрицательной полярности) со средней точкой со сглаживающими конденсаторами. Это нестабили-зированное напряжение не используется остальной частью усилителя, если в нём есть дополнительные узлы и коммутатор источников сигнала (полный, “интегральный” усилитель). Кроме того, общая обратная связь, применяемая в большинстве УМЗЧ, существенно снижает чувствительность к пульсациям напряжения питания. А если глубина общей ООС невелика или её совсем нет, пульсации питающего напряжения могут прослушиваться через акустические системы.

    Кардинальным способом подавления пульсации и нестабильности является питание выходных каскадов усилителя стабилизированным напряжением, однако применение интегральных стабилизаторов тоже наталкивается на ряд проблем. Дело в том, что такие стабилизаторы имеют относительно большое падение напряжения. Кроме того, в них, как правило, встроены ограничители по току и мощности, которые вообще могут свести на нет достоинства стабилизатора. Можно, конечно, применить интегральный стабилизатор большой мощности (например, с выходным током в 10 А), однако его стоимость, на мой взгляд, неприемлема.

    Альтернативой при решении этой задачи может быть использование в стабилизаторе напряжения питания мощных полевых транзисторов. Эти транзисторы, кстати, недороги и имеют малое сопротивление открытого канала (сотые доли ома) и максимальный ток до 70. 100 А, что позволяет конструировать стабилизаторы с очень малым падением напряжения (не более 0,25 В) при токе до 20 А.

    Параметры описываемого стабилизатора следующие. При выходном напряжении в 27 В его максимальный ток достигает 4,5 А. При таком токе нагрузки минимальное рабочее напряжение между входом и выходом не превышает 0,25 В. Разница между выходным напряжением стабилизатора без нагрузки и напряжением при токе нагрузки в 4,5 А составляет не более 0,15 В, при токе в 6 А эта разница не превышает 0,16 В.

    Такие параметры стабилизатора обеспечивают применённые в нём мощные полевые транзисторы – IRF4905 (р-канальный) с максимальным током стока 74 А и сопротивлением открытого канала в 0,02 Ом и IRL2505 (п-канальный), с соответствующими током 104 А и сопротивлением 0,008 Ом.

    Двухполярный стабилизатор состоит из двух независимых источников напряжения положительной и отрицательной полярности (рис. 1). Верхняя часть схемы относится к стабилизатору положительной полярности, а нижняя – отрицательной полярности. Для удобства сравнения нумерация соответствующих элементов различается лишь префиксами 1 и 2.

    Вначале о некоторых особенностях стабилизатора. В нём имеются три критических элемента – это конденсаторы С2 и СЗ и стабилитрон VD1.

    Указанные на схеме значения ёмкости конденсаторов С2 и СЗ являются в некотором смысле компромиссом: при их уменьшении возникает вероятность самовозбуждения стабилизатора. Увеличение их ёмкости до 1 мкФ приводит к тому, что на выход стабилизатора проникают пульсации, которые всегда имеются в выпрямленном напряжении.

    Теперь несколько слов о том, почему был выбран стабилитрон VD1 (BZX55-C7V5) с напряжением стабилизации 7,5 В. Целесообразно выбрать такой стабилитрон, у которого дифференциальное сопротивление минимально (оно влияет на свойства всего стабилизатора). Из всех стабилитронов серии BZX55 наименьшее дифференциальное сопротивление (7 Ом) имеют стабилитроны BZX55-C7V5 и BZX55-C8V2. Если входное напряжение стабилизатора менее 20. 25 В, целесообразно использовать стабилитрон на напряжение не более 3,3 В (например, BZX55-C3V3).

    Схема стабилизатора отрицательной полярности с небольшими изменениями позаимствована из [1] и уже однажды была применена мной для регулятора скорости вращения дрели (с запасом по току 20. 30 А). По сравнению со схемой из [1] в схеме на рис. 1 изменены номиналы некоторых конденсаторов, резисторов, добавлен стабилитрон VD2 для защиты затвора VT2 от пробоя и использован стабилитрон (VD1) на другое напряжение стабилизации (7,5 В).

    Схема стабилизатора положительной полярности является зеркальным отражением схемы стабилизатора отрицательной полярности Вместо n-ка-нального в нём использован р-ка-нальный полевой транзистор IRF4905 в корпусе ТО-220 (VT2), вместо биполярного транзистора структуры р-п-р – транзистор структуры n-p-n ВС337-40 или КТ503Б (VT1), а нагрузка параллельного стабилизатора DA1 (TL431CZ в корпусе ТО-92) включена в его анодную цепь Хотя такое включение нагрузки менее известно, оно наиболее распространено в импульсных источниках питания компьютеров.

    Несколько замечаний о том, как описываемый стабилизатор можно доработать для использования при напряжении питания +/-35. 45 В. В этом случае сопротивление резистора R4 (620 Ом) нужно увеличить до 0,9.. 1 кОм, чтобы ток через стабилизатор DA1 (TL431CZ) не превышал половину его максимального тока 50 мА. Вместо комплементарной пары транзисторов ВС327/ВС337 (Uкэ max = 45 В, Iктах = 0,8 А, РКmax = 0,6 Вт) следует использовать пару с неСКОЛЬКО бОЛЬШИМ напряжением иКэ max.

    например, 2SA1284/2SC3244 (UK3max = 100 В, lKmax = 0,5 А, РКmах = 0,9 Вт). Полевые транзисторы желательно установить на теплоотводы с большой площадью охлаждения Необходимо также добавить, что для установки нужного напряжения стабилизации потребуется изменение номиналов резисторов R5, R6 и R7. Стабилитрон желательно использовать на напряжение стабилизации 7,5 В (BZX55-C7V5). Микросхему TL431CZ рекомендую приобретать производства National Semiconductor, Texas Instruments, Vishay, Motorola.

    Все резисторы, кроме подстроечно-го R6 (СПЗ-19А) имеют мощность 0,25 Вт, керамические конденсаторы – нанапряжение 50 В.

    Поскольку мне понадобилось две платы двухполярного стабилизатора (по одной на каждый канал УМЗЧ), с помощью программы Sprint Layout 5.0 я развёл печатный монтаж платы (рис. 2 распечатал её чертёж на кальке, предназначенной для печати лазерным принтером, и изготовил методом, описанным мной в [2, 3]. Внешний вид смонтированной платы показан на рис. 3

    Для тестирования работы стабилизатора я использовал три цифровых мультиметра, два из которых измеряли входное и выходное напряжения стабилизатора, а третий в режиме амперметра – его выходной ток. Здесь необходимо добавить, что схема на рис. 4 использована для тестирования стабилизатора положительного напряжения Подобным образом проверены свойства и стабилизатора отрицательного напряжения.

    В качестве нагрузки (R1) применён керамический резистор SQP мощностью 20 Вт сопротивлением 1 Ом, а в качестве R2 – резистор ПЭ-75 мощностью 75 Вт сопротивлением 5 Ом. Таким образом общее сопротивление нагрузки (6 Ом) стабилизатора соответствовало общей мощности 95 Вт. а ток – 4,5 А.

    Читайте также:  Простой стабилизатор напряжения с высоким коэффициентом стабилизации

    В качестве источника питания при тестировании стабилизатора мной использован доработанный стабилизированный блок питания Б5-47, в котором выходное напряжение (до 30 В) обеспечивается при токе нагрузки до 4 5 А (до 3 А без доработки). Для повышения предела ограничения тока до 4,59 А необходимо в разъеме дистанционного управления, расположенном на задней стенке блока установить перемычки между контактами 23, 24, 26 и 50, а на лицевой панели выставить максимальное значение тока 2,99 А

    Результаты тестирования работы стабилизаторов полностью подтвердили их параметры. Стабилизаторы имеют значительный запас по току, а мощность в нагрузке каждого из стабилизаторов соответствует 121,5 Вт, что в сумме составляет 243 Вт.

    Если мощность одного канала усилителя Р = 35 Вт, а сопротивление на-
    грузки R = 4 Ом, то амплитуды напряжения сигнала U ” 17 В и тока lm = 4,25 А. Это означает что, если стабилизатор двух-полярный и состоит из стабилизаторов положительной и отрицательной полярности, каждый из них должен обеспечивать максимальный ток 4,25 А.

    Если выходное напряжение стабилизатора составляет 27 В и ток в нагрузке 4,25 А, то эквивалент нагрузки соответствует сопротивлению RэKB = 6,35 Ом. Вот поэтому и выбрано сопротивление нагрузки стабилизатора, равное 6 Ом.

    При испытаниях использован также реальный выпрямитель источника питания с большим током и высоким уровнем пульсации (накопительный конденсатор емкостью 10000 мкФ и выпрямительные диоды DSS 60-0045В (Uoбp = 45 В, lmax = 60 А, Uпр = 0,35 В/10 А), включённые по мостовой схеме.

    Описываемый стабилизатор устойчив и к кратковременным перегрузкам. Я использовал его для регулировки скорости вращения дрели, у которой пусковой ток двигателя достигает 20 А. Таким образом, стабилизатор имеет значительный запас по току, позволяющий использовать его с большими теп-лоотводами и в более мощных УМЗЧ Теперь несколько слов об установке и регулировке стабилизатора в усилителе

    Прежде всего, необходимо оценить с помощью осциллографа минимальные значения питающего напряжения выходных каскадов УМЗЧ при максимальной нагрузке. Для этого к выходу УМЗЧ следует подключить резистор номиналом, равным сопротивлению АС (4 или 8 Ом) и мощностью, соответствующей максимальной для УМЗЧ На вход усилителя подать от генератора 34 сигнал частотой 20. 30 Гц, а регулятором громкости установить уровень сигнала, соответствующего максимальной мощности усилителя.

    Далее нужно определить минимальное абсолютное значение (с учётом амплитуды пульсаций) питающих напряжений и установить подстроечным резистором R6 напряжение стабилизации приблизительно на 1 В меньше этого минимального значения в каждом из стабилизаторов.

    До установки двух плат таких стабилизаторов в каждый из каналов в усилитель (“Кумир У-001”) я заменил диоды КД208А (Unp = 1 В/1.5 А) в мостовых выпрямителях источников питания диодами Шотки MBR10100 (Unp = 0,45 В/1,5 А) и диоды КД209А в стабилизаторе напряжения 30 В диодами HER503. Кроме того ёмкость сглаживающих конденсаторов увеличил в два раза (как в выпрямителях выходных каскадов, так и в стабилизаторе 30 В).

    После установки стабилизаторов в корпус и включения усилителя необходимо проверить и подстроить баланс выходных каскадов по постоянному току, а затем ток покоя мощных транзисторов

    Отрегулировав режимы работы транзисторов выходных каскадов УМЗЧ с установленными стабилизаторами, я обнаружил заметное снижение фона даже на максимальной чувствительности при отсутствии входного сигнала.

    1 Нечаев И. Модуль мощного стабилизатора напряжения на полевом транзисторе. – Радио, 2005, № 2. с 30. 31

    2 Кузьминов А. Метод фоторепродуцирования для изготовления фотошаблона печатных плат в домашних условиях. – Технологии в электронной промышленности, 2010 №5-7

    3 Кузьминов А. Изготовление устройств на печатных платах с высоким разрешением в домашних условиях. – Технологии в электронной промышленности, 2010. № 8-10

    Автор: А.Кузьминов, г. Москва

    Мнения читателей
    • Евгений / 08.06.2019 – 16:25
      Здравствуйте друзья, собрал этот стабилизатор. Но вот не задача, по минусу работает нормально, регулирует, а вот по плюсу нет регулировки. Нет ли случайно опечатки в схеме, как то странно включен TL431 по плюсовой ветке, ножки 2 и 3 не перепутаны случайно, может быть на месте 2 должна быть 3, а на месте 3 должна быть 2? Заранее благодарен, с уважением Евгений.
    • Евгений / 18.03.2019 – 12:06
      Здравствуйте друзья, скажите пожалуйста, каким стабилитроном можно заменить КС170А в этом стабилизаторе? Заранее благодарен с уважением Евгений.
    • Lazertok / 10.12.2015 – 02:10
      Добавлю На Веге создали также тему по этому стабу http://forum.vegalab.ru/showthread.php?t=73037&p=2140762#top
    • Lazertok / 10.12.2015 – 02:00
      Стаб хорош своей простотой. -тут отзыв и вариант собранного в железе с печаткой http://forum.cxem.net/index.php?showtopic=98565&st=20#entry1498562 а далее (там же постом ниже) моя усовершенствованная схема . – прогонялись все (в том числе авторская) в симуляторе – полученные результаты выше. – Всем удачи в творчестве.
    • Федор / 22.03.2015 – 19:19
      а если повысить все номиналы на раз можно будет питать с +-65 и на выход брать 56?
    • Федор / 08.02.2015 – 19:59
      Здравствуете здоровья вам и процветания! Был у вас на сайте есть у меня трансформатор двухполярный на 63в(63,5)после фильтра в районе 80-82вольт нужно питать аудио усилитель на+- 55в 6А помогите пожалуйста в конструкций двухполярного стабилизатора (схема и номиналы нужны) прошу сразу дать ответ поможете или нет! mail:tudordjсобакаmail.ru всего доброго!

    Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

    Двухполярный стабилизированный блок питания

    При возникновении различных аварийных ситуаций, например, замыкании в нагрузке УМЗЧ неисправности его выходных транзисторов и других перегрузках питание УМЗЧ должно быть автоматически выключено. Решить все эти задачи позволяет предлагаемый стабилизатор напряжения питания.

    Параметры источники питания УМЗЧ

    • Выходное стабилизированное напряжение: 2×35В
    • Максимальный ток нагрузки каждого плеча: 9А
    • Ток срабатывания триггерной защиты: 11А
    • Полное время срабатывания защиты: 12мкс
    • Время нарастания выходного напряжения от нуля до номинального значения: 0,36 сек
    • Размах пульсаций частотой 100 Гц на выходе стабилизатора при токе нагрузки 5 А, мкВ: 80

    За основу конструкции было взято устройство из статьи “Стабилизатор напряжения питания УМЗЧ” В. Орешкина (“Радио”, 1987, № 8, с. 31), схема которого показана на сайте radiochipi.ru смотрите рис. 1. Несмотря на простоту и высокие технические данные (коэффициент стабилизации более 1000, автоматическое выключение при замыкании выхода, возможность крепления силовых транзисторов непосредственно на теплоотвод без прокладок), такому стабилизатору присущи и некоторые недостатки.

    Он неустойчиво запускается при большом токе нагрузки, а ток при замыкании выхода не нормирован и зависит от коэффициентов передачи применённых транзисторов, что иногда приводит к их выходу из строя.

    За прошедшее время появились новые электронные компоненты, стали доступны мощные полевые транзисторы, что и подвигло автора поэкспериментировать с компьютерной моделью предложенного В. Орешкиным устройства, которая была создана в симуляторе LTspice IV, и усовершенствовать его. Родившаяся в результате таких экспериментов схема блока питания изображена на рис. 2.

    Первым делом была изменена цепь запуска стабилизатора, а биполярные транзисторы были заменены полевыми. Из схемы, представленной на рис. 1, видно, что транзистор VT2 зашунтирован резистором R3 сопротивлением 470 Ом. через который протекает начальный ток зарядки конденсатора С2. Если нагрузка невелика, выходное напряжение начинает возрастать, пока стабилизатор не войдёт в режим стабилизации. При токе нагрузки менее I=Uвых/R3=19/470=40мА, когда транзистор VT2 практически закрыт, все пульсации выпрямленного напряжения через резистор R3 проходят в минусовое плечо.

    При малом сопротивлении нагрузки тока через этот резистор может не хватить для нормального запуска стабилизатора, он может вообще не запуститься. В новом варианте цепь запуска состоит из стабилитрона VD11 и резистора R22 в одном плече и VD12 с R23 во втором (для симметрии).

    В процессе включения по достижении значения напряжения на сглаживающих конденсаторах С7—С10, равного напряжению стабилизации стабилитронов VD11 и VD12, транзисторы VT11.1 и VT11.2 начинают открываться, вслед за ними открываются и силовые транзисторы VT9 и VT10.

    Напряжение на выходе стабилизатора нарастает, а напряжение между истоком и стоком транзисторов VT9 и VT10 уменьшается. Когда напряжение на стабилитронах VD11 и VD12 опустится ниже их напряжения стабилизации. ток через эти стабилитроны прекратится. Далее они не влияют на работу стабилизатора. Такой способ запуска надежен даже при токе нагрузки 9 А. Минимальный ток нагрузки практически равен нулю.

    Выходное напряжение плюсового плеча стабилизатора равно сумме напряжений стабилизации стабилитронов VD13, VD15 и напряжения отсечки транзистора VT 11.1, а минусового плеча — соответственно стабилитронов VD14, VD16 и транзистора VT11.2. Для плавного запуска стабилизатора оказалось достаточно зашунтировать стабилитроны VD13 VD16 конденсаторами С23— С26.

    Скорость изменения выходного напряжения до начала стабилизации равна скорости нарастания напряжения на этих конденсаторах. При указанных на схеме номиналах элементов время выхода стабилизатора на режим — около 360 мс. Осциллограммы процесса его запуска, полученные на компьютерной модели, показаны на рис. 3

    Для уменьшения рассеиваемой на транзисторах VT9 и VT10 мощности истоки транзисторов VT11.1 и VT11.2 соединены не с общим проводом, а с точками соединения стабилитронов и резисторов (соответственно VD15, R29 и VD16, R30). Поэтому потенциалы истоков транзисторов VT 11.1 и VT11.2 равны напряжению стабилизации соответствующих стабилитронов (6,2В по абсолютному значению). Это позволяет изменять управляющее напряжение на затворах транзисторов VT9 и VT10 не до О В, как в прототипе, а до плюс или минус 6 В.

    При этом напряжение между истоком и стоком этих транзисторов на пиках пульсаций может падать до 3 В и ниже без выхода из режима стабилизации. Сказанное иллюстрируют полученные компьютерным моделированием осциллограммы на рис. 4. Зелёная — напряжение на истоке транзистора VT10, синяя — напряжение на его затворе, красная — напряжение на истоке транзистора VT11.2 (6,2 В), голубая — ток нагрузки минусового плеча. Видно, что напряжение на затворе транзистора VT10 лежит приблизительно посередине между напряжением на его истоке и на истоке транзистора VT11.2, а иногда опускается ниже 3 В.

    В стабилизатор добавлена триггерная защита по току, срабатывающая при превышении током нагрузки любой ветви стабилизатора значения 11 А. Она построена на транзисторах VT3, VT5, VT7 в плюсовом плече и VT4, VT6, VT8 — в минусовом. Датчиками тока служат резисторы R11 —R14, соединённые попарно параллельно. Защита срабатывает при падении напряжения на любой из пар резисторов более 0,5…0,6 В, что соответствует текущему через них току 11…12 А. По достижении этого порога лавинообразно открываются транзисторы триггерных ячеек VT3VT5 или VT4VT6 и соответственно транзисторы VT7 и VT8. Последние, открывшись, шунтируют стабилитроны VD13 и VD14, резко понижая этим выходное напряжение.

    Резисторы R21 и R24 ограничивают ток коллектора транзисторов при разрядке конденсаторов, включённых параллельно стабилитронам. Светодиоды HL1 и HL2 в базовых цепях транзисторов VT7 и VT8 сигнализируют о срабатывании защиты. Ток через них при этом не превышает 6 мА.Конденсаторы С19 и С20 совместно с резисторами R17 и R18 образуют фильтры нижних частот, повышающие помехоустойчивость системы защиты. Увеличивать номиналы этих конденсаторов свыше 4700 пФ нежелательно, поскольку это увеличит время срабатывания защиты и пиковые токи через транзисторы VT9 и VT10. Чтобы защита срабатывала одновременно в обоих плечах стабилизатора, предусмотрена связь между триггерными ячейками через конденсаторы С21 и С22.

    После срабатывания защиты транзисторы VT9 и VT10 остаются закрытыми до отключения устройства от питающей сети. Транзисторы триггерных ячеек закроются, а светодиоды HL1 и HL2 погаснут лишь после разрядки сглаживающих конденсаторов С7—С10. Остаётся одна проблема — обеспечить быструю разрядку сглаживающих конденсаторов после отключения. Её решают узлы на транзисторах VT1 и VT2, одинаковые в обоих каналах. Поэтому рассмотрим только узел, установленный в плюсовом канале.

    Читайте также:  Приемник прямого преобразования на диапазоны 40 и 80 м

    При включении устройства в сеть конденсатор С17 заряжается через диод VD9 до напряжения, примерно равного амплитуде напряжения, поступающего с обмотки II трансформатора Т1. Конденсатор С15 заряжается через резистор R5 и разряжается через диоды VD3, VD4 и диодный мост VD1. Потенциал затвора транзистора VT1 становится равным потенциалу его истока или даже немного ниже, поэтому транзистор закрыт. Закрытое состояние транзистора VT1 сохраняется на протяжении всего времени, пока подано напряжение питания.

    После его выключения диоды VD3 и VD4 закрываются. Напряжение затвор—исток транзистора благодаря резистору R5 возрастает до напряжения стабилизации стабилитрона VD7. Открывшись, транзистор VT1 подключает резисторы R3 и R7 параллельно конденсаторам С7 и С8, ускоряя их разрядку. Длительность разрядки сокращается до 10…20 с при пиковом значении разрядного тока 780 мА, вполне допустимого для используемых транзисторов.

    Стабилизатор напряжения для акустики. Мифы и легенды

    Очень часто пользователи дорогостоящей видео- и аудио-аппаратуры задаются вопросом: как не допустить возможную порчу применяемой техники и влияют ли параметры сети на качество звука. На множестве форумов данные вопросы детально изучались, но найти достоверную информацию по-прежнему достаточно сложно. Это связано с тем, что не представляется возможным определить, обладает ли пишущий достаточными знаниями для того, чтобы здраво судить о проблеме.

    Нужен ли стабилизатор напряжения для аудиотехники?

    Устройство, предназначенное для встраивания в бытовую электрическую сеть для получения на выходе заданных параметров, называется стабилизатором напряжения (англ. Voltage regulator).

    Примечание: ГОСТ 29322-2014 допускает выдачу напряжения для потребителей по старым нормам – 220 В.

    Фактически же устаревшее оборудование во многих регионах страны и некачественная проводка приводит к значительно большим просадкам, что потенциально может окончиться поломкой или уменьшением срока службы электроприборов. Как даже незначительно ухудшение контактов в распределительном щитке сказывается на напряжении в квартире, наглядно показано в этом видеоролике:

    В настоящее время ответственность за порчу личного электрооборудования граждан, в результате завышенного или заниженного напряжения, несет энергетическая компания, осуществляющая поставку услуг по электроснабжению. Однако добиваться компенсаций придется в суде, также придется доказывать, что реальные параметры напряжения значительно выше/ниже нормы. А это очень сложный процесс и не все пострадавшие готовы к судебным тяжбам, которые могут длиться несколько месяцев или даже лет.

    В конечном итоге людям приходится защищать свое оборудование при помощи вспомогательных приборов – стабилизаторов напряжения.

    Стоит отметить, что сетевой фильтр не спасет приборы от просадок напряжения, он способен лишь немного сгладить импульсные помехи, присутствующие в электросети. Но эту же функцию выполняют и стабилизатор. А это значит, что использовать сетевой фильтр имеет смысл только тогда, когда пользователь уверен в том, что в его квартире или доме параметры электрического тока соответствуют нормам.

    Подробнее о том, когда стабилизатор можно заменить обычным сетевым фильтром вы можете прочитать в этой статье.

    Легенды и мифы

    Если в поисковой строке на ПК набрать фразу «купить стабилизатор напряжения», будет выдан километровый список продавцов, которые будут уверять, что именно их супер точные приборы необходимы всем без исключения пользователям. В большинстве случаев цены имеют вид пяти-шестизначных чисел.

    Но при более глубоком анализе выяснится, что не все так однозначно.

    1. Точность регулировки параметра напряжения – неплохой маркетинговый ход для производителей этих самых стабилизаторов. Часто указывают диапазоны ±2, 4, 6% и даже 0,5% и продают устройства по заоблачным ценам. В реальности для подавляющего большинства техники достаточно реального напряжения 220-230 В ± 10%. Запасом «прочности» обладает почти вся техника, в крайнем случае можно ознакомиться с рекомендациями производителя аудиотехники из паспорта устройства;
    2. Все стабилизаторы улучшают качество звука – это не так, более того, стабилизатор способен ухудшить звуковой сигнал. Этим грешат многие электронные стабилизаторы, созданные на базе тиристоров и симисторов. Причины – радиопомехи, излучаемые такого рода полупроводниками. Данный факт многократно доказывался при подключении осциллографа к выходу стабилизаторов данного типа.

    Вывод

    Стабилизаторы релейного и электромеханического (сервоприводного) типа не оказывают сколько-нибудь заметного влияния на качество звука. Основная их задача — обеспечить нормальную работу всем элементам аппаратуры пользователя и предохранить их от досрочного выхода из строя. Приобретать стабилизатор напряжения для аудио-аппаратуры рекомендуется только, если достоверно известно, что напряжение в сети нестабильно и отличается от норм, указанных производителем аудиосистемы.

    При выборе стабилизатора напряжения нужно руководствоваться следующими соображениями:

    • мощность прибора должна быть не меньше, чем у потребителей электроэнергии. Оптимально — с 3-5 кратным запасом;
    • выбирать либо релейный, либо сервоприводный. Электронные (симисторные, тиристорные или двойного преобразования) могут создавать помехи для чувствительной аппаратуры, особенно этим грешат бюджетные модели, у который момент переключения не привязан к моменту перехода тока через ноль;
    • релейный стабилизатор – дешевое устройство, но так как контакты реле постоянно подгорают, иногда придется заниматься его ремонтом (заменой реле).

    Резюмируя все вышесказанное, делаем вывод, что оптимальный стабилизатор для акустики — сервоприводный. Он не искажает выходной сигнал, не создает помех, производит регулировку с высокой степенью точности и стоит не очень дорого.

    Итог такой, что самые лучшие стабилизаторы напряжения, это электромеханические. Купил один на 45 кВт от ОРТЕА еще 2005 году и забыл, о скачках и тусклом свете. Взял еще один для дачи.

    тоже самое по срокам и результатам, но у меня стабилизатор «Штиль», еще на советской элементной базе, устойчивой к ядерным взрывам.
    Каково же было мое удивление, когда недавно услышал от продавца, что и «современный» стабилизатор нуждается в защите и так как и сам может выйти из строя при определенных сочетаниях условий при скачках напряжения.

    Добавить комментарий

    Материалы по теме:

    Пару слов о том, что такое байпас в стабилизаторе напряжения – для чего он вообще нужен, как и когда его включать и как собрать внешнюю схему байпаса для стабилизатора при помощи двухпозиционного переключателя.

    Если в вашем загородном доме, дачном домике или небольшом коттедже микроволновка почти не греет, а лампочки едва светят, самое время подумать о том, как выбрать стабилизатор напряжения для частного дома. Все просто.

    Итак, у вас стоит электрокотел, но в периоды просадки напряжения в сети, он почти не греет. Поможет ли вашему электрическому котлу стабилизатор напряжения или это очередной развод на бабки? Обсудим этот момент!

    В статье приводятся самые лучшие стабилизаторы напряжения для газовых котлов (рейтинг, основанный на практике ремонта). Вы узнаете какой стабилизатор выбрать – электронный или механический, однофазный или . ?

    Не знаете, как выбрать стабилизатор напряжения в квартиру? Прочитайте эту статью до конца и все станет предельно ясно. Даже сами сможете давать консультации. Для ленивых даю список лучших моделей бытовых стабилизаторов.

    Стабилизатор напряжения питания УМЗЧ. Доработанная схема В. Орешкина. Подписка на платы!

    Содержание / Contents

    ↑ Принципиальная схема модернизированного блока питания УМЗЧ

    Он состоит из двух гальванически не связанных выпрямителей VD1, C1, C2, C5, C6, C9, C11, C13 и VD2, C3, C4, C7, C8, C10, C12, C14, двух параметрических стабилизаторов, выполненных на стабилитронах VD3, VD4 и источниках тока на транзисторах VT5, VT6, и эмиттерных повторителей на транзисторах VT1, VT3 и VT2, VT4. Коэффициент стабилизации повышен благодаря питанию источника образцового напряжения одного стабилизатора от выходного напряжения другого и использованию вместо резисторов источников тока.

    Выпрямители собраны на диодных мостах VD1, VD2, состоящих из двойных диодов Шотки с общим катодом 16CTQ100. Диоды включены параллельно.

    Конденсаторы С1…С8; С9, С10 и RC — цепочки R9, C23 и R10, C24 установлены в соответствии с рекомендациями фирмы Texas Instruments по построению блоков питания для УМЗЧ [3].

    Для уменьшения шумов каждый стабилитрон VD3, VD4 зашунтирован парой конденсаторов — оксидным и пленочным (соответственно С15, С17 и С16, С18).

    Источники тока на транзисторах VT5, VT6 содержат параметрические стабилизаторы HL1, C19, C21, R8 и HL2, C20, C22 в базах транзисторов.

    Резисторы R5, R6 уменьшают мощность, рассеиваемую на коллекторах транзисторов источников тока.

    Коллекторы (корпусы) мощных транзисторов VT1, VT2 соединены с общим проводом блока питания, что позволяет обойтись без теплопроводящих прокладок, тем самым улучшить отвод тепла при больших токах нагрузки.

    Для снижения динамического сопротивления источника питания его выходы зашунтированы парами конденсаторов оксидный — пленочный (соответственно С25, С27 и С26, С28). Балластные резисторы со светодиодами зеленого цвета служат для индикации (HL3, R11 и HL4, R12).

    Резистор R2 предназначен для запуска двухполярного стабилизатора при включении питания.

    Стабилизатор имеет защиту от короткого замыкания в нагрузке. При замыкании в любом плече отключаются оба стабилизатора.

    ↑ Детали и аналоги

    В блоке питания использованы выводные резисторы МЛТ или зарубежные MF мощностью, указанной на принципиальной схеме (рис. 1).

    Конденсаторы С1 — С8, С17 — С20, С27, С28 типа К73-17, оксидные конденсаторы импортные. Конденсаторы С17 — С20 могут быть с лучшим результатом заменены на CBB21/MPP из металлизированного полипропилена (например, 0,15 мкФ, 100 В с датагорской ярмарки). В качестве С27, С28 подойдут 1 мкФ, 100 В (Suntan, полиэстер).

    Транзисторы КТ825А и КТ827А можно заменить составными (КТ819Г + КТ815Г и КТ818Г + КТ814Г), при этом эмиттерные переходы мощных транзисторов КТ819Г и КТ818Г необходимо зашунтировать резисторами сопротивлением 100 — 150 Ом. Возможна замена мощных составных транзисторов на MJ11032 и MJ11033. При максимальном токе нагрузки 5 — 7 А подойдут транзисторы TIP142 и TIP147, а также BDW42G BDW47G.

    Транзисторы VT1, VT2 закреплены на теплоотводе с площадью охлаждающей поверхности 900 кв. см без теплоизолирующих прокладок с применением теплопроводной пасты АЛСИЛ-3.

    Вместо транзисторов BD139 и BD140 подойдут 2SC3502 и 2SA1380 или BF471 и BF472. При замене обязательно уточняйте цоколевку транзисторов.

    Транзисторы VT5, VT6 типа 2SA1013, 2SC2383 могут быть заменены на отечественные КТ502Е, КТ503Е; КТ6116, КТ6117 или импортные 2N5401, 2N5551; 2SA1145, 2SC2705 и на другие.

    Диоды Шоттки в мостах VD1, VD2 заменимы на MBR20200CTG (200 В, 10 А) с общим катодом, либо на SR10100 (10 А, 100 В, ТО-220-2). В последнем случае потребуется корректировка печатной платы.

    При токах потребления более 2 А необходимо снабдить диоды небольшими радиаторами и (или) обеспечить их охлаждение вентилятором.

    При сравнительно небольших потребляемых токах (до 2 А) в диодных мостах можно применить высокопроизводительные диоды HER505 (5 А, 1000 В), сверхбыстрые диоды SF56 (5 А, 400 В) или ультрафасты STTH5R06FP (5 А, 600 В, ТО-220-2).

    Максимальный ток стабилизатора напряжения определяет трансформатор питания. Например, в приведенной на рис. 1 схеме трансформатор Т1 типа ТПП321 обеспечивает максимальный ток не более 4 А.

    ↑ Работа с другими выходными напряжениями

    ↑ Печатная плата

    Детали устройства, кроме силового трансформатора Т1 и мощных транзисторов VT1, VT2, смонтированы на печатной плате размерами 150×70 мм (см. рис. 2), изготовленной из фольгированного стеклотекстолита.

    «Силовые» дорожки на печатной плате целесообразно дополнительно пропаять сверху луженым монтажным проводом диаметром 0,5 — 0,7 мм.

    Читайте также:  Как достать нужную информацию?

    ↑ Налаживание

    Для равенства по модулю выходных напряжений стабилизатора необходимо перед монтажом отобрать стабилитроны VD3, VD4 по напряжению стабилизации при токе 10 мА.

    Налаживание устройства сводится к подбору сопротивления резистора R2, обеспечивающего надежный запуск источника питания.

    ↑ Выводы

    Применение двух отдельных выпрямительных мостов в устройстве, на мой взгляд, является недостатком, так как по сравнению с одним диодным мостом имеем в два раза выше падение напряжения на диодах выпрямителя, следовательно, меньшую максимальную мощность. Кроме того, конструкция с двумя диодными мостами имеет большие габариты.

    Наличие двух независимо работающих вторичных обмоток трансформатора выдвигает дополнительное требование равенства их выходных напряжений.

    Единственное преимущество схемы с двумя выпрямительными мостами — в два раза меньшее максимальное напряжение на диоде моста может сыграть свою положительную роль при выборе выпрямительных диодов Шоттки, имеющих невысокое обратное напряжение, не более 45 — 200 В.

    Описанное устройство можно использовать не только как источник питания УМЗЧ, но и как мощный источник питания устройств автоматики.

    ↑ Файлы

    Можно скачать схему и печатную плату ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

    ↑ Упомянутые источники

    Спасибо за внимание!

    ↑ Старт подписки на печатные платы «3118»

    Открываю подписку на платы «3118» к статье «Стабилизатор напряжения питания УМЗЧ. Доработанная схема В. Орешкина». В лоте две заводских платы 150×70 мм.
    Платы отличного качества, с паяльной маской, с утолщённой медью, надписями и пр. приятностями.
    Цена зависит от вашей активности. Чем больше соберём заказов, тем дешевле.
    10 лотов » 950,00 ₽ за 1 лот (2 платы)
    25 лотов » 660,00 ₽ за 1 лот (2 платы)
    50 лотов » 530,00 ₽ за 1 лот (2 платы)
    100 лотов » 440,00 ₽ за 1 лот (2 платы)
    Нам нужно собрать желающих на 100 лотов. Критический минимум — 25 лотов. Подтягивайте знакомых и друзей или заказывайте для них. Новички и кандидаты — участники подписок получают привилегированное членство (гражданство) на сайте.

    Для подписки вносим 660 ₽ по ссылке с любой банковской карты или из Я.Кошелька. В примечании к платежу укажите ваш логин на Датагоре и название подписки. НЕ ПИШИТЕ слов типа «взнос», «заказ», «оплата» и т.п. Обязательно залогиньтесь и отметьтесь в комментариях.

    Или пополняем мой счёт Яндекс.Денег № 41001559754671 удобным вам способом.
    Или пополняем мою карту СБ № 4276826012198773 из Онлайн-банка или терминала.
    Или отправляем почтовый экспресс-перевод «Форсаж». Доступно не во всех почтовых отделениях. Захватите паспорт.

    НЕ ПИШИТЕ слов типа «взнос», «заказ», «оплата» и т.п. Укажите ваш датагорский логин.

    Немного о блоках питания усилителей (часть I)

    Опубликовано: 6 марта, 2017 • Рубрика: Блоки питания

    Казалось бы что может быть проще, подключить усилитель к блоку питания, и можно наслаждаться любимой музыкой?

    Однако, если вспомнить, что усилитель по сути модулирует по закону входного сигнала напряжение источника питания, то станет ясно, что к вопросам проектирования и монтажа блока питания стоит подходить очень ответственно.

    Иначе ошибки и просчёты допущенные при этом могут испортить (в плане звука) любой, даже самый качественный и дорогой усилитель.

    Стабилизатор или фильтр?

    Удивительно, но чаще всего для питания усилителей мощности используются простые схемы с трансформатором, выпрямителем и сглаживающим конденсатором. Хотя в большинстве электронных устройств сегодня используются стабилизированные блоки питания. Причина этого заключается в том, что дешевле и проще спроектировать усилитель, который бы имел высокий коэффициент подавления пульсаций по цепям питания, чем сделать относительно мощный стабилизатор. Сегодня уровень подавления пульсаций типового усилителя составляет порядка 60дБ для частоты 100Hz , что практически соответствует параметрам стабилизатора напряжения. Использование в усилительных каскадах источников постоянного тока, дифференциальных каскадов, раздельных фильтров в цепях питания каскадов и других схемотехнических приёмов позволяет достичь и ещё больших значений.

    Питание выходных каскадов чаще всего делается нестабилизированным. Благодаря наличию в них 100% отрицательной обратной связи, единичному коэффициенту усиления, наличию ОООС, предотвращается проникновение на выход фона и пульсаций питающего напряжения.

    Выходной каскад усилителя по сути является регулятором напряжения (питания), пока не войдет в режим клиппирования (ограничения). Тогда пульсации питающего напряжения (частотой 100 Гц) модулируют выходной сигнал, что звучит просто ужасно:

    Если для усилителей с однополярным питанием происходит модуляция только верхней полуволны сигнала, то у усилителей с двухполярным питанием модулируются обе полуволны сигнала. Большинству усилителей свойственен этот эффект при больших сигналах (мощностях), но он никак не отражается в технических характеристиках. В хорошо спроектированном усилителе эффекта клиппирования не должно происходить.

    Чтобы проверить свой усилитель (точнее блок питания своего усилителя), вы можете провести эксперимент. Подайте на вход усилителя сигнал частотой чуть выше слышимой вами. В моём случае достаточно 15 кГц :(. Повышайте амплитуду входного сигнала, пока усилитель не войдёт в клиппинг. В этом случае вы услышите в динамиках гул (100Гц). По его уровню можно оценить качество блока питания усилителя.

    Предупреждение! Обязательно перед этим экспериментом отключите твиттер вышей акустической системы иначе он может выйти из строя.

    Стабилизированный источник питания позволяет избежать этого эффекта и приводит к снижению искажений при длительных перегрузках. Однако, с учётом нестабильности напряжения сети, потери мощности на самом стабилизаторе составляют примерно 20%.

    Другой способ ослабить эффект клиппирования это питание каскадов через отдельные RC-фильтры, что тоже несколько снижает мощность.

    В серийной технике такое редко применяется, так как помимо снижения мощности, увеличивается ещё и стоимость изделия. Кроме того, применение стабилизатора в усилителях класса АВ может приводить к возбуждению усилителя из-за резонанса петель обратной связи усилителя и стабилизатора.

    Потери мощности можно существенно сократить, если использовать современные импульсные блоки питания. Тем не менее, здесь всплывают другие проблемы: низкая надёжность (количество элементов в таком блоке питания существенно больше), высокая стоимость (при единичном и мелко-серийном производстве), высокий уровень ВЧ-помех.

    Типовая схема блока питания для усилителя с выходной мощностью 50Вт представлена на рисунке:

    Выходное напряжение за счёт сглаживающих конденсаторов больше выходного напряжения трансформатора примерно в 1,4 раза.

    Пиковая мощность

    Несмотря на указанные недостатки, при питании усилителя от нестабилизированного источника можно получить некоторый бонус — кратковременную (пиковую) мощность выше, чем мощность блока питания, за счёт большой ёмкости фильтрующих конденсаторов. Опыт показывает, что требуется минимум 2000мкФ на каждые 10Вт выходной мощности. За счёт этого эффекта можно сэкономить на трансформаторе питания — можно использовать менее мощный и, соответственно, дешёвый трансформатор. Имейте ввиду, что измерения на стационарном сигнале этого эффекта не выявят, он проявляется только при кратковременных пиках, то есть при прослушивании музыки.

    Стабилизированный блок питания такого эффекта не даёт.

    Параллельный или последовательный стабилизатор ?

    Бытует мнение, что параллельные стабилизаторы лучше в аудиоустройствах, так как контур тока замыкается в локальной петле нагрузка-стабилизатор (исключается источник питания), как показано на рисунке:

    Тот же эффект дает установка разделительного конденсатора на выходе. Но в этом случае ограничивает нижняя частота усиливаемого сигнала.

    Автор использует стабилитроны для питания операционных усилителей. При этом можно организовать индикацию напряжения питания практически без дополнительных затрат (светодиодам не нужны гасящие резисторы):


    Защитные резисторы

    Каждому радиолюбителю наверняка знаком запах горелого резистора. Это запах горящего лака, эпоксидной смолы и. денег. Между тем, дешёвый резистор может спасти ваш усилитель!

    Автор при первом включении усилителя в цепях питания вместо предохранителей устанавливает низкоомные (47-100 Ом) резисторы, которые в несколько раз дешевле предохранителей. Это не раз спасало дорогие элементы усилителя от ошибок в монтаже, неправильно выставленного тока покоя (регулятор поставили на максимум вместо минимума), перепутанной полярности питания и так далее.

    На фото показан усилитель, где монтажник перепутал транзисторы TIP3055 с TIP2955.

    Транзисторы в итоге не пострадали. Все закончилось хорошо, но не для резисторов, и комнату проветривать пришлось.

    Главное — падение напряжения

    При проектировании печатных плат блоков питания и не только не надо забывать, что медь не является сверхпроводником. Особенно это важно для «земляных» (общих) проводников. Если они тонкие и образуют замкнутые контуры или длинные цепи, то в из-за протекающего тока на них получается падение напряжения и потенциал в разных точках оказывается разным.

    Для минимизации разности потенциалов принято общий провод (землю) разводить в виде звезды — когда к каждому потребителю идёт свой проводник. Не стоит термин «звезда» понимать буквально. На фото показан пример такой правильной разводки общего провода :


    В ламповых усилителях сопротивление анодной нагрузки каскадов довольно высокое, порядка 4кОм и выше, а токи не очень велики, поэтому сопротивление проводников не играет существенной роли. В транзисторных усилителях сопротивления каскадов существенно ниже (нагрузка вообще имеет сопротивление 4Ом), а токи гораздо выше, чем в ламповых усилителях. Поэтому влияние проводников тут может быть весьма существенным.

    Сопротивление дорожки на печатной плате в шесть раз выше, чем сопротивление отрезка медного провода такой же длинны. Диаметр взят 0,71мм, это типичный провод, который используется при монтаже ламповых усилителей.

    0.036 Ом в отличие от 0.0064 Ом! Учитывая, что токи в выходных каскадах транзисторных усилителей могут в тысячу раз превышать ток в ламповом усилителе, получаем, что падение напряжения на проводниках может быть в 6000! раз больше. Возможно, это одна из причин, почему транзисторные усилители звучат хуже ламповых. Это также объясняет, почему собранные на печатных платах ламповые усилители часто звучат хуже прототипа, собранного навесным монтажом.

    Не стоит забывать закон Ома! Для снижения сопротивления печатных проводников можно использовать разные приёмы. Например, покрыть дорожку толстым слоем олова или припаять вдоль дорожки лужёную толстую проволоку. Варианты показаны на фото:

    Импульсы заряда

    Для предотвращения проникновения фона сети в усилитель нужно принять меры от проникновения импульсов заряда фильтрующих конденсаторов в усилитель. Для этого дорожки от выпрямителя должны идти непосредственно на конденсаторы фильтра. По ним циркулируют мощные импульсы зарядного тока, поэтому ничего другого к ним подключать нельзя. цепи питания усилителя должны подключаться к выводам конденсаторов фильтра.

    Правильное подключение (монтаж) блока питания для усилителя с однополярным питанием показан на рисунке:

    Увеличение по клику

    На рисунке показан вариант печатной платы:

    Увеличение по клику

    Автору до сих пор попадаются усилители, у которых высокий уровень фона вызван неправильной разводкой земли и подключением дорожек от разных «потребителей» к выходам выпрямителя.

    Пульсации

    Большинство нестабилизированных источников питания имеют после выпрямителя только один сглаживающий конденсатор (или несколько включенных параллельно). Для улучшения качества питания можно использовать простой трюк: разбить одну ёмкость на две, а между ними включить резистор небольшого номинала 0,2-1 Ом. При этом даже две ёмкости меньшего номинала могут оказаться дешевле одной большой.

    Это дает более плавные пульсации выходного напряжения с меньшим уровнем гармоник:


    При больших токах падение напряжения на резисторе может стать существенным. Для его ограничения до 0,7В параллельно резистору можно включить мощный диод. В этом случае, правда, на пиках сигнала, когда диод будет открываться, пульсации выходного напряжения опять станут «жесткими».

    Статья подготовлена по материалам журнала «Практическая электроника каждый день»

    Автор: Джек Розман

    Вольный перевод: Главного редактора «РадиоГазеты»

    Рейтинг
    ( Пока оценок нет )
    Загрузка ...
    Adblock
    detector